МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Брестский государственный технический университет»

Кафедра высшей математики

Практикум по высшей математике

Часть II

Функции нескольких переменных. Неопределенный и определенный интегралы. Дифференциальные уравнения УДК 330.115(075.8) ББК 22.11.я73

разработке рассматриваются настоящей некоторые экономики, которых интегралом решение связано или дифференциальными варианты заданий уравнениями. Указаны аттестационным работам по темам «Исследование поведения функции одной переменной с помощью производной», «Функции нескольких определенный интегралы», переменных», «Неопределенный И «Дифференциальные уравнения», а так же приведены решения типовых вариантов этих работ.

Составители: Гладкий И.И., ст. преподаватель, Махнист Л.П., к.т.н., доцент, Рубанов В.С., к.ф.-м.н., доцент, Сидоревич М.П., к.ф.-м.н., доцент.

Рецензент: зав. кафедрой алгебры и геометрии УО «Брестский государственный университет им. А.С. Пушкина», к.ф.-м.н., доцент Савчук В.Ф.

УДК 330.115(075.8) ББК 22.11.я73

© Учреждение образования «Брестский государственный технический университет», 2003

Вопросы учебной программы

- 1. Продуктивная модель Леонтьева.
- 2. Модель равновесных сил.
- 3. Линейная модель обмена (модель международной торговли).
- 4. Производная функции, ее геометрический смысл. Основные правила дифференцирования.
- 5. Предельные величины в экономике. Эластичность.
- 6. Основные теоремы дифференциального исчисления (теоремы Ферма, Ролля и Лагранжа).
- 7. Достаточные условия убывания и возрастания функции на промежутке.
- 8. Экстремум функции одной переменной. Необходимое и достаточные условия.
- 9. Выпуклость, вогнутость графика функции. Точки перегиба.
- 10. Асимптоты графика функции.
- 11. Понятие функции нескольких переменных. Линии уровня функции двух переменных. Понятие изокванты.
- 12. Частные производные первого порядка функции нескольких переменных.
- 13. Эластичность функции двух переменных.
- 14. Производная по направлению. Градиент.
- 15. Частные производные и дифференциалы высших порядков функции двух переменных. Матрица Гессе.
- 16. Экстремум функции двух переменных. Необходимые и достаточные условия.
- 17. Метод наименьших квадратов.
- 18. Первообразная. Неопределенный интеграл. Свойства неопределенного интеграла.
- 19. Основные методы интегрирования (табличное интегрирование, замена переменной и интегрирование по частям).
- 20. Интегрирование простейших рациональных дробей.
- 21. Задача о площади криволинейной трапеции. Понятие определенного интеграла.
- 22. Свойства определенного интеграла.
- 23. Определенный интеграл с переменным пределом интегрирования. Формула Ньютона-Лейбница.

- 24. Основные методы вычисления определенного интеграла.
- 25. Несобственные интегралы.
- 26. Приложения определенного интеграла в геометрии и экономике.
- 27. ДУ первого порядка в нормальной форме. Задача Коши. Теорема существования и единственности решения задачи Коши (формулировка). Понятие общего и частного решений.
- 28. Уравнения с разделяющимися переменными.
- 29. Линейные ДУ первого порядка.
- 30. Однородные ДУ первого порядка.
- 31. Линейная зависимость и независимость функций. Определитель Вронского.
- 32. Однородные ЛДУ второго порядка. Свойства решений. Теорема о структуре общего решения.
- 33. Однородные ЛДУ второго порядка с постоянными коэффициентами. Метод Эйлера.
- 34. Неоднородные ЛДУ второго порядка с постоянными коэффициентами и со специальной правой частью.
- 35. Числовой ряд и его сумма. Простейшие свойства сходящихся рядов. Необходимый признак сходимости.
- 36. Сходимость рядов с положительными членами (признаки сравнения, признаки Даламбера и Коши, интегральный признак Коши).
- 37. Знакочередующиеся ряды . Признак Лейбница.
- 38. Знакопеременные ряды. Условная и абсолютная сходимости. Достаточные условия абсолютной сходимости.
- 39. Степенные ряды. Теорема Абеля. Радиус и интеграл сходимости степенного ряда.
- 40. Свойства степенных рядов.
- 41. Ряды Тейлора и Маклорена.
- 42. Разложение в степенные ряды функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^m$, $m \in R$.
- 43. Тригонометрический ряд Фурье 2π периодической функции. Теорема Дирихле (формулировка).
- 44. Разложение четных и нечетных функций в ряд Фурье.
- 45. Ряд Фурье для функций с произвольным периодом.

Перечень основных задач

Функции двух переменных

1. Найти линии уровня данных функций:

$$z = \frac{y}{x^2};$$
 $z = x^2 - y^2;$ $z = y(x^2 + 1);$ $z = \frac{2x}{x^2 + y^2};$ $z = f\left(\frac{y}{x}\right).$

2. Найти частные производные первого порядка функций:

$$z = x^{3}y - y^{3}x; z = \frac{x^{3} + y^{3}}{x^{2} + y^{2}}; z = \left(5x^{2}y - y^{2} + 1\right)^{3}; z = arctg\frac{y}{x};$$

$$z = \ln\left(x + \sqrt{x^{2} + y^{2}}\right); z = \ln\left(x^{2} + 3y^{2} - x\right); z = e^{-\frac{x}{y}}; z = \sin xy \cdot e^{-y};$$

$$z = (1 + xy)^{y}; z = \cos^{2}(x - 3y + xy); z = \sqrt{x^{2} - y^{3}}; z = \frac{2x - 3y}{3y + 2x}.$$

- 3. Найти частные производные функции $z = \ln\left(x + \frac{y}{2x}\right)$ в точке (1;2).
- 4. Вычислить частные производные функции $z = x + y \sqrt{x^2 + y^2}$ в точке (3;4).
- 5. Показать, что $x \cdot z'_x + y \cdot z'_y = 2$, если $z = \ln(x^2 + xy + y^2)$.
- 6. Показать, что $z'_x + z'_y = 1$, если $z = \ln(e^x + e^y)$.
- 7. Проверить, что функция $z = y(x^2 y^2)^2$ удовлетворяет уравнению $\frac{1}{x} \cdot z_x' + \frac{1}{y} \cdot z_y' = \frac{z}{v^2}.$
- 8. Показать, что функция $z = \sqrt{x^2 + y^2}$ удовлетворяет уравнению $(z_x')^2 + (z_y')^2 = 1$.
- 9. Дана производственная функция $z = 4x^3 xy^2 + 2y + y^3$, выражающая зависимость объемов производства от факторов x и y, где x- затраты овеществленного труда, y- затраты живого труда. Найти: а) предельную производительность овеществленного труда и предельную производительность живого товара; б) эластичность объемов производства относительно факторов x и y.
- 10. Для производственной функции $z = 8x^3 x^2y + 4$ определить коэффициенты эластичности ресурсов x и y, если значения ресурсов равны соответственно 2 и 1.

- 11. Для двухфакторной функции Кобба-Дугласа $z = 5x^{0,21} \cdot y^{0,35}$ определить коэффициенты эластичности по факторам x и y.
- 12. Функция Кобба-Дугласа имеет вид $Q = A_0 K^{\alpha} L^{1-\alpha}$. Установить, на какую величину следует изменить объем вложенного капитала K, чтобы при изменении трудовых ресурсов на ΔL выпуск продукции оставался неизменным. Найти предельную норму замещения трудовых ресурсов L капиталом K.
- 13. Найти полные дифференциалы следующих функций

$$z = \ln(3x + 4y);$$
 $z = e^{y^2 - xy};$ $z = 2x^4 + y^4 - x^2y^2 + 5xy - 3x.$

- 14. Вычислить, на сколько процентов приближенно изменится спрос, описываемый функцией $D = Ae^{-\sqrt{n+p^2}}$, где A>0, n число производителей товара, если число производителей товара уменьшится на 5%, а цена возрастает на 1%. На рынке имеется 20 производителей, цена товара равна 4 ден. ед.
- 15. Производственная функция есть функция Кобба-Дугласа $Q = A_0 K^{\alpha} L^{\beta}$. Чтобы увеличить выпуск продукции на 3 %, надо увеличить фонды на 6 % или численность рабочих на 9 %. В настоящее время один работник за месяц производит продукции на 1 млрд. руб., а всего работников 1000. Основные фонды оцениваются в 10 млрд. руб. Определить параметры α , β , A_0 и найти величину средней фондоотдачи.
- 16. Дана функция z = f(x, y). Найти: а) градиент функции z в точке $M_0(x_0, y_0)$; б) производную функции z в точке M_0 в направлении вектора \vec{a} .

$$z = x - x^{2}y + y^{4}, M_{0}(1;1), \vec{a} = (-12; 5);$$

$$z = xy + \frac{x}{y}, M_{0}(2; 1), \vec{a} = (-6; -8);$$

$$z = x^{2} \ln y + 5y^{2}x + 2, M_{0}(-3; 1), \vec{a} = (-4; -3).$$

17. Дана функция z = f(x, y). Требуется: а) найти частные производные второго порядка; б) составить выражение для d^2z ; в) записать матрицу Гессе в точке M_0 и вычислить ее определитель:

$$z = x^{3}y^{2} + 5x^{2}y + 7xy^{2} - x, \qquad M_{0}(-1; 1);$$

$$z = xe^{-xy}, \qquad M_{0}(0; -2);$$

$$z = 3x^{2} + 2xy^{2} - 4xy + x^{2}y - y^{3}, \qquad M_{0}(4; -1);$$

$$z = x^{2} \ln(x + y), \qquad M_{0}(-1; 2).$$

- 18. Показать, что функция $z = \sin(xy) + \sqrt{xy}$ удовлетворяет уравнению $x^2 z''_{xx} y^2 z''_{yy} = 0.$
- 19. Показать, что $z''_{xx} 2z''_{xy} + z''_{yy} = 0$, если $z = x\cos(x+y) + ye^{x+y}$.
- 20. Исследовать на экстремум функции

$$z = 3x^{2} - 3y^{2} + 4y,$$

$$z = x^{2} - xy + y^{2} + 9x - 6y + 20,$$

$$z = x\sqrt{y} - x^{2} - y + 6x + 3.$$

- 21. Некоторая фирма производит два вида товаров и продает их по рыночной цене 800 и 600 денежных единиц соответственно. Затраты на производство товаров двух видов составляют $C = 4q_1^2 + 4q_1q_2$, где q_1 и q_2 объемы выпуска товаров первого и второго вида соответственно. При каких объемах выпуска товаров первого и второго видов прибыль будет максимальной?
- 22. Фирма имеет два филиала, издержки производства в которых определяются функциями

$$C_1(q_1) = 0.3q_1^2 + 4q_1 + 500$$
 и $C_2(q_2) = 0.3q_2^2 + 2q_2 + 300$,

где q_1 и q_2 — объемы производимой филиалами продукции. Общий спрос на продукцию фирмы описывается функцией $q=800-2\,p$, где p - цена единицы продукции, а $q=q_1+q_2$. Найти: а) оптимальный объем выпуска продукции для фирмы; б) оптимальную цену; в) распределение производственной программы по филиалам.

23. Двухфакторная производственная функция имеет вид $f(K,L) = 2 \cdot \sqrt[3]{KL}$, где L и K — соответственно затраты трудовых ресурсов и капитала. Цена продукции p = 600, а факторные цены на труд и капитал соответственно равны: $p_1 = 20$ и $p_2 = 10$. Найти оптимальный план производства и максимальную прибыль. Все величины выражены в условных единицах.

Указание. Функция прибыли имеет вид

$$\Pi(K,L) = p \cdot f(K,L) - p_1 L - p_2 K.$$

Точка (K_0, L_0) , в которой функция прибыли принимает максимальное значение, называется оптимальным планом производства.

24. Общие издержки производства заданы функцией

$$TC = 0.5q_1^2 + 0.6q_1q_2 + 0.4q_2^2 + 700q_1 + 600q_2 + 2000$$

где q_1 и q_2 – соответственно количество товаров A и B. Общее количество произведенной продукции должно быть равно 500 ед. При

- каких объемах производства товаров A и B совокупные издержки на их изготовление будут минимальными?
- 25. Найти наименьшее и наибольшее значения функции z = f(x, y) в замкнутой области D.

$$z = x^{2} + y^{2} - 2x - 2y + 8,$$

$$z = 2x^{2} + 2xy - \frac{1}{2}y^{2} - 4,$$

$$z = 5x^{2} - 3xy + y^{2} - 4,$$

$$D: x = 0, y = 0, x + y - 1 = 0;$$

$$D: y = 2x, y = 2, x = 0;$$

$$D: |x| \le 1, |y| \le 1.$$

26. В таблице приведены данные о росте экспорта страны x и росте курса национальной валюте y:

<i>x</i> %	0,1	0,2	0,5	1,0	1,2	1,4	1,9	2,0
<i>y</i> %	0,31	0,32	0,35	0,40	0,42	0,44	0,49	0,51

Найти зависимость между переменными x и y вида y = ax + b.

27. В результате исследования зависимости между сроком t эксплуатации автомобиля и расходами C на его ремонт получены следующие данные:

<i>t</i> , лет	1	2	3	4	5	6	7
С(ден. ед.)	120	140	230	370	445	570	655

Найти: 1) линейную зависимость стоимости ремонта от срока эксплуатации, т.е. функцию вида C = at + b; 2) предполагаемую величину затрат на ремонт за 8-й год эксплуатации автомобиля.

Неопределенный интеграл

28. Найти неопределенные интегралы:

$$\int \left(x^{3} - 4x\sqrt{x} - \frac{3}{x^{2}} + 2\right) dx, \quad \int \frac{2x^{2} - \ln^{3} x}{x} dx, \quad \int \frac{dx}{\sqrt{x^{2} + 2x + 2}}, \quad \int \frac{\sqrt{x - 1}}{x + 3} dx,
\int (1 + 2\sin x)^{2} \cos x dx, \quad \int (x + 1)\sin\frac{x}{2} dx, \quad \int \frac{(2x - 3)}{x^{2} - 3x + 1} dx, \quad \int \frac{dx}{4x - x^{2}},
\int (x + 4)\sqrt{x + 2} dx, \quad \int (2x - 3)e^{-x} dx, \quad \int \frac{x dx}{x^{2} + 6x + 10}.$$

29. Функция предельного дохода имеет вид

$$MR(q) = 25 - 0.4q - 0.06q^2$$
.

Найти функцию дохода и закон спроса на продукцию.

Определенный интеграл

30. Вычислить определенные интегралы:

$$\int_{0}^{8} \left(\sqrt{2x} + \sqrt[3]{x}\right) dx, \quad \int_{1}^{2} \frac{x \, dx}{1 + x^{2}}, \qquad \int_{0}^{4} \frac{dx}{1 + \sqrt{x}}, \qquad \int_{0}^{1} x \, e^{-x} \, dx,$$

$$\int_{0}^{\pi/2} x \cos x \, dx, \qquad \int_{0}^{1} \sqrt{1 - x^{2}} \, dx, \qquad \int_{1}^{e} \ln x \, dx.$$

31. Вычислить интегралы или установить их расходимость:

$$\int_{0}^{\infty} \frac{dx}{x^{2} + 4}; \qquad \int_{1}^{\infty} \frac{dx}{x^{2}}; \qquad \int_{0}^{2} \frac{dx}{\sqrt{4 - x^{2}}}; \qquad \int_{0}^{2} \frac{dx}{\sqrt[3]{(x - 1)^{2}}}; \int_{0}^{2} \frac{dx}{(x - 1)^{2}}.$$

- 32. Вычислить площадь фигуры, ограниченной линиями:
 - a) $y = x^2 + 4x$, y = x + 4;

6)
$$y = -2 + 3x - x^2$$
, $y = 0$;

- B) $y = x^2$, $y = 2 x^2$.
- 33. Распределение дохода в некоторой стране определяется кривой Лоренца $y = 0.95x^2 + 0.05x$. Какую часть дохода получают 10 % наиболее низко оплачиваемого населения? Вычислить коэффициент неравномерности распределения совокупного дохода (коэффициент Джинни).
- 34. Найти выигрыш потребителей и поставщиков товара, законы спроса и предложения на который имеют вид:

$$D: p = 89 - q^2$$
, $S: p = 30 + \frac{10}{7}q$,

где q — количество единиц товара.

- 35. Уравнение спроса на некоторую продукцию имеет вид p = 30 0.02q. Найти среднее значение дохода, если объем продаж q возрос с 80 до 150 единиц.
- 36. Найти прирост капитала предприятия на данном промежутке времени, если скорость изменения инвестиций имеет вид $I(t) = 10 + 2\sqrt{t}$, $9 \le t \le 16$.
- 37. Под строительство некоторого объекта задан непрерывный денежный поток со скоростью I(t) = 20t + 5 (млрд. руб./год) в течение 10 лет с годовой процентной ставкой p = 5. Найти дисконтированную стоимость этого потока.

ДУ первого порядка

38. Проинтегрировать уравнения:

$$(3x^{2} - 2\sin x)dx = (1 - e^{-y})dy, \qquad (x - xy)dx + (3y + yx)dy = 0,$$

$$(5 + e^{x})ydy = e^{x}dx, \qquad y'(x+1) - 2y = (x+1)^{4},$$

$$xy' - 3y = x^{4}(2 + \sin 2x), \qquad xy' - y = 2 - x^{2},$$

$$y' + 2xy = 2x, \qquad (xy^{2} + x)dx + (x^{2}y - y)dy = 0.$$

39. Функция спроса и предложения на некоторый товар имеют вид:

$$D: q = 100 - 3p + 4p', S: q = 120 + 2p + p',$$

где $p' = \frac{dp}{dt}$. Найти зависимость равновесной цены от времени, если в начальный момент времени цена $p_0 = 10$.

ЛДУ второго порядка с постоянными коэффициентами

40. Решить задачу Коши:

Решить задачу Коши:
a)
$$y'' - 4y' - 5y = 0$$
, $y(0) = 2$, $y'(0) = 4$;
б) $4y'' - 4y' + y = 0$, $y(0) = 2$, $y'(0) = -1$

6)
$$4y'' - 4y' + y = 0$$
, $y(0) = 2$, $y'(0) = -1$;

B)
$$y'' - 4y' + 13y = 0$$
, $y(0) = -1$, $y'(0) = -3$;

$$y'' + \pi y = 0$$
, $y(0) = 3$, $y'(0) = 2\pi$.

41. Проинтегрировать уравнения:

$$y'' - 3y' = 2 - 6x, y'' - 4y' + 3y = 12\sin x - 4\cos x, y'' + 2y' + y = xe^x,$$

$$y'' + 4y' = \cos 2x, y'' + 3y' + 2y = e^{-x}, y'' - 7y' + 12y = x,$$

$$y'' - 9y' = x + 1, y'' - 6y' + 9y = xe^{3x}, y'' + 2y' - y = x^2 e^x.$$

42. Найти функцию спроса, если эластичность спроса η имеет вид:

$$\eta = p/(p-20), \ 0$$

43. Найти функцию спроса, если эластичность спроса η есть функция $\eta = (q-100)/q$, 0 < q < 100, p = 90 npu q = 10.

Числовые ряды

44. Исследовать на сходимость числовые ряды:

$$\sum_{n=1}^{\infty} \frac{2n+1}{5n+3}; \qquad \sum_{n=1}^{\infty} \frac{n}{(n+3)\cdot 3^n}; \qquad \sum_{n=1}^{\infty} \left(\frac{n+4}{3n+7}\right)^n; \qquad \sum_{n=1}^{\infty} \left(\frac{n+1}{n+2}\right)^{n^2};$$

$$\sum_{n=1}^{\infty} \frac{n}{n^{3} + n + 3}; \qquad \sum_{n=1}^{\infty} \frac{2n + 1}{(n+1)^{2} (n+2)^{2}}; \qquad \sum_{n=1}^{\infty} \frac{(n+1)!}{2^{n} \cdot n!};$$

$$\frac{2}{1} + \frac{2 \cdot 5}{1 \cdot 5} + \frac{2 \cdot 5 \cdot 8}{1 \cdot 5 \cdot 9} + \dots + \frac{2 \cdot 5 \cdot 8 \dots (3n-1)}{1 \cdot 5 \cdot 9 \dots (4n-3)} + \dots; \qquad \sum_{n=1}^{\infty} n^{2} \sin \frac{\pi}{2^{n}}.$$

45. Исследовать сходимость знакопеременных рядов:

$$\sum_{n=1}^{\infty} (-1)^{(n^{2}+n)/2} \cdot \frac{n}{2^{n}}; \qquad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}; \qquad \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n+1}{n(n+1)};$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n \cdot 5^{n}}; \qquad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{6n+5}; \qquad \sum_{n=1}^{\infty} \frac{\sin(n\alpha)}{n^{2}}.$$

Степенные ряды

46. Найти интервал и область сходимости следующих степенных рядов

$$\sum_{n=1}^{\infty} n \cdot 3^{n} (x-1)^{n}, \qquad \sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n \cdot 4^{n}}, \qquad \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{(x-5)^{n}}{n \cdot 5^{n}}, \qquad \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{2n+3},$$

$$\sum_{n=1}^{\infty} n! \ x^{n}, \qquad \sum_{n=1}^{\infty} \frac{x^{n}}{(n+1)!}, \qquad \sum_{n=1}^{\infty} n^{n} (x+3)^{n}, \qquad \sum_{n=1}^{\infty} \frac{(2n+1)^{n} (x+1)^{n}}{2^{n} \cdot n^{n}}.$$

47. С точностью до 10^{-4} вычислить интегралы:

$$\int_{0}^{1/2} \frac{\sin x}{x} dx; \qquad \int_{1}^{1/3} e^{-x^{2}} dx; \qquad \int_{0}^{1/2} \frac{dx}{1+x^{4}}; \qquad \int_{0}^{1/4} \frac{\cos x - 1}{x^{2}} dx.$$

Ряды Фурье

48. Разложить функцию f(x) в ряд Фурье на интервале $(-\pi;\pi)$:

a)
$$f(x) = \begin{cases} 1, & -\pi < x \le 0, \\ -2, & 0 < x < \pi. \end{cases}$$
 6) $f(x) = \begin{cases} 0, & -\pi < x \le 0, \\ x, & 0 < x < \pi. \end{cases}$

- 49. Разложить функцию f(x) = |x| в ряд Фурье на интервале (-2;2).
- 50. Разложить функцию $f(x) = \pi x$ на интервале $(0;\pi)$ в ряд Фурье: а) по синусам, б) по косинусам.

Задания к аттестационной работе по теме «Функции одной и двух переменных»

Задание 1. Провести полное исследование и построить график функции y = f(x).

1.1.	$y = \frac{(x+1)^2}{x^2 + 2x};$	1.2.	$y = e^{2x - x^2};$	1.3.	$y = \frac{x}{x^2 - 4};$
1.4.	4 . 2 2	1.5.	$y = (2 + x^2)e^{-x^2};$	1.6.	$y = \frac{4x}{x^2 + 4};$
1.7.	$y = x^2 + \frac{1}{x^2};$	1.8.	$y = \frac{x^2}{x^2 - 1};$	1.9.	$y = \frac{x^2 - 2x + 2}{x - 1};$
1.10.	$y = \frac{16}{x^2(x-4)};$	1.11.	$y = \frac{x^2}{\left(x+2\right)^2};$	1.12.	$y = \frac{2 - 4x^2}{1 - 4x^2};$
1.13.	$y = \frac{4}{3+2x-x^2};$	1.14.	$y = \frac{x^3 - 32}{x^2}$;		$y = \frac{x^2 + 6x + 9}{x - 4};$
1.16.	$y = \frac{x^2 + 2x - 7}{x^2 + 2x - 3};$	1.17.	$y = \frac{x^2 - 3x + 3}{x - 1};$	1.18.	$y = \frac{4(x+1)^2}{x^2 + 2x + 4};$
1.19.	2	1.20.	$y = \frac{x^3}{x - 1};$		$y = 8x^2 e^{-x^2};$
1.22.	$y = \frac{x}{x^2 - 2x + 2};$	1.23.	$y = \sqrt[3]{x^2 - 2x} \; ;$	1.24.	$y = \frac{1}{x^2 - 4x + 3};$
1.25.	$y = \frac{x^2 - 1}{x^2 + 1}$;			1.27.	$y = \frac{x^3 - 3x}{x^2 - 1};$
1.28.	$y = \sqrt[3]{x(x-3)^2}$;	1.29.	$y = \sqrt[3]{x^3 - 6x^2} \; ;$	1.30.	$y = \frac{x^4}{x^3 + 1}.$

Задание 2. На монопольном рынке спрос на некоторый товар определяется функцией $p=m_1-n_1q-k_1q^2$, где q — число единиц товара, а средние издержки на производство этого товара составляют

$$\overline{C}(q) = \frac{m_2}{q} + n_2 + k_2 q.$$

Найти: 1) цену товара, при которой прибыль максимальна; 2) максимальную прибыль от реализации товара. Данные к задаче взять из таблицы 1.

Таблица 1

Bap.	01	02	03	04	05	06	07	08	09	10
m_1	672	756	780	990	800	569	670	880	590	570
n_1	0,2	0,6	2	3	2	1,5	1,7	1	1,2	0,6
k_1	0,2	0,1	0,1	1	2	0,25	0,2	1	2	0,4
m_2	60	200	1000	225	125	100	30	300	150	25
n_2	600	576	500	530	620	434	550	520	420	530
k_2	0,4	0,9	2	5	1	1,5	1,3	2	0,8	0,4
D	11	10	12	1.4	15	1.0	17	10	10	20
Bap.	11	12	13	14	15	16	17	18	19	20
m_1	820	925	610	722	762	533	770	500	739	652
n_1	1,4	2	2,5	0,5	0,3	0,1	0,15	0,4	0,7	0,6
k_1	3	0,2	0,3	2	2	1	1	2	1	0,5
m_2	125	125	100	380	319	120	250	100	425	300
n_2	565	400	400	200	440	333 <	460	345	310	400
k_2	1,6	1	3,5	1,5	1,7	0,4	0,35	0,1	2,3	0,9
						1.0				
Bap.	21	22	23	24	25	26	27	28	29	30
m_1	753	458	708	860	640	734	710	590	585	579
n_1	0,9	0,25	0,5	0,23	0,4	0,2	1,35	2,7	1,8	2
k_1	0,5	1	2	1	1	0,5	0,3	1	0,25	0,6
m_2	238	20	144	564	50	44	410	250	150	30
n_2	417	404	300	410	330	630	440	200	420	504
k_2	0,6	0,5	1	0,52	0,1	0,3	0,9	1,8	2,7	1

Задание 3. В гостинице N номеров. При цене p_1 (усл. ед.) за номер в сутки бывает занято n_1 номеров. Если цена снижается до p_2 (усл. ед.) за номер, то занято n_2 номеров. Найти: 1) максимальную выручку, предполагая линейным закон спроса; 2) цену за номер, при которой выручка наибольшая.

Данные к задаче взять из таблицы 2.

Таблица 2

Bap.	01	02	03	04	05	06	07	08	09	10
N	60	68	50	70	50	45	65	46	60	50
p_I	320	400	300	324	250	260	352	370	350	240
n_1	48	60	42	54	40	42	56	55	58	42
p_2	270	360	270	288	235	245	332	340	315	228
n_2	53	68	47	60	43	45	61	58	63	45

Продолжение таблицы 2

Bap.	11	12	13	14	15	16	17	18	19	20
N	55	62	63	66	64	65	61	60	70	68
\mathbf{p}_{I}	275	350	340	380	332	340	387	380	360	420
n_1	43	52	51	56	51	50	57	60	54	60
p_2	250	320	316	340	316	320	342	350	351	402
n_2	48	58	57	64	55	54	62	63	57	63
Bap.	21	22	23	24	25	26	27	28	29	30
N	65	56	62	44	54	50	71	64	53	68
\mathbf{p}_I	432	320	360	280	378	328	414	392	368	384
n_1	56	48	48	40	52	48	56	56	48	60
p_2	414	296	336	260	348	308	390	376	356	360
n_2	59	51	50	42	62	58	64	60	51	64

Показать, функция z = f(x, y)Задание 4. удовлетворяет что заданному уравнению F.

Bap.	z = f(x, y)	Уравнение <i>F</i>
01	z = (xy)/(x-y)	$z_{xx}'' + 2z_{xy}'' + z_{yy}'' = 2/(x-y)$
02	$z = \cos y + (y - x)\sin y$	$(x-y)z''_{xy}=z'_y$
03	$z = \sin\left(x + 2y\right) - 4xy$	$z_{yy}'' = 4z_{xx}''$
04	$z = x^y + y^2$	$y z_{xy}'' = (1 + y \ln x) z_x'$
05	$z = x / y + \ln x$	$x z_{xy}'' - z_y' = 0$
06	$z = \ln(x^2 + y^2 + 2x + 1)$	$z''_{xx} + z''_{yy} = 0$
07	$z = x e^{y/x}$	$x^2 z_{xx}'' + 2xyz_{xy}'' + y^2 z_{yy}'' = 0$
08	$z = \sin^2 x + y \sin 2x$	$z_x' = z_y' + y z_{xy}''$
09	$z = e^{-2y} \cdot \sin x$	$z'_{y} = 2z''_{xx}$
10	z = arctg(y/x) + 2xy	$z''_{xx} + z''_{yy} = 0$
11	$z = -2\sin 3y \cdot \sin x - x + y$	$z_{yy}'' = 9z_{xx}''$
12	$z = x \ln (y/x) + y/x$	$x^2 z_{xx}'' + 2xyz_{xy}'' + y^2 z_{yy}'' = 0$
13	$z = \ln\frac{1}{\sqrt{x^2 + y^2}} + 4y$	$z_{xx}'' + z_{yy}'' = 0$
14	$z = y/(y^2 - 4x^2)$	$z_{xx}'' = 4z_{yy}''$
15	$z = x\cos(x+y) + y(x+y)$	$z_{xx}'' - 2z_{xy}'' + z_{yy}'' = 0$

Bap.	z = f(x, y)	Уравнение <i>F</i>
16	$z = arctg x + y^2 + 2(x - y) y + e^x$	$(x-y)z''_{xy} = z'_y$
17	$z = y/\left(y^2 - 3x^2\right)$	$z_{xx}'' = 3z_{yy}''$
18	$z = e^x (x \cos y - y \sin y)$	$z''_{xx} + z''_{yy} = 0$
19	$z = \frac{1}{\sqrt{x^2 + y^2}}$	$z''_{yy} + z''_{xx} = z^3$
20	$z = x \sin(x + y) + y(x + y)^2$	$z''_{xx} - 2z''_{xy} + z''_{yy} = 0$
21	$z = \ln\left(x^2 - y^2\right) + 2xy$	$z''_{xx} - z''_{yy} = 0$
22	$z = x(x+y) + y \ln(x+y)$	$z''_{xx} - 2z''_{xy} + z''_{yy} = 0$
23	$z = e^{xy} + 2xy + 2x - 3y$	$x^2 z_{xx}'' - y^2 z_{yy}'' = 0$
24	$z = \sin^2(x - 4y) - xy + y$	$z''_{yy} = 16z''_{xx}$
25	$z = y\sqrt{y/x} + x$	$x^2 z_{xx}'' - y^2 z_{yy}'' = 0$
26	$z = \ln(x-2y) + (x+2y)^3$	$z_{yy}'' = 4z_{xx}''$
27	$z = \ln\left(x^2 + y^2\right) + 3y$	$z''_{xx} - 2xyz''_{xy} + z''_{yy} = \frac{4xy^2}{x^2 + y^2} \cdot z'_x$
28	$z = x^{y} - y$	$y z_{xy}'' = (1 + y \ln x) \cdot z_x'$
29	$z = \sin(xy) + e^{xy}$	$x^2 z_{xx}'' - y^2 z_{yy}'' = 0$
30	$z = x\sqrt{x+y} + y\ln(x+y)$	$z''_{xx} - 2z''_{xy} + z''_{yy} = 0$

Задание 5. Производственная функция имеет вид:

$$z = ax^3 + bx^2y + cxy^2 + 1,$$

где x — затраты живого труда, y — затраты овеществленного труда.

Найти:

- 1) эластичности $E_x(z)$ и $E_y(z)$ в точке $A(x_0, y_0)$;
- 2) матрицу Гессе функции z в точке A и вычислить её определитель;
- 3) градиент функции z в точке A;
- 4) производную функции z в точке A по направлению вектора $\vec{a} = (m;n)$;

Необходимые числовые данные приведены в таблице 3.

Таблица 3

Вариант	а	b	c	x_{θ}	y ₀	m	n
01	1	1	3	1	2	3	4
02	2	1	3	1	1	4	-3
03	1	2	1	1	2	-6	8
04	3	2	4	1	2	8	6
05	4	3	2	2	2	5	12
06	4	3	1	2	3	12	-5
07	3	2	1	2	1	-0,8	-0,6
08	3	1	2	1	3	-3	-4
09	2	1	2	1	4	12	5
10	2	2	1	3	1	0,6	-0,8
11	2	2	2	3	2	4	3
12	2	3	1	3	3	6	8
13	2	1	3	2	3	15	-8
14	2	2	3	4	1	5	12
15	3	3	2	4	2	12	-9
16	3	1	1	4	3	5	4
17	3	1	3	4	4	4	5
18	3	2	3	2	4	9	12
19	1	3	3	3	4	-12	-9
20	3	4	3	4	1	24	10
21	1	3	1	3	4	-10	24
22	1	4	1	1	1	-8	15
23	2	1	1	2	1	10	-24
24	1	1	1	3	2	12	-5
25	1	2	2	2	1	-5	4
26	2	1	4	2	2	-24	10
27	1	3	3	1	3	0,8	0,6
28	4	1	2	3	1	-12	5
29	2	3	4	1	1	-6	-8
30	1	2	3	2	4	-3	4

Задание 6. Производится два вида товаров, цены которых соответственно равны p_1 и p_2 . Функция затрат, связанных с производством этих товаров, имеет вид

$$C = \alpha x^2 + \beta xy + \gamma y^2,$$

где x и y — количества производимых товаров первого и второго видов. Требуется:

а) составить функцию прибыли и найти её максимальное значение;

б) проверить известное правило экономики: предельная стоимость (цена) товара равна предельным издержкам на производство этого товара.

Необходимые числовые данные взять из таблицы 4.

Таблина 4

										,
Вариант	01	02	03	04	05	06	07	08	09	10
α	0,10	0,20	0,30	0,10	0,04	0,03	0,30	0,01	0,02	0,12
β	0,10	0,20	0,20	0,10	0,01	0,10	0,20	0,01	0,02	0,10
γ	0,20	0,10	0,10	0,10	0,03	0,15	0,50	0,03	0,015	0,25
p_1	11	14	7	13	10	14	9	5	8	6
p_2	9	10	5	11	13	32	17	8	6	19
Вариант	11	12	13	14	15	16	17	18	19	20
α	0,15	0,03	0,25	0,35	0,35	0,10	0,40	0,15	0,70	0,30
β	0,20	0,04	0,10	0,02	0,30	0,40	0,20	0,30	0,10	0,20

α	0,15	0,03	0,25	0,35	0,35	0,10	0,40	0,15	0,70	0,30		
β	0,20			0,02	-				0,10	0,20		
γ	0,10	0,03	0,06	0,25	0,10	0,20	0,10	0,20	0,45	0,20		
p_1	9	19	10	18	31	21	11	15	16	18		
p_2	7	21	4	13	14	36	5	16	19	21		
				1						l		

Вариант	21	22	23	24	25	26	27	28	29	30
α	0,15	0,25	0,01	0,10	0,08	0,07	0,05	0,10	0,03	0,17
β	0,10	0,50	0,02	0,20	0,20	0,10	0,10	0,15	0,05	0,20
γ	0,04	0,35	0,03	0,35	0,25	0,15	0,06	0,10	0,015	0,15
p_I	14	14	8	6	4	21	27	33	16	21
p_2	7	16	15	12	8	23	30	37	11	16

Задание 7. Найти величины спроса x и y на два вида товара, цены которых соответственно равны p_1 и p_2 , если потребитель при ограниченном бюджете K стремится максимизировать функцию полезности (функция Кобба-Дугласа)

$$F(x,y) = x^{\frac{mp_1}{p_1 + p_2 + 1}} \cdot y^{\frac{p_2}{p_1 + p_2 + 1}},$$

где m — некоторый параметр.

При найденном оптимальном спросе указать наибольшее значение функции F.

Необходимые числовые данные приведены в таблице 5.

Таблица 5

Вариант	01	02	03	04	05	06	07	08	09	10
p_I	6	15	4	3	5	9	6	15	10	5
p_2	12	9	7	16	15	12	6	9	3	15
K	480	960	450	500	600	600	630	420	550	400
m	2	1	2	3	3	2	2	0,8	0,8	2

Продолжение таблицы 5

Вариант	11	12	13	14	15	16	17	18	19	20
p_I	4	17	5	5	6	14	8	3	3	8
p_2	13	18	6	6	19	9	21	19	16	8
K	400	560	720	560	680	300	720	300	375	440
m	3	1	2	2	2,5	1,5	3	2	3	1,5

Вариант	21	22	23	24	25	26	27	28	29	30
p_I	12	10	5	4	10	5	8	28	10	6
p_2	10	15	5	7	7	20	11	21	8	. 17
K	448	540	390	540	230	330	460	490	340	455
m	1,5	1,2	1,6	2	1,6	2,6	1,5	1	0,9	3

Задание 8 (01-15). Выпуск некоторым предприятием промышленной продукции (Y) по годам семилетки (X) характеризуется следующими данными:

X	1	2	3	4	5	6	7
<i>Y</i> (усл.ед.)	y_1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇

По методу МНК построить эмпирическую формулу y=ax+b, отражающую рост объёма продукции за семилетку, и дать прогноз по объёму выпуска на восьмой год. Сделать чертеж. Указать ежегодный средний прирост объема производства промышленной продукции.

Необходимые числовые данные взять из таблицы 6.

Таблица 6

Danwaye	4.				4.	4.	
Вариант	<i>y</i> ₁	<i>y</i> ₂	У3	<i>y</i> ₄	y 5	<i>y</i> ₆	y 7
01	16,00	26,06	36,51	47,26	57,11	67,35	79,03
02	15,82	26,00	36,20	46,98	56,89	68,61	80,15
03	16,37	25,97	36,00	47,35	57,83	68,44	80,36
04	1,29	4,77	8,61	12,15	14,96	19,02	23,37
05	1,18	4,38	8,77	11,83	15,22	18,49	22,91
06	1,45	4,70	8,13	12,32	14,81	18,13	23,15
07	2,29	6,06	11,57	16,43	20,00	26,74	30,39
08	2,04	6,16	11,63	16,81	19,89	25,35	31,11
09	2,32	5,98	11,07	16,22	19,93	26,18	30,18
10	7,15	11,15	16,41	20,03	26,31	30,31	35,14
11	7,03	10,93	15,12	19,85	25,90	29,77	34,84
12	6,88	11,13	16,52	20,17	26,25	30,18	35,12
13	10,70	10,58	11,81	12,35	12,43	12,91	13,89
14	10,68	10,49	11,58	12,13	12,34	12,83	13,91
15	10,45	10,67	11,93	12,18	12,52	13,01	14,18

Задание 8 (16-30). Данные о росте индекса Доу-Джонса и росте цены акций (усл. ед.) приведены в таблице

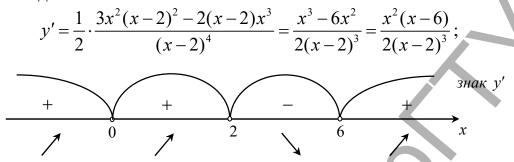
X	2,0	2,5	3,0	3,1	3,5	3,7	4,3
у (усл. ед.)	y_1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇

Найти зависимость вида y = ax + b между ростом цены акций y и ростом индекса x. Вычислить рост цены акции при росте индекса, равном x_0 .

Необходимые данные взять из таблицы 7.

Таблица 7

							Tu	элица 7.
Bap.	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇	x_0
16	4,3	4,6	4,7	4,7	4,9	5,1	4,6	2,6
17	4,2	4,3	4,6	4,7	4,9	5,4	5,2	2,7
18	4,8	4,9	5,1	5,2	5,4	5,7	2,3	2,8
19	5,2	6,3	5,3	5,4	5,6	5,9	5,8	3,3
20	4,5	4,6	4,7	4,9	5,1	5,3	5,4	3,4
21	4,9	5,1	5,3	5,0	5,4	5,6	5,4	3,9
22	2,4	2,6	2,8	2,6	2,9	3,2	2,8	4,1
23	6.3	6,6	6,8	6,7	7,0	6,9	6,5	3,8
24	4,0	4,1	4,3	4,5	4,2	4,6	4,9	2,9
25	4,7	4,9	5,2	5,2	5,4	5,8	6,0	3,6
26	3,7	3,8	3,9	4,1	4,6	4,8	5,1	4,1
27	5,5	5,7	5,6	5,8	5,8	6,2	6,4	3,8
28	5,2	5,4	5,8	5,9	6,1	6,4	6,6	2,1
29	4,1	4,4	4,6	4,2	4,8	4,9	5,2	2,4
30	4,4	4,6	4,4	4,9	5,2	5,3	5,6	2,3


Решение типового варианта аттестационной работы по теме «Функции одной и двух переменных»

Задание 1. Провести полное исследование и построить график функции $y = \frac{x^3}{2(x-2)^2}$.

Решение.

1) Область определения функции: $D(f) = (-\infty; 2) \cup (2; \infty)$.

- 2) Функция не является четной или нечетной.
- 3) Точки пересечения с осями координат: если x = 0, то y = 0, т.е. график функции проходит через начало координат.
- 4) Возрастание и убывание функции. Исследуем знаки первой производной:

На промежутке (2; 6) y' < 0, поэтому на этом промежутке функция убывает; на $(-\infty; 0) \cup (0; 2) \cup (6; \infty)$ — функция возрастает.

5) Экстремум функции. Точки $x_1 = 0$, $x_2 = 6$, в которых производная функции равна нулю, являются стационарными точками. В точке x = 2 производная обращается в бесконечность. Однако эта точка не входит в область определения функции и она исключается из рассмотрения. Значит в точках $x_1 = 0$ или $x_2 = 6$ возможен локальный экстремум функции.

Исследуем эти точки на экстремум по первому достаточному признаку: переходя через точку $x_1=0$ слева направо производная не меняет свой знак, следовательно, в этой точке нет экстремума; в окрестности точки $x_2=6$ производная меняет знак с минуса на плюс, поэтому в точке $x_2=6$ функция имеет локальный минимум, при этом

$$y_{\min} = y(6) = \frac{1}{2} \cdot \frac{6^3}{(6-2)^2} = \frac{216}{2 \cdot 16} = \frac{27}{4} = 6,75.$$

6) Выпуклость, вогнутость графика. Точки перегиба. Находим вторую производную функции

$$y'' = \frac{1}{2} \cdot \frac{\left(x^3 - 6x^2\right)'(x - 2)^3 - \left(x^3 - 6x^2\right)\left((x - 2)^3\right)'}{(x - 2)^6} =$$

$$= \frac{1}{2} \cdot \frac{\left(3x^2 - 12x\right)(x - 2)^3 - 3\left(x^3 - 6x^2\right)(x - 2)^2}{(x - 2)^6} =$$

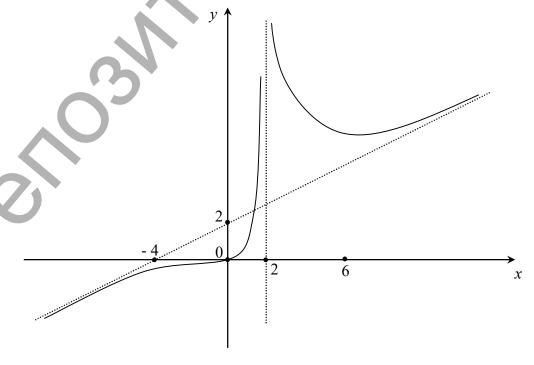
$$= \frac{3}{2} \cdot \frac{\left(x^2 - 4x\right)(x - 2) - x^3 + 6x^2}{(x - 2)^4} = \frac{12x}{(x - 2)^4}.$$

Очевидно, что при x < 0 вторая производная отрицательна, а если x > 0 и $x \ne 2$, то y'' > 0. На промежутке $(-\infty; 0)$ график функции выпуклый вверх, а на промежутке $(0; 2) \cup (2; \infty)$ - выпуклый вниз. В окрестности точки x = 0 вторая производная меняет знак, поэтому точка (0; 0) есть точка перегиба графика.

7) Асимптоты графика функции. В точке x = 2 функция не определена, а односторонние пределы функции в этой точке равны

$$\lim_{x \to 2-0} \frac{x^3}{2(x-2)^2} = \infty, \lim_{x \to 2+0} \frac{x^3}{2(x-2)^2} = \infty.$$

Следовательно, прямая x = 2 - вертикальная асимптота. Наклонные асимптоты будем искать в виде y = kx + b. Находим


$$k = \lim_{\substack{x \to \infty \\ x \to -\infty}} \frac{f(x)}{x} = \lim_{\substack{x \to \infty \\ x \to -\infty}} \frac{x^2}{2(x^2 - 4x + 4)} = \frac{1}{2},$$

$$b = \lim_{\substack{x \to \infty \\ x \to -\infty}} (f(x) - kx) = \lim_{\substack{x \to \infty \\ x \to -\infty}} \left(\frac{x^3}{2(x^2 - 4x + 4)} - \frac{x}{2} \right) = \frac{1}{2} \lim_{\substack{x \to \infty \\ x \to -\infty}} \frac{4x^2 - 4x}{x^2 - 4x + 4} = 2.$$

Таким образом, наклонной асимптотой графика является прямая

$$y = \frac{1}{2}x + 2.$$

8) Строим график данной функции.

Задание 2. $m_1 = 835$; $n_1 = 0.7$; $k_1 = 1$; $m_2 = 975$; $n_2 = 130$; $k_2 = 0.3$.

Решение.

1. Если каждая единица товара продается по цене p, то выручка от продажи q единиц этого товара составит

$$R(q) = p \cdot q = (m_1 - n_1 q - k_1 q^2) q = m_1 q - n_1 q^2 - k_1 q^3$$

при общих затратах

$$C(q) = \overline{C}(q) \cdot q = m_2 + n_2 q + k_2 q^2.$$

Следовательно, прибыль от продажи q единиц товара будет выражаться функцией

$$\Pi = \Pi(q) = R(q) - C(q) = m_1 q - n_1 q^2 - k_1 q^3 - m_2 - n_2 q - k_2 q^2 =$$

$$= -m_2 + (m_1 - n_2) q - (n_1 + k_2) q^2 - k_1 q^3.$$

Подставив сюда заданные значения параметров, получим функцию прибыли

$$\Pi(q) = -975 + 705q - q^2 - q^3.$$

Исследуем эту функцию на экстремум. Находим стационарную точку из условия $\Pi'(q) = 0$. Будем иметь

$$\Pi'(q) = -3q^2 - 2q + 705 = 0$$
или $3q^2 + 2q - 705 = 0$.

Решая это квадратное уравнение, получим, что $q_1 = -\frac{47}{3}$, $q_2 = 15$.

Значение q_1 , очевидно, не удовлетворяет условию задачи. Покажем, что при значении $q_2 = 15$, функция прибыли принимает наибольшее значение.

Так как $\Pi''(q) = -6q - 2$, а $\Pi''(q_2) = \Pi''(15) = -6 \cdot 15 - 2 = -92 < 0$, то по второму достаточному признаку локального экстремума следует, что при $q_2 = 15$ функция прибыли имеет локальный максимум.

Максимальная прибыль

$$\Pi_{\text{max}} = \Pi(15) = -15^3 - 15^2 + 705 \cdot 15 - 975 = -4575 + 10575 = 6000$$
.

2. Найдем цену товара, при которой прибыль максимальна

$$p = 835 - 0.7 \cdot 15 - 15^2 = 835 - 335.5 = 599.5.$$

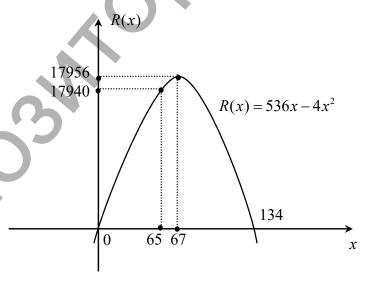
Задание 3. N = 65, $p_1 = 328$, $n_1 = 52$, $p_2 = 308$, $n_2 = 57$.

Решение.

1. Пусть x - число занятых номеров в гостинице на данный момент по цене p за номер. По условию задачи $x \in [0; 65]$. С другой стороны, спрос предполагается линейным, поэтому функция спроса имеет вид p = ax + b. Неизвестные коэффициенты $a \ u \ b$ найдем из условий p(52) = 328, а p(57) = 308. Следовательно,

$$\begin{cases} 328 = 52a + b \\ 308 = 57a + b \end{cases} \Rightarrow \begin{cases} a = -4, \\ b = 536. \end{cases}$$

Итак, функция спроса p = 536 - 4x, а выручка $R(x) = 536x - 4x^2$. Найдем наибольшее значение функции R(x) на отрезке [0;65].


$$R'(x) = 536 - 8x = 0$$
, $x = 67$, $R(67) = (536 - 4 \cdot 67) \cdot 67 = 17956$ усл.ед.

Но значение x = 67 не принадлежит отрезку [0; 65]. Значит наибольшее значение выручки R(x) будет достигаться при x = 65:

$$R_{\text{max}} = R(65) = 536 \cdot 65 - 4 \cdot 65^2 = 34840 - 16900 = 17940$$
 усл. ед.

2. Цена за номер, при котором выручка наибольшая, должна быть установлена в размере $p = 536 - 4 \cdot 65 = 276$ усл.ед.

Приводим геометрическую иллюстрацию данного решения.

Задание 4. Показать, что функция $z = xe^y + ye^x + x^2 + y^2$ удовлетворяет уравнению $z'''_{xxx} + z'''_{xyy} = xz''_{xyy} + yz'''_{xxy}$.

Решение. Находим частные производные функции z:

$$z'_{x} = e^{y} + ye^{x} + 2x;$$
 $z'_{y} = xe^{y} + e^{x} + 2y;$

$$z''_{xx} = ye^x + 2;$$
 $z''_{xy} = e^y + e^x;$ $z''_{yy} = xe^y + 2;$ $z'''_{xxx} = ye^x;$ $z'''_{xyy} = e^y;$ $z'''_{xxy} = e^x;$ $z'''_{yyy} = xe^y.$

Следовательно, подставляя выражение найденных производных в исходное уравнение, получим тождество по зависимым переменным x и y вида:

$$ye^x + xe^y = xe^y + ye^x.$$

Это свидетельство того, что функция z есть решение заданного уравнения.

Задание 5.
$$a = 1$$
, $b = 3$, $c = 4$, $x_0 = 1$, $y_0 = 3$, $m = 5$, $n = 4$.

Решение.

1. В нашем случае

the
$$z = x^3 + 3x^2y + 4xy^2 + 1,$$

$$z(A) = z(1; 3) = 1^3 + 3 \cdot 1^2 \cdot 3 + 4 \cdot 1 \cdot 3^2 + 1 = 47.$$

Находим частные производные первого и второго порядков функции z:

$$z'_{x} = 3x^{2} + 6xy + 4y^{2}, z'_{y} = 3x^{2} + 8xy,$$

$$z''_{xx} = 6x + 6y, z''_{xy} = z''_{yx} = 6x + 8y, z''_{yy} = 8x$$

Вычислим значения производных в точке A:

$$z'_{x}(A) = \left(3x^{2} + 6xy + 4y^{2}\right)\Big|_{A} = 3 \cdot 1^{2} + 6 \cdot 1 \cdot 3 + 4 \cdot 3^{2} = 57,$$

$$z'_{y}(A) = \left(3x^{2} + 8xy\right)\Big|_{A} = 3 \cdot 1^{2} + 8 \cdot 1 \cdot 3 = 27,$$

$$z''_{xx}(A) = 6(x + y)\Big|_{A} = 6(1 + 3) = 24,$$

$$z''_{xy}(A) = \left(6x + 8y\right)\Big|_{A} = 6 \cdot 1 + 8 \cdot 3 = 30,$$

$$z''_{yy}(A) = 8x\Big|_{A} = 8 \cdot 1 = 8.$$

Эластичности функции z по переменным x и y в точке A равны:

$$E_x(z(A)) = x_0 \cdot \frac{z_x'(A)}{z(A)} = 1 \cdot \frac{57}{47} = 1,21,$$

 $E_y(z(A)) = y_0 \cdot \frac{z_y'(A)}{z(A)} = 3 \cdot \frac{27}{47} = 1,72.$

Значит при увеличении затрат живого труда на 1% значение производственной функции увеличится на 1,21%, а при повышении

на 1% затрат овеществленного труда значение производственной функции увеличится на 1,72%.

2. Составим матрицу Гессе функции z в точке A и вычислим ее определитель

$$H(A) = \begin{pmatrix} z''_{xx}(A) & z''_{xy}(A) \\ z''_{xy}(A) & z''_{yy}(A) \end{pmatrix} = \begin{pmatrix} 24 & 30 \\ 30 & 8 \end{pmatrix}, \det H(A) = \begin{vmatrix} 24 & 30 \\ 30 & 8 \end{vmatrix} = -708.$$

3. Градиент функции z в точке A есть вектор

grad
$$z(A) = z'_{x}(A) \cdot \vec{i} + z'_{y}(A) \cdot \vec{j} = 57\vec{i} + 27\vec{j}$$
.

4. Вычислим производную функции z в точке A в направлении вектора $\vec{a} = (5;4).$

Так как
$$|\vec{a}| = \sqrt{25 + 16} = \sqrt{41}$$
, то $\vec{a}^0 = \frac{5}{\sqrt{41}}\vec{i} + \frac{4}{\sqrt{41}}\vec{j}$.

Направляющие косинусы вектора \vec{a} равны:

$$\cos \alpha = \frac{5}{\sqrt{41}}, \cos \beta = \frac{4}{\sqrt{41}}$$

$$\cos\alpha = \frac{5}{\sqrt{41}}, \ \cos\beta = \frac{4}{\sqrt{41}}.$$
 Тогда:
$$\frac{\partial z(A)}{\partial \vec{a}} = z_x'(A)\cos\alpha + z_y'(A)\cos\beta = 57 \cdot \frac{5}{\sqrt{41}} + 27 \cdot \frac{4}{\sqrt{41}} = \frac{393}{\sqrt{41}} \approx 61,376.$$

Заметим, что эту производную можно вычислить и по-другому, а именно

$$\frac{\partial z(A)}{\partial \vec{a}} = grad \ z(A) \cdot \vec{a}^{\,0} = (57\vec{i} + 27\vec{j}) \cdot \left(\frac{5}{\sqrt{41}}\vec{i} + \frac{4}{\sqrt{41}}\vec{j}\right) = \frac{393}{\sqrt{41}}.$$

Производная по направлению положительна, поэтому функция z в точке A по направлению вектора \vec{a} возрастает.

Задание 6.
$$\alpha = 0,2$$
; $\beta = 0,1$; $\gamma = 0,05$; $p_1 = 11$; $p_2 = 5$. Решение.

1. Выручка от реализации произведенных товаров двух видов по ценам p_1 и p_2 соответственно составит $R = p_1 x + p_2 y = 11x + 5y$, а затраты на равны $C = 0.2x^2 + 0.1xv + 0.05v^2$. товаров производство Следовательно, функция прибыли имеет вид

$$\Pi = R - C = 11x + 5y - (0.2x^2 + 0.1xy + 0.05y^2).$$

Будем исследовать эту функцию на локальный экстремум. По необходимому признаку

$$\begin{cases} \Pi'_x = \frac{\partial \Pi}{\partial x} = 11 - 0.4x - 0.1y = 0, \\ \Pi'_y = \frac{\partial \Pi}{\partial y} = 5 - 0.1x - 0.1y = 0. \end{cases}$$

Решая полученную систему линейных уравнений, находим: $x=20,\ y=30$. Это значит, что точка A (20;30) есть стационарная точка функции Π . Покажем, что при $x=20,\ y=30$ прибыль будет максимальной.

Находим: $\Pi''_{xx} = -0.4$, $\Pi''_{xy} = -0.1$, $\Pi''_{yy} = -0.1$.

Составим матрицу Гессе для функции Π в точке A:

$$H(A) = \begin{pmatrix} \Pi''_{xx} & \Pi''_{xy} \\ \Pi''_{xy} & \Pi''_{yy} \end{pmatrix} = \begin{pmatrix} -0.4 & -0.1 \\ -0.1 & -0.1 \end{pmatrix}.$$

Так как $\det H(A) = 0,4 \cdot 0,1 - 0,1^2 > 0$, а элементы, стоящие на главной диагонали матрицы H(A), отрицательные, то точка A есть точка максимума функции прибыли. При этом

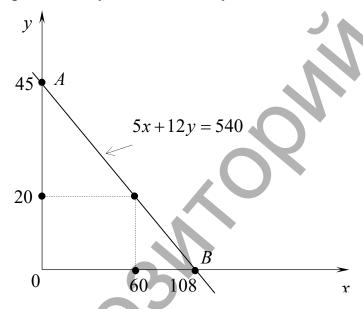
$$\Pi_{\text{max}} = 11 \cdot 20 + 5 \cdot 30 - (0.2 \cdot 20^2 + 0.1 \cdot 20 \cdot 30 + 0.05 \cdot 30^2) = 185.$$

Итак, чтобы при заданных ценах p_1 и p_2 получить наибольшую прибыль, нужно произвести 20 единиц товара первого вида и 30 единиц товара второго вида.

2. Предельная стоимость товара первого вида равна $p_1 = 11$, а предельные издержки на его производство составляют $0.4 \cdot 20 + 0.1 \cdot 30 = 11$. Предельная цена на товар второго вида равна $p_2 = 5$, а затраты на производство этого товара - $0.1 \cdot 20 + 0.1 \cdot 30 = 5$. Таким образом, по двум видам товаров их предельная цена совпадает с предельными затратами на их производство.

Задание 7.
$$p_1 = 5$$
, $p_2 = 12$, $K = 540$, $m = 3$. **Решение.**

Считаем, что величины x, y, ρ_1, ρ_2, K выражены в определенных единицах. Согласно данных задачи функция полезности примет вид


$$F(x, y) = x^{\frac{3.5}{5+12+1}} \cdot y^{\frac{12}{5+12+1}} = x^{\frac{5}{6}} \cdot y^{\frac{2}{3}}.$$

По условию x и y - это количества товаров соответственно первого и второго видов, в которых нуждается потребитель. Общая стоимость этих товаров равна $p_1 \cdot x + p_2 \cdot y = 5x + 12y$. В силу ограниченности бюджета потребителя величиной K, должно выполняться неравенство 5x + 12y < 540 при $x \ge 0$ и $y \ge 0$.

Окончательно математически задача формулируется следующим образом: нужно найти наибольшее значение функции полезности F(x, y) в замкнутой области, определяемой системой ограничений-неравенств

$$\begin{cases} 5x + 12y \le 540, \\ x \ge 0; \\ y \ge 0. \end{cases}$$

Эти ограничения задают на плоскости OXY треугольник OAB, в котором и следует искать точку наибольшего значения функции F(x, y).

Найдем стационарную точку функции F(x, y).

$$F'_{x} = \frac{5}{6}x^{-\frac{1}{6}} \cdot y^{\frac{2}{3}}, \quad F'_{y} = \frac{2}{3}x^{\frac{5}{6}} \cdot y^{-\frac{1}{3}}.$$

Очевидно, частные производные F_x' и F_y' одновременно не могут обратиться в нуль. Значит, функция полезности вообще не имеет стационарных точек. Поэтому наибольшее значение функция F может принять только на границе треугольника OAB. В каждой точке отрезка OA, для которого x=0 и $0 \le y \le 45$, а равно, как и для отрезка $OB(y=0,\ 0 \le x \le 108)$, функция полезности принимает наименьшее значение, равное нулю. Стало быть, наибольшее значение функции F достигается на границе AB, т.е. на прямой 5x+12y=540, причем

0 < x < 108. На прямой AB функция полезности есть функция одной переменной

$$F(x) = x^{\frac{5}{6}} \cdot \left(\frac{540 - 5x}{12}\right)^{\frac{2}{3}} = 12^{-\frac{2}{3}} \cdot x^{\frac{5}{6}} (540 - 5x)^{\frac{2}{3}},$$

для которой

$$F_x'(x) = 12^{-\frac{2}{3}} \left(\frac{5}{6} \cdot x^{-\frac{1}{6}} (540 - 5x)^{\frac{2}{3}} - \frac{10}{3} \cdot x^{\frac{5}{6}} (540 - 5x)^{-\frac{1}{3}} \right) =$$

$$= 12^{-\frac{2}{3}} \cdot x^{-\frac{1}{6}} (540 - 5x)^{-\frac{1}{3}} \left(\frac{5}{6} (540 - 5x) - \frac{10}{3} x \right) =$$

$$= \frac{5}{6} \cdot 12^{-\frac{2}{3}} \cdot x^{-\frac{1}{6}} (540 - 5x)^{-\frac{1}{3}} \cdot (540 - 5x - 4x) = \frac{15}{2} \cdot 12^{-\frac{2}{3}} \cdot x^{-\frac{1}{6}} (540 - 5x)^{-\frac{1}{3}} (60 - x).$$

Отсюда следует, что критическая точка функции F(x) находится из уравнения 60-x=0, т.е. x=60.

Тогда

$$y = \frac{540 - 5 \cdot 60}{12} = \frac{240}{12} = 20.$$

Итак, в данной модели оптимальный спрос на оба вида товара определяется значениями $x=60,\ y=20$. При этих значениях функция полезности имеет наибольшее значение, равное

$$F_{\text{max}} = 60^{\frac{5}{6}} \cdot 20^{\frac{2}{3}} \approx 30,324 \cdot 7,368 = 223,427.$$

Задание 8.

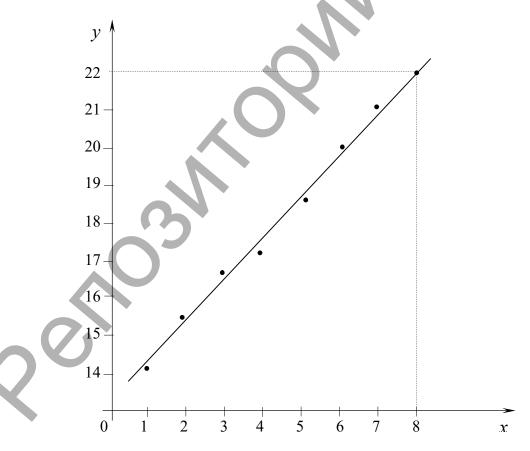
X	1	2	3	4	5	6	7
<i>Y</i> (усл.ед)	13,36	15,17	16,35	16,90	18,48	20,02	21,34

Решение. Система для определения параметров a и b имеет вид

$$\begin{cases} a \cdot \sum x^2 + b \sum x = \sum xy, \\ a \cdot \sum x + b \cdot n = \sum y. \end{cases}$$
 (*)

Составим расчетную таблицу:

								\sum
x	1	2	3	4	5	6	7	28,00
У	13,39	15,17	16,35	16,90	18,48	20,02	21,34	121,65
x^2	1	4	9	16	25	36	49	140,00
xy	13,39	30,34	49,05	67,60	92,4	120,12	149,38	522,28


Система (*), таким образом, запишется

$$\begin{cases} 140,00a + 28,00b = 522,28, \\ 28,00a + 7,00b = 121,65 \end{cases} \Rightarrow \begin{cases} a = 1,27, \\ b = 12,28. \end{cases}$$

Окончательно, рост продукции за семилетку характеризуется линейной зависимостью y = 1,27x + 12,28.

Объем выпуска продукции за восьмой год $y_8 = 1,27 \cdot 8 + 12,28 = 22,44$.

Сделаем чертеж: в системе координат *XOY* изображаем точки (x_i, y_i) и проводим линию y = 1,27x + 12,28.

Ежегодно объем производства промышленной продукции увеличивается в среднем на 1,27(у.е.).

1. Интеграл в экономике

Рассмотрим несколько простейших экономических задач, решение которых связано с понятием интеграла.

1. Предположим, что сама производственная функция f(x) неизвестна, но известна ее предельная величина M f(x) = f'(x). Тогда при условии непрерывности f'(x) справедливо равенство

$$f(x) = \int M f(x) dx + C, \qquad (*)$$

где C – постоянная интегрирования.

<u>Пример</u>. Функция предельных издержек некоторого предприятия имеет вид $MC(q) = 60 - 0.04q + 0.003q^2$. Найти функцию издержек, если издержки производства q = 100 единиц продукции составляют 7000 у.е.

<u>Решение.</u> Применяя равенство (*), находим

$$C(q) = \int MC(q) dq = \int (60 - 0.04q + 0.003q^{2}) dq = 60q - 0.02q^{2} + 0.001q^{3} + A.$$

Постоянную интегрирования A найдем из условия C(100) = 7000:

$$A + 60 \cdot 100 - 0.02 \cdot 100^2 + 0.001 \cdot 100^3 = 7000 \Rightarrow A = 200$$
.

Окончательно функция издержек запишется в виде

$$C(q) = 60q - 0.02q^2 + 0.001q^3 + 200.$$

Заметим, что в данном случае фиксированные (постоянные) издержки составляют 200 у.е.

2. Пусть I(t) - скорость изменения инвестиций, K(t) - капитал предприятия, т.е.

$$I(t) = \frac{dK(t)}{dt}.$$

Тогда приращение капитала за период времени от t_1 до t_2 можно найти из равенства

$$\Delta K = \int_{t_2}^{t_1} I(t) dt.$$

3. Пусть известна функция t = t(x), описывающая изменение затрат времени t на изготовление изделия в зависимости от степени освоения производства, x - порядковый номер изделия в партии. Среднее время,

затраченное на изготовление одного изделия в период освоения от x_1 до x_2 изделий, находится по формуле

$$t_{cp.} = \bar{t} = \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} t(x) dx.$$
 (1.1)

В качестве функции t(x) обычно используют функцию $t(x) = ax^{-b}$, a > 0, 0 < b < 1. График этой функции называют кривой обучения.

4. Задача дисконтирования: определение начальной суммы S_0 по ее конечной величине S_t , полученной через время t (лет) при годовом проценте (процентной ставке) p. При непрерывном начислении процента $S_t = S_0 e^{it}$, где i = p/100 - удельная процентная ставка (банковская норма процента). Тогда $S_0 = S_t \cdot e^{-it}$. Величина $S_t \cdot e^{-it}$ называется приведенной стоимостью величины S_t к настоящему моменту времени и численно равна вкладу, который нужно вложить в банк в настоящий момент времени, чтобы через t лет он стал равным S_t . Если сумма S_t является функцией времени f(t), то дисконтированная (начальная, современная) сумма равна

$$S_d = \int_0^t f(t)e^{-it}dt.$$
 (1.2)

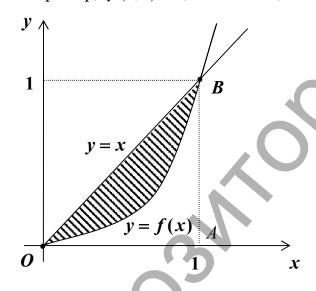
Эта задача встречается при определении экономической эффективности капитальных вложений.

<u>Пример.</u> Вычислить дисконтированную сумму за t лет при процентной ставке p, если капиталовложения за это время изменяются по линейному закону $K_t = f(t) = K_0(1+kt)$, где K_0 - начальные (базовые) капиталовложения, k - ежегодная доля их увеличения.

<u>Решение.</u> Воспользуемся равенством (1.2) и, применив метод интегрирования по частям, получим

$$K_{d} = \int_{0}^{t} K_{0}(1+kt) e^{-it} dt = \begin{vmatrix} u = 1+kt, & du = k dt, \\ dv = e^{-it} dt, & v = -\frac{1}{i} e^{-it} \end{vmatrix} =$$

$$= K_{0} \left(-\frac{1+kt}{i} \cdot e^{-it} \Big|_{0}^{t} + \frac{k}{i} \int_{0}^{t} e^{-it} dt \right) = K_{0} \left(-\frac{1+kt}{i} \cdot e^{-it} + \frac{1}{i} - \frac{k}{i^{2}} e^{-it} \Big|_{0}^{t} \right) =$$


$$= K_{0} \left(-\frac{1}{i} \cdot e^{-it} - \frac{k}{i} t \cdot e^{-it} + \frac{1}{i} - \frac{k}{i^{2}} \cdot e^{-it} + \frac{k}{i^{2}} \right) = K_{0} \left(\frac{1}{i} \left(1 + \frac{k}{i} \right) - \frac{1}{i} \left(1 + kt + \frac{k}{i} \right) e^{-it} \right).$$

Так, например, при процентной ставке p=10% (i=0,1) и при ежегодном увеличении капиталовложений на 15 % (k=0,15) получаем, что за пять лет дисконтная сумма равна

$$K_d = K_0 \left(\frac{1}{0.1} \left(1 + \frac{0.15}{0.1} \right) - \frac{1}{0.1} \left(1 + 0.15 \cdot 5 + \frac{0.15}{0.1} \right) e^{-0.5} \right) = 5,29 K_0,$$

в то время как сумма ежегодных капиталовложений за этот период составит $1,75K_0$. Значит, для получения одинаковой наращенной суммы через пять лет ежегодные капиталовложения от K_0 до $1,75K_0$ равносильны одновременным первоначальным вложениям на величину $5,29K_0$ при той же, начисляемой непрерывно, процентной ставке p=10%.

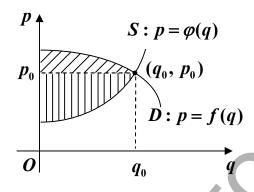
5. <u>Коэффициент неравномерности распределения дохода</u> (коэффициент Джинни). Рассмотрим функцию y = f(x), где y - доля совокупного дохода, получаемая частью x наиболее низко оплачиваемого населения. Например, y(0,9) = 0,7 означает, что 90 % наиболее низко оплачиваемого

населения получают 70 % совокупного дохода. По предположению очевидно, что

$$0 \le x \le 1, \ 0 \le y \le 1, \ y \le x.$$

Считаем, что y(0) = 0, т.е. что нет населения с нулевым доходом и весь доход получается всей совокупностью населения, т.е. y(1) = 1. График функции y = f(x) называется кривой Лоренца.

Если бы распределение доходов было совершенным, то 15 % населения получили бы 15 % совокупного дохода, 30 % населения — 30 % дохода и т.д. В этом случае кривой распределения доходов была бы прямая y=x. Отклонение реального распределения доходов от идеального измеряется отношением L площади между прямой y=x и кривой Лоренца y=f(x) к площади, ограниченной прямыми y=x, x=1 и y=0, т.е. отношением заштрихованной на рисунке площади к площади треугольника OAB. Ясно, что $0 \le L \le 1$, а значение L=0 отвечает совершенному распределению доходов. Коэффициент L называют также коэффициентом Джинни.


6. Выигрыш потребителей и поставщиков. Пусть p = f(q) - функция спроса D на некоторый товар и $p = \varphi(q)$ - функция предложения S на этот товар, (q_0, p_0) - точка рыночного равновесия. Функции f(q) и $\varphi(q)$ считаем непрерывными на отрезке $[0; q_0]$.

Некоторые потребители могут заплатить за товар цену $p>p_{_{0}}$. Тогда выигрыш потребителей от установленной цены $p_{_{0}}$ будет равен

$$C = \int_{0}^{q_0} (f(q) - p_0) dq = \int_{0}^{q_0} f(q) dq - p_0 q_0$$
 (1.3)

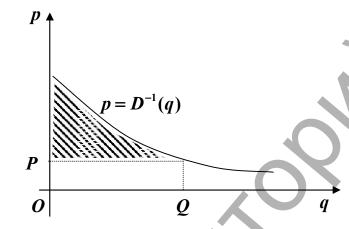
Выигрыш поставщиков при этом будет

$$P = \int_{0}^{q_0} (p_0 - \varphi(q)) dq = p_0 q_0 - \int_{0}^{q_0} \varphi(q) dq$$
 (1.4)

 $p = \varphi(q)$ Таким образом, геометрически выигрыш потребителей равен площади, заключенной между кривой спроса D и прямой $p = p_0$, а выигрыш поставщиков равен площади, заключенной между прямой $p = p_0$ и кривой предложения S.

7. Потребительская рента. Рассмотрим однотоварный рынок с функцией спроса $q = D\left(p\right)$, выражающей зависимость между ценой товара p и спросом на него q в условиях полной конкуренции между потребителями. Предноложим, что функция $D\left(p\right)$ непрерывна и монотонно убывает. Тогда существует обратная функция $D^{-1}: p = D^{-1}(q)$, где p - цена товара, при которой потребителем будет куплено q единиц этого товара.

Пусть некоторая фирма является монополистом товара и, следовательно, она назначает его цену. Чтобы продать Q единиц товара, она должна назначить цену $P = D^{-1}(Q)$. Предположим, что фирма назначает начальную цену $p_1 = D^{-1}(q_1)$ и продает таким образом q_1 единиц товара $(p_1 > P)$. Если фирма захочет продать еще Δq единиц, ей придется снизить цену до $p_2 = D^{-1}(q_2)$, чтобы привлечь потребителей, готовых купить товар по цене p_2 , но не имеющих возможности приобрести его по цене p_1 . Так, снижая постепенно цену до $P = D^{-1}(Q)$, фирма вовлекает


новые группы потребителей и в итоге продает товар в количестве Q. Суммарная выручка фирмы при этом будет равна

$$R = \int_0^{\mathcal{Q}} D^{-1}(q) dq.$$

Если же фирма сразу назначает цену P, то она продает Q единиц товара, и выручка ее будет равна $P \cdot Q$. Разность $R - P \cdot Q$ равна количеству денег, сэкономленных потребителями в совокупности при замене первого назначения цен вторым. Эта разность называется потребительской рентой.

Итак, величина

$$\int_{0}^{Q} D^{-1}(q) dq - P \cdot Q \tag{1.5}$$

характеризует количество денег, сэкономленное потребителями в совокупности при покупке ими *О* единиц товара по цене *P*.

Геометрически потребительская рента равна площади фигуры, ограниченной графиком функции $p = D^{-1}(q)$, осью ординат и прямой p = P.

Предоставляем читателю самостоятельно сравнить правую часть формулы (1.3) и величину (1.5).

2. Применение дифференциальных уравнений

1. Эластичность и функция спроса. Если известна эластичность спроса, то можно найти функцию спроса.

<u>Пример.</u> Эластичность спроса η постоянна при любых значениях цены p. Найти функцию спроса.

Решение. По определению эластичности имеем уравнение

$$\eta = \frac{p}{q} \cdot \frac{dq}{dp} \, .$$

Разделяя переменные, получим

$$\eta \frac{dp}{p} = \frac{dq}{q} \Rightarrow \eta \int \frac{dp}{p} = \int \frac{dq}{q} + C_1,$$

откуда $\eta \ln |p| = \ln |q| + \ln C \Rightarrow p^{\eta} = Cq$.

Для определения постоянной интегрирования нужна дополнительная информация.

2. Функции спроса и предложения. Рассмотрим следующие случаи:

Случай 1. (модель Эванса). Предположим, что на однотоварном рынке спрос и предложение на некоторый товар зависят исключительно от цены и являются линейными функциями цены p = p(t): этого товара $D=a_{\scriptscriptstyle 0}-a_{\scriptscriptstyle 1}p$, $S=b_{\scriptscriptstyle 0}+b_{\scriptscriptstyle 1}p$, где $a_{\scriptscriptstyle 0}$, $a_{\scriptscriptstyle 1}$, $b_{\scriptscriptstyle 0}$, $b_{\scriptscriptstyle 1}$ - положительные действительные числа. Будем считать, что: 1) на рынке при нулевой цене спрос превышает предложение (товар желателен), т.е. $a_0 > b_0$; 2) увеличение цены на Δp прямо пропорционально превышению спроса над предложением и длительности Δt ЭТОГО превышения (условие Эванса), т.е. $\Delta p = k \, (D - S) \, \Delta \, t \, , \, \,$ где $\, \, k > 0 \, \,$ - коэффициент пропорциональности. Тогда ОТ времени моделируется зависимость изменения цены дифференциальным уравнением

$$\frac{d p}{d t} = -k((a_1 + b_1) p - (a_0 - b_0))$$
 (2.1)

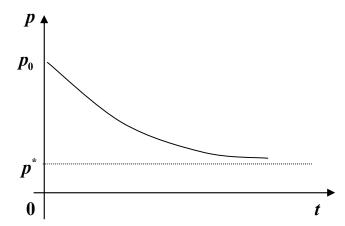
с начальными условиями: $p=p_0$ при t=0.

Найдем равновесную цену из условия $D=S\colon a_0-a_1p=b_0+b_1p$, откуда

$$p^* = \frac{a_0 - b_0}{a_1 + b_1} > 0.$$

Из уравнения (2.1) находим его стационарную точку: $(a_1+b_1)\,p-(a_0-b_0)=0$, т.е. $p=p^*$. Разделим в нем переменные, получим

$$\frac{d p}{(a_1+b_1) p-(a_0-b_0)} = -k dt \quad u \pi u \quad \frac{d p}{p-p^*} = -k (a_1+b_1) dt.$$


Следовательно,

$$\int \frac{dp}{p-p^*} = -k(a_1 + b_1)t + \ln C, \quad p = p^* + Ce^{-k(a_1 + b_1)t}.$$

По начальным данным находим $C: p_0 = p^* + C; C = p_0 - p^*.$

Окончательно закон изменения цены на рынке имеет вид:

$$p = p^* + (p_0 - p^*)e^{-k(a_1 + b_1)t}. (2.2)$$

Если $t \rightarrow +\infty$, то из (2.2) что $p \to p^*$. Это следует, что имеет место значит, устойчивость цены: с течением времени цена на рынке стабилизируется около ightharpoonup равновесной цены p^* .

<u>Случай 2.</u> Предположим теперь, что функции спроса и предложения зависят не только от цены товара, но и от тенденции ценообразования (изменения цены):

$$D = a_0 - a_1 p - a_2 \frac{d p}{d t}, \quad S = b_0 + b_1 p + b_2 \frac{d p}{d t}.$$

где $a_0 > b_0 > 0$, $a_1 > 0$, $a_2 > 0$, $b_1 > 0$, $b_2 > 0$. В этом случае закон изменения равновесной цены описывается уравнением

$$a_0 - a_1 p - a_2 \frac{d p}{d t} = b_0 + b_1 p + b_2 \frac{d p}{d t}$$

с начальным условием $p(0) = p_0$. Записав это уравнение в виде

$$(a_2+b_2)\frac{dp}{dt} = -((a_1+b_1)p-(a_0-b_0)),$$

убеждаемся в том, что оно есть уравнение вида (2.1).

<u>Случай 3.</u> Пусть функции спроса D и предложения S зависят от цены товара, тенденции ценообразования и от темпов изменения цены:

$$D = a_0 - a_1 p - a_2 \frac{d p}{d t} + a_3 \frac{d^2 p}{d t^2}, \quad S = b_0 + b_1 p + b_2 \frac{d p}{d t} + b_3 \frac{d^2 p}{d t^2}.$$

Здесь $a_0 > b_0 > 0$, $b_3 > a_3 > 0$, $a_1 > 0$, $a_2 > 0$, $b_1 > 0$, $b_2 > 0$. Требуется установить зависимость равновесной цены от времени.

Из условия равенства спроса и предложения получаем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами:

$$(b_3 - a_3) p'' + (b_2 + a_2) p' + (b_1 + a_1) p = a_0 - b_0.$$
 (2.3)

Дополнительные условия для уравнения (2.3) могут задаваться различными способами, а именно: либо в виде начальных условий $p(0)=p_0, \quad p'(0)=p_0', \quad$ либо в виде смешанной задачи $p(0)=p_0, \quad D(0)=D_0$ или $p(0)=p_0, \quad S(0)=S_0$.

Уравнение (2.3) имеет частное решение
$$p_u = p^* = \frac{a_0 - b_0}{a_1 + b_1} > 0$$
.

Цена p^* называется установившейся ценой. Для отыскания общего решения соответствующего однородного уравнения

$$(b_3 - a_3) p'' + (b_2 + a_2) p' + (b_1 + a_1) p = 0$$
(2.4)

составим характеристическое уравнение

$$(b_3 - a_3)\lambda^2 + (b_2 + a_2)\lambda + b_1 + a_1 = 0$$
 (2.5)

Если дискриминант квадратного уравнения (2.5) отрицателен, т.е. если $(b_2+a_2)^2-4(b_1+a_1)(b_3-a_3)^2<0$, то оно имеет пару комплексно сопряженных корней $\lambda=\alpha\pm\beta i$, причем $\alpha<0$. Следовательно, общее решение уравнения (2.4) запишется

$$\overline{p} = e^{\alpha t} \left(C_1 \cos \beta t + C_2 \sin \beta t \right), \quad \alpha < 0,$$

а общее решение неоднородного уравнения (2.3) будет иметь вид

$$p(t) = p^* + e^{\alpha t} \left(C_1 \cos \beta t + C_2 \sin \beta t \right), \quad \alpha < 0.$$
 (2.6)

Из равенства (2.6) следует, что $p(t) \to p^*$ при $t \to +\infty$. Это значит что все интегральные кривые уравнения (2.3) имеют горизонтальную асимптоту $p = p^*$. Таким образом, при конкретных C_1 и C_2 цена на рынке будет стремиться к установлению с колебаниями около установившейся цены p^* , причем амплитуда этих колебаний затухает со временем.

Наконец, если уравнение (2.5) имеет кратный корень $\lambda = -(b_2 + a_2)/(b_3 - a_3)$, то общее решение (2.3) будет иметь вид

$$p(t) = p^* + e^{\lambda t} (C_1 + C_2 t), \ \lambda < 0.$$

И в этом случае решение устойчиво: $p(t) \to p^*$ при $t \to +\infty$, но приближение цены p(t) к установившейся цене p^* не будет носить колебательный характер.

Задания для аттестационной работы по теме «Неопределенный и определенный интегралы. Дифференциальные уравнения»

Задание 1. Найти интегралы

01.	$\int \frac{\arcsin x - 2}{\sqrt{1 - x^2}} dx ,$	$\int \frac{dx}{x\sqrt{3x+1}};$
02.	$\int \frac{1-2x}{\sqrt{4-x^2}} dx ,$	$\int x\sqrt{x+2}dx;$
03.	$\int \frac{e^x dx}{e^{2x} + 6e^x + 9},$	$\int \frac{dx}{\sqrt{2x+3}+3};$
04.	$\int \left(e^{1-\sqrt{x}}+x\right)\frac{dx}{\sqrt{x}},$	$\int \frac{\sqrt{x} dx}{x+4};$
05.	$\int \frac{\cos x dx}{9 - \sin^2 x},$	$\int \frac{dx}{\sqrt{(x+2)^3} - 4\sqrt{x+2}};$
06.	$\int \frac{4x^3 dx}{\sqrt{x^8 + 3}},$	$ \int \frac{dx}{x\sqrt{3x+4}}; $
07.	$\int \frac{\sqrt[3]{6 + \ln x}}{x} dx,$	$\int \frac{dx}{\sqrt{2x-1} - \sqrt[4]{2x-1}};$
08.	$\int \frac{dx}{\cos^2 x \sqrt{1 + tg x}},$	$\int (x-3)\sqrt{x-4}dx;$
09.	$\int \frac{dx}{x(4-\ln^2 x)},$	$\int \frac{dx}{(5-x)\sqrt{1-x}};$
10.	$\int (3x^2x - 2\cos x + 1)\sin x dx,$	$\int \frac{\left(\sqrt{x-1}+1\right)dx}{\sqrt{x-1}\left(x+3+4\sqrt{x-1}\right)};$
11.	$\int \frac{e^x dx}{\sqrt{e^{2x}-5}},$	$\int \frac{\sqrt{x+2} dx}{\sqrt{x+2}+2};$
12.	$\int \left(\sin\left(1-x^3\right)-1\right)3x^2dx,$	$\int \frac{dx}{(x+7)\sqrt{2-x}};$
13.	$\int \frac{x \ln\left(1+x^2\right)}{1+x^2} dx,$	$\int \frac{(x+1)dx}{x\sqrt{x-2}};$

_		
14.	$\int \left(e^{arctgx} - 4x\right) \frac{dx}{1 + x^2},$	$\int \frac{x^2}{\sqrt{2-x}} dx;$
15.	$\int \frac{dx}{x\cos^2(3+\ln x)},$	$\int \frac{\left(\sqrt{4x-5}-3\right)dx}{\sqrt{4x-5}\left(4x+1\right)};$
16.	$\int \left(\cos\left(3+\frac{1}{x}\right)+x\right)\frac{dx}{x^2},$	$\int \frac{\left(\sqrt{x+1}+2\right)dx}{\sqrt{\left(x+1\right)^3}+\sqrt{x+1}};$
17.	$\int \frac{(6x-5)dx}{2\sqrt{3x^2-5x+4}},$	$\int \frac{dx}{\sqrt{x} \left(1 + \sqrt[3]{x}\right)};$
18.	$\int \left(3\sqrt{1+3\cos x}-2\right)\sin xdx,$	$\int \frac{dx}{\sqrt{x+4}\left(x+8-4\sqrt{x+4}\right)};$
19.	$\int \left(e^{-x^2} - \frac{2}{x^2 + 9}\right) x dx,$	$\int \frac{\left(2+\sqrt{2x+1}\right)dx}{2x+1+\sqrt{2x+1}};$
20.	$\int \frac{3x-4}{x^2+4} dx,$	$\int \frac{dx}{3\sqrt[3]{x^2} \left(\sqrt[3]{x^2} + 2\sqrt[3]{x} + 1\right)};$
21.	$\int \frac{x^2 \left(1 + 6x^3\right)}{x^6 + 16} dx,$	$\int \frac{2dx}{\sqrt[3]{x+1}\left(\sqrt[3]{(x+1)^2}-3\right)};$
22.	$\int \frac{\cos x dx}{\sqrt{\left(\sin x + 3\right)^3}},$	$\int \frac{\sqrt{x+3}-1}{x+1} dx;$
23.	$\int \frac{\sqrt[5]{\ln^3(x+1)}}{x+1} dx,$	$\int \frac{x+\sqrt[3]{x^2}+2\sqrt[6]{x}}{x\left(1+\sqrt[3]{x}\right)}dx;$
24.	$\int \frac{dx}{\sin^2 x \sqrt{3 + ctg^2 x}},$	$\int \frac{3\sqrt{2x+3} \ dx}{7+\sqrt{(2x+3)^3}};$
25.	$\int \frac{5-6tg^2x}{\cos^2 x} dx,$	$\int \frac{\sqrt[3]{x+2}}{x-\sqrt[3]{x^2}} dx;$
26.	$\int \frac{\sqrt[3]{x^2} + 4\ln^3 x - 1}{x} dx,$	$\int \frac{\sqrt{x-3} - \sqrt[3]{x-3}}{\sqrt{x-3}} dx;$
27.	$\int \frac{4x-2}{\sqrt{4-x^2}} dx,$	$\int \frac{dx}{\sqrt{2x+5} + \sqrt{\left(2x+5\right)^3}};$

28.	$\int \frac{\cos x dx}{\sin^2 x - 10\sin x + 25},$	$\int \frac{dx}{3+\sqrt{x-6}};$
29.	$\int \left(e^{\sin x} + \cos^2 x\right) \cos x dx,$	$\int \frac{dx}{\sqrt{x}\left(x+5+2\sqrt{x}\right)};$
30.	$\int \frac{dx}{\sqrt[3]{x^2} \left(4 + \sqrt[3]{x^2}\right)} ,$	$\int \frac{dx}{x\sqrt{x^2-1}}.$

Задание 2 (01-15). Функция предельного дохода некоторого предприятия имеет вид $MR(q) = a - bq - cq^2$ (усл. ед.), где q — объем выпуска продукции. Найти функцию дохода и уравнение спроса на продукцию.

Данные к задаче взять из таблицы 8.

Таблица 8

Bap.	01	02	03	04	05	06	07	
а	55	50	54	60	65	70	68	
b	0,04	0,02	0,06	0,03	0,05	0,08	0,02	
c	0,003	0,006	0,009	0,012	0,003	0,003	0,006	
08	09	10	11	12	13	14	15	

(08	09	10	11	12	13	14	15
6	62	53	72	58	52	45	67	75
0,	,04	0,10	0,12	0,05	0,06	0,07	0,08	0,03
0,	012	0,015	0,009	0,006	0,018	0,021	0,021	0,024

Задание 2 (16-30). Дана функция предельной склонности к потреблению страны: $MC(y) = \frac{1}{\sqrt{a\,y+b}} + m$, где y — национальный доход.

Найти функцию потребления, если потребление равно n млрд. руб., когда доход равен нулю.

Данные к задаче взять из таблицы 9.

Таблица 9

Bap.	16	17	18	19	20	21	22
а	3	5	10	8	2	6	5
b	7,29	4	12,25	9	5,29	3,24	16
m	0,4	0,5	0,6	0,3	0,8	0,7	0,2
n	6	8	10	5	10	9	12

23	24	25	26	27	28	29	30
8	3	2	10	2	8	5	4
10,24	5,76	6,25	12,25	1	4	1,25	6,76
0,4	0,3	0,1	0,6	0,3	0,5	0,4	0,1
11	8	7	13	12	11	9	15

Задание 3 (01-15). Распределение дохода в некоторой стране определяется кривой Лоренца $y = ax^2 + bx$, где y — доля совокупного дохода, получаемая частью x низко оплачиваемого населения. Какую часть дохода получают p % наиболее низко оплачиваемого населения? Вычислить коэффициент неравномерности распределения совокупного дохода (коэффициент Джинни).

Данные к заданию взять из таблицы 10.

Таблица 10

Bap.	01	02	03	04	05	06	07
а	0,87	0,96	0,78	0,68	0,91	0,85	0,95
b	0,13	0,04	0,22	0,32	0,09	0,15	0,05
p %	6	12	7	5	10	8	13

08	09	10	11	12	13	14	15
0,74	0,76	0,83	0,92	0,86	0,88	0,89	0,93
0,26	0,24	0,17	0,08	0,14	0,12	0,11	0,07
9	11	6	14	7	6	10	12

Задание 3 (16-30). Законы спроса и предложения на товар имеют вид $D: p = a - bq^2, S: p = mq^2 + nq + k,$

где q — количество товара. Найти выигрыш потребителей и поставщиков при установлении рыночного равновесия.

Данные к задаче взять из таблицы 11.

Таблица 11

Bap.	16	17	18	19	20	21	22
а	55	96	53	63	81	85	110
b	0,7	0,6	0,3	0,8	1,8	0,5	0,4
m	0,3	0,9	0,2	1,2	1,2	1	1,6
n	1	7,5	1,5	3	5	1,5	9
k	40	42	33	36	39	22	15

23	24	25	26	27	28	29	30
48	93	139	97	83	78	87	39
0,1	0,2	1	1	0,9	0,3	0,3	0,5
0,4	0,8	1	2	1,1	1,2	0,5	0,5
2	0,5	3	2	6	3	4	2,5
32	25	20	41	27	42	47	30

Задание 4 (01-15). Доход от инвестиций в некоторое производство равен нулю в течение первых t_0 лет, а затем изменяется по закону

$$R(t) = A_0 e^{-k(t-t_0)}$$
 (усл. ед.),

где t — время в годах. Найти среднее значение дохода от инвестиций в течение первых T лет.

Данные к задаче взять из таблицы 12.

Таблица 12

Bap.	01	02	03	04	05	06	07
A_0	40	66	50	48	45	70	35
k	0,2	0,3	0,4	0,25	0,15	0,35	0,28
t_0	1	1,5	1	1	1,5	1	1,5
T	5	6	6	5	4	5	4
08	09	10	11	12	13	14	15
52	48	42	44	54	100	36	45
0,26	0,32	0,21	0,22	0,18	0,8	0,12	0,18
1	1	1,5	1,5	1	1	1	1,5
5	6	4	5	3	4	6	5

Задание 4 (16-30). Изменение затрат времени t на изготовление изделия в зависимости от степени освоения производства описывается функцией $t = ax^{-b} + c$ (мин.), где a — затраты времени на первое изделие, b — показатель производственного процесса, x — порядковый номер изделия в партии, c — постоянная величина. Найти среднее время, затраченное на изготовление одного изделия в период освоения от x_1 до x_2 изделий.

Данные к задаче взять из таблицы 13.

Таблица 13

Bap.	16	17	18	19	20	21	22
a	300	310	400	421	530	600	570
b	0,33	0,42	0,61	0,80	0,35	0,53	0,27
c	1	2	3	1	3	2	3
x_1	130	145	135	139	140	137	150
x_2	142	159	152	150	155	152	162

23	24	25	26	27	28	29	30
380	450	475	560	630	520	360	650
0,34	0,71	0,25	0,43	0,38	0,47	0,55	0,63
1	4	1	4	3	1	3	2
160	131	148	170	160	145	135	150
173	146	160	181	175	160	150	170

Задание 5. Функция спроса на некоторый товар, производимого фирмой монополистом, имеет вид $q = D\left(p\right) = \sqrt{\frac{a}{p}} - b$, где p — цена товара, при которой потребителем будет куплено q единиц этого товара.

Вычислить потребительскую ренту при уровне продажи товара Q единиц. Данные к задаче взять из таблицы 14.

Таблица 14

						_			1 4001	ица 17
Bap.	1	2	3	4	5 4	6	7	8	9	10
а	450	432	500	400	512	768	980	588	864	507
b	5	1	1	2	4	3	5	2	3	1
Q	10	11	9	8	12	13	9	12	9	12
Bap.	11	12	13	14	15	16	17	18	19	20
a	900	576	1536	867	784	676	512	578	845	676
b	2	4	6	3	3	4	1	2	5	5
Q	13	8	10	14	11	9	15	15	8	8
Bap.	21	22	23	24	25	26	27	28	29	30
а	1083	867	588	1296	1350	2166	2268	676	720	972
b	3	3	1	4	6	6	7	2	2	3
Q	16	14	13	14	9	13	11	11	10	15

Задание 6. Определить дисконтную сумму за t лет при процентной ставке p, если капиталовложения (инвестиции) изменяются по закону $K(t) = K_0(1+kt)$, где K_0 - первоначальные (базы) капиталовложения (млрд. руб.), k — ежегодная доля их прироста. Дать пояснения полученному результату.

Данные к задаче взять из таблицы 15.

Таблица 15

Bap.	1	2	3	4	5	6	7	8	9	10
K_0	20	25	30	10	15	35	40	28	42	32
k	0,05	0,08	0,083	0,04	0,09	0,055	0,06	0,075	0,065	0,088
p %	3	3	8	8	6	3	5	5	3	3
t	3	5	3	5	4	5	5	4	6	6

						-	p - A		c i acciii	
Bap.	11	12	13	14	15	16	17	18	19	20
K_0	25	30	50	55	36	38	18	23	24	60
k	0,095	0,05	0,04	0,08	0,06	0,07	0,084	0,06	0,055	0,042
p %	5	6	6	3	8	6	5	3	5	3
t	3	6	7	6	3	5	10	8	6	5
Bap.	21	22	23	24	25	26	27	28	29	30
K_0	52	35	30	28	18	45	40	10	12	25
k	0,063	0,072	0,081	0,054	0,051	0,062	0,045	0,08	0,07	0,085
			_	•	•	_		4	_	0
p %	8	4	5	3	3	5	6	3	5	8

Задание 7. Проинтегрировать уравнения

01.	$2x(4+y^2)dx - y(9-x^2)dy = 0,$	$y' - \frac{2}{x}y = x^2 \sin 2x;$
02.	$xy' - 2(4 + y^2) = 0,$	$\sin x \cdot y' + \cos x \cdot y = \sqrt{x} \; ;$
03.	$2x(e^{-y} + 5)dx + e^{-y}dy = 0,$	$y' - \frac{1}{2\sqrt{x}}y = e^{\sqrt{x}}\left(1 + 3x^2\right);$
04.	$e^{y}(1+x^{2})y'=2x(1+e^{y}),$	$y' - y t g x = \frac{2x}{\cos^2 x};$
05.	$\cos^2 y \cdot \ln x dx + x \cdot \sin y dy = 0,$	$y'-3x^2y=(1-2x)e^{x^3};$
06.	$2x\sqrt{9-y^2} = y'(8+x^2),$	$xy'-2y=x^3(\cos x-1);$
07.	$(1+e^x)ydy=e^xdx,$	$y'\cos x - y\sin x = 6 - 3x^2;$
08.	$(9+7\cos^3 x)dx-\cos^2 xdy=0,$	$xy'-2y=x^3+x;$
09.	$(x^2 - 4x + 13)y' = x - 2,$	$xy' - 3y = 3 - 4x - x^2;$
10.	$xdy - \left(1 - \sqrt{x}\right)^2 dx = 0,$	$y' + 2xy = (2x+3)e^{-x^2};$
11.	$y'\cos y + \sin^3 y \cdot e^x = 0,$	$y' - \frac{2x}{x^2 + 1}y = x^2 + 2;$
12.	$(x^2+4)ydy-x^2(y+1)dx=0,$	$y'\sin x - y\cos x = 7;$
13.	8(x-1)dy + (y+1)dx = 0,	$y' - \frac{1}{x^2 + 1} \cdot y = \frac{1}{\cos^2 x} \cdot e^{\operatorname{arctg} x};$
14.	$xydx + \sqrt{1 - x^2} dy = 0,$	$y' + 2y = e^{3x} + 2;$
15.	$y'\cdot\sqrt{1-x^2}=1+y^2,$	$y' + ytgx = \frac{1}{\cos x};$

16.	$\left(1+e^{2x}\right)y^2\ y'=e^x,$	$y' - y ctgx = \sin x ;$
17.	$\left(1+e^x\right)y'=ye^x,$	$y' + \frac{1}{x} \cdot y = 1 - 4 \ln x;$
18.	$\sin y \cos x dy = \cos y \sin x dx,$	$y' + 4xy = 2xe^{-x^2};$
19.	$y' \operatorname{ctg} x + y = 2,$	$y' - \cos x \cdot y = e^{x + \sin x};$
20.	$y' = 2xe^{x^2}(1+y^2),$	$(x^2+3)y'+4xy=6;$
21.	$ctg x \cdot \cos^2 y dx + \sin^2 x tg y dy,$	$x^2y' + xy + 1 = 0;$
22.	$e^{x^2+y}dy=2xdx,$	$(x+1)y' + y = x^3 + x^2;$
23.	$3e^x \sin y dx - \left(e^x - 1\right) \cos y dy = 0,$	$xy'-2y+x^2=0;$
24.	$\sin x \cdot y' = y \left(\cos x + 3\sin 2x\right),$	$x^2y'=2xy+3;$
25.	$tg y \cdot dx - \frac{dy}{\sin x} = 0,$	$yx' + x = 4y^3 + 6y^2;$
26.	$2(xy+3x^2y)dx = (2y^2-1)dy,$	$y'\sin x - y\cos x = 2\cos x \; ;$
27.	y' = (2y+1)tgx,	$yx'-2x=2y^4;$
28.	$1 + (1 + y') e^{y} = 0,$	$y = x(y' - x\cos x);$
29.	$e^x \sin y dx + ctg y dy = 0,$	$x^2y' + 3xy = x + 1;$
30.	$x\sqrt{4+y^2} dx - y\sqrt{9+x^2} dy = 0,$	xy' + 4y = 8x - 2.

Задание 8. Производится некоторая продукция и продается на конкурентном рынке по цене p=a-bq, где a>0, b>0, q=q(t) - количество продукции, проданной на момент времени t. Полученный на этот момент времени доход составит $R(t)=p\cdot q$, часть которого, равная I(t)=mpq, инвестируется в производство при норме инвестиции m,0<m<1. В результате расширения производства (предполагается полная реализация производимой продукции) будет получен прирост дохода, часть которого опять инвестируется для расширения выпуска продукции. Это приведет к росту скорости выпуска (акселерации), причем скорость выпуска пропорциональна увеличению инвестиций с коэффициентом пропорциональности l, т.е. $q'(t)=l\cdot J(t)$, где l^{-1} - норма акселерации.

Требуется:

- а) составить дифференциальное уравнение, являющееся математической моделью роста выпуска продукции в условиях конкуренции, положив $k=l\,m$.
- б) найти решение полученного уравнения, удовлетворяющее начальному условию: $q=q_0$ при t=0.

- в) построить найденную интегральную (логистическую) кривую, указав ее точку перегиба.
- г) указать временные границы прогрессирующего роста выпуска продукции (эластичность спроса) и границы замедления (насыщения) роста выпуска (неэластичность спроса).
 - д) найти предельный объем производства.

Данные к задаче взять из таблицы 16, в которой принято k = lm

									Табл	ица 16
Bap.	01	02	03	04	05	06	07	08	09	10
a	30	24	60	45	36	40	42	26	48	50
b	3	3	6	5	3	4	3	2	3	5
k	0,01	0,02	0,01	0,02	0,01	0,02	0,01	0,03	0,01	0,01
q_{θ}	2	1	1	2	1	2	3	1	2	2
	•	ı							ı	1
Bap.	11	12	13	14	15	16	17	18	19	20
а	75	72	56	28	50	39	33	64	34	44
b	5	6	4	2	5 4	3	3	4	2	4
k	0,01	0,01	0,01	0,02	0,02	0,02	0,01	0,01	0,02	0,02
q_{θ}	3	1	2	1	1	2	1	2	1	1
	•	•							•	
Bap.	21	22	23	24	25	26	27	28	29	30
а	100	120	48	69	54	72	36	51	150	84
b	5	6	3	3	2	4	2	3	6	4
k	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,01	0,01	0,01
q_{θ}	3	3	2	3	3	2	1	2	4	2

Задание 9. На однотоварном рынке спрос D и предложение S считаются линейными функциями цены p = p(t) на товар:

$$D = a_0 - a_1 p$$
, $S = b_0 + b_1 p$, $a_0 > 0$, $a_1 > 0$, $b_0 > 0$, $b_1 > 0$.

Будем предполагать: 1) на рынке при нулевой цене спрос превышает предложение (товар желателен), т.е. $a_0 > b_0$; 2) увеличение цены на величину Δp прямо пропорционально превышению спроса над предложением и длительности Δt этого превышения (условие Эванса), т.е. $\Delta p = k(D-S)\Delta t$, где k > 0 — коэффициент пропорциональности.

Требуется:

- 1) найти равновесную (стационарную) цену;
- 2) найти закон изменения цены p в зависимости от времени, считая, что при t=0 цена на товар равна p_0 .
- 3) найти цену товара в момент времени t_1 .
- 4) найти предельную цену на товар.

Данные к задаче взять из таблицы 17.

Таблица 17

Bap.	a_0	a_1	b_0	b_{l}	k	p_0	t_1
01	173	23	53	17	0,05	1	2
02	180	20	30	10	0,03	3	3
03	145	15	65	5	0,015	2	1
04	93	8	33	2	0,01	3	2
05	418	38	18	12	0,01	4	3
06	140	35	20	5	0,02	2	1
07	165	26	15	4	0,02	2	2
08	96	17	16	3	0,01	1	3
09	69	7	9	3	0,04	2	4
10	410	46	10	4	0,03	3	1
11	110	13	5	2	0,04	2	2
12	128	34	8	6	0,01	1	2
13	156	27	6	3	0,025	2	2
14	87	19	7	1	0,04	2	3
15	64	6	4	4	0,08	1	4
16	113	14	8	1	0,05	3	1
17	125	33	5	7	0,01	1	3
18	153	25	3	5	0,03	2	1
19	86	14	6	6	0,04	1	2
20	71	9	11	1	0,06	3	2
21	121	8	16	7	0,06	3	2
22	423	45	23	5	0,01	2	2
23	108	21	8	4	0,03	1	1
24	120	12	15	3	0,06	2	3
25	177	13	7	4	0,04	3	3
26	113	20	13	5	0,035	1	2
27	155	27	5	3	0,02	1	3
28	87	13	7	7	0,045	2	1
29	174	14	12	4	0,03	3	2
30	415	41	15	9	0,01	2	2

Задание 10. Проинтегрировать уравнения v'' + 3v' - 4v = 0 v(0) = 1,

01	y'' + 3y' - 4y = 0,	y(0) = 1,	y'(0) = 1,
01	$y'' - 2y' + 2y = 6x^2$	+14x+6	
02	y'' - 3y' + 2y = 0,	y(0)=3,	y'(0) = 4,
02	$y'' + 25y = -50e^{5x}$		
0.2	y'' - 3y' + 2y = 0,	y(0) = 2,	y'(0) = 3,
03	$y'' + y' = 4x^2 e^x$		

04	y'' - 2y' + 2y = 0,	y(0) = 1,	y'(0)=0,
04	$y'' - 3y' + 2y = xe^x$		
05	y'' - 8y' + 25y = 0,	y(0) = -1,	y'(0) = -1,
05	$y'' - y' = 5x^2 - 12x + 8$	3	
06	y'' - 2y' + 10y = 0,	y(0) = 4,	y'(0) = 1,
UU	$y'' - 2y' + y = 10e^x$		
07	y'' + 9y = 0,	y(0)=2,	y'(0) = 6,
U7	$y'' + 3y' + 2y = 2x^2 - $	4x - 17	
08	y'' - 7y' + 6y = 0,	y(0) = -3,	y'(0)=2,
VO	$y'' + 4y' + 4y = 2\sin 2$	$2x + 3\cos 2x$	
09	y'' + y' - 6y = 0,	y(0) = 3,	y'(0) = 1,
U	$y'' + y' = 2\cos 4x + 3\sin 4x + 3\cos 4x + 3\sin 4x + 3$	$\sin 4x$	
10	y'' - 6y' - 7y = 0,	y(0) = 4,	y'(0) = 4,
10	$y'' + 2y' + 5y = -\sin 2x$	x	
11	y'' + 2y' - 8y = 0,	y(0) = 2,	y'(0) = -2,
11	$y'' - y = 3x^2 - 7x + 9$		
12	y'' + 5y' + 6y = 0,	y(0) = 1,	y'(0) = 3,
12	$y'' + 49y = xe^{-x}$		
13	y'' - 2y' + 26y = 0,		y'(0) = -5,
	$y'' + 7y' + 12y = 24x^2$		
14	y'' + 6y' + 9y = 0,		y'(0) = 2,
	$y'' - 4y' + 3y = 20\cos^2\theta$		
15	y'' + 10y' + 25y = 0,		y'(0) = 2,
	$y'' + y' = 2\cos 7x + 3\sin 7x$		
16		y(0) = 0,	y'(0) = 4,
	$y'' + 2y' + y = 8e^{-x}$	(0)	
17		y(0) = -1,	y'(0) = 3,
	$y'' + y' - 2y = 6x^2$	(0) 2	1(0)
18		y(0) = -2,	y'(0) = -4,
	y'' - 8y' + 16y = (1 - x)		
19	y'' - 8y' - 9y = 0,		y'(0) = 4,
	$y'' + 3y' = 9x^2 + 3x + 3$	5	

20	y'' - 6y' + 13y = 0,	y(0) = 1,	y'(0) = -1,
20	$y'' - 2y' - 3y = 12e^{3x}$		
21	y'' - 4y' + 13y = 0,	y(0) = -1,	y'(0) = -3,
21	$y'' + y' - 2y = 4x^2 - 8$	8x + 2	
22	y'' - 4y' - 12y = 0,	y(0) = 2,	y'(0) = 6,
	$y'' - 10y' + 25y = e^{5x}$		
22	y'' + 6y' + 10y = 0,	y(0) = -1,	y'(0) = 1,
23	$y'' - 2y' = 6x^2 - 10x$	+12	
24	y'' - 7y' + 12y = 0,	y(0) = 1,	y'(0) = 2,
24	$y'' - y' - 2y = 22\cos 5$	$5x - 32\sin 5x$	
	y'' - y' - 12y = 0,	y(0) = -2,	y'(0) = -1,
75			
25	y'' + 22y' + 121y = -	e^{-11x}	
		$\frac{e^{-11x}}{y(0)=1},$	y'(0) = 0,
25 26			y'(0) = 0,
26	y'' - 6y' + 18y = 0,	y(0) = 1,	y'(0) = 0, y'(0) = 5,
	$y'' - 6y' + 18y = 0,$ $y'' + 3y' = 3xe^{-3x}$	y(0) = 1, y(0) = -2,	•
26	y'' - 6y' + 18y = 0, $y'' + 3y' = 3xe^{-3x}$ y'' + 6y' + 8y = 0,	y(0) = 1, $y(0) = -2,$ $3x$	•
26	y'' - 6y' + 18y = 0, $y'' + 3y' = 3xe^{-3x}$ y'' + 6y' + 8y = 0, $y'' - 5y' + 6y = 13\sin^{-2} x$	y(0) = 1, $y(0) = -2,$ $3x$ $y(0) = 1,$	y'(0) = 5,
26 27 28	$y'' - 6y' + 18y = 0,$ $y'' + 3y' = 3xe^{-3x}$ $y'' + 6y' + 8y = 0,$ $y'' - 5y' + 6y = 13\sin^{2}y'' - 11y' + 30y = 0,$	$y(0) = 1,$ $y(0) = -2,$ $3x$ $y(0) = 1,$ $+3\cos x$	y'(0) = 5,
26	$y'' - 6y' + 18y = 0,$ $y'' + 3y' = 3xe^{-3x}$ $y'' + 6y' + 8y = 0,$ $y'' - 5y' + 6y = 13\sin^{2}y'' - 11y' + 30y = 0,$ $y'' - 3y' - 10y = \sin x$	$y(0) = 1,$ $y(0) = -2,$ $3x$ $y(0) = 1,$ $+3\cos x$	y'(0) = 5, y'(0) = 0,
26 27 28 29	$y'' - 6y' + 18y = 0,$ $y'' + 3y' = 3xe^{-3x}$ $y'' + 6y' + 8y = 0,$ $y'' - 5y' + 6y = 13\sin x$ $y'' - 11y' + 30y = 0,$ $y'' - 3y' - 10y = \sin x$ $y'' - y' - 30y = 0,$	$y(0) = 1,$ $y(0) = -2,$ $3x$ $y(0) = 1,$ $+3\cos x$ $y(0) = 2,$	y'(0) = 5, y'(0) = 0,
26 27 28	$y'' - 6y' + 18y = 0,$ $y'' + 3y' = 3xe^{-3x}$ $y'' + 6y' + 8y = 0,$ $y'' - 5y' + 6y = 13\sin^{2}y$ $y'' - 11y' + 30y = 0,$ $y'' - 3y' - 10y = \sin x$ $y'' - y' - 30y = 0,$ $y'' - 4y' = xe^{4x}$	y(0) = 1, y(0) = -2, 3x y(0) = 1, $+3\cos x$ y(0) = 2, y(0) = -1,	y'(0) = 5, y'(0) = 0, y'(0) = 1,

Задание 11. На однотоварном рынке спрос и предложение на однородный продукт зависит от цены p = p(t) этого продукта, факторов ценообразования и от темпов изменения цены, т.е.

$$D = D(p) = a_0 - a_1 p - a_2 p' + a_3 p'',$$

$$S = S(p) = b_0 + b_1 p + b_2 p' + b_3 p'',$$

где $a_i > 0$, $b_i > 0$, i = 0,1,2,3, $a_0 > b_0 u a_3 < b_3$.

Требуется:

1) при равновесном состоянии рынка составить дифференциальное уравнение, являющееся математической моделью рынка с прогнозируемыми ценами;

2) найти решение полученного уравнения, удовлетворяющего одному из следующих начальных условий:

$$p_0 = p(0), p'_0 = p'(0); p_0 = p(0), D_0 = D(0); p_0 = p(0), S_0 = S(0);$$

- 3) построить график найденной интегральной кривой;
- 5) запрогнозировать цену продукта для момента времени t_1 ;

Необходимые числовые данные взять из таблицы 18.

Таблица 18

Bap	a_0	a_1	a_2	a_3	b_{0}	$b_{\scriptscriptstyle 1}$	b_2	b_3	p_0	p_0'	D_0	S_0	t_1
01	25	3	3	1	1	5	1	2	4	0	-		1,2
02	10	1	1	3	4	1	1	4	1	4	-	-	2,3
03	30	2	1	4	5	3	1	5	4	-1		-	1,5
04	36	5	2	1	6	10	4	4	3	-3	-	1	0,6
05	17	1	1	1	9	1	1	2	3	2	-	-	3,2
06	25	2	4	3	13	1	2	9	5	1	-	-	0,8
07	36	6	1	3	6	4	3	5	4	1	-	-	2,5
08	44	4	3	4	4	6	1	6	3	-1	-	-	1,7
09	27	2	2	1	11	2	2	3	▶ 2	4	-	-	0,6
10	39	3	4	5	12	6	2	7	1	3	ı	ı	1,3
11	26	2	2	3	2	6	2	4	3	ı	6	ı	1,6
12	33	5	1	2	17	3	3	3	3	ı	2	ı	0,4
13	41	3	3	1	21	2	1	5	4	ı	21	ı	1,6
14	38	7	1	2	4	10	3	6	1	-	32	ı	2,1
15	34	1	4	4	14	4	4	8	2	-	6	ı	1,3
16	24	2	5	2	15	1	1	8	3	-	11	-	0,7
17	46	7	3	3	7	6	5	7	1	-	13,5	-	1,8
18	13	3	2	1	3	2	4	3	3	-	9	-	2,0
19	42	10	4	8	8	7	4	24	0	-	39	-	2,2
20	49	9	-8	4	10	4	16	20	3	-	8	-	1,4
21	31	9	4	8	5	4	12	24	4	-	-	12	0,9
22	48	16	20	4	14	1	12	20	4	-	-	17,5	1,7
23	43	15	12	4	9	2	4	8	1	-	-	3	0,3
24	28	4	3	3	18	1	1	4	2	-	-	5	1,3
25	43	8	1	2	13	2	1	3	2	-	-	27	0,25
26	14	1	3	2	6	3	1	4	3	-	-	7	1,32
27	39	10	4	1	13	3	2	2	1	-	-	32	2,4
28	20	4	1	3	5	1	1	4	4	-	-	10	2,6
29	13	4	1	2	3	1	3	6	3	-	-	3	1,2
30	35	8	1	3	5	2	1	4	4	-	-	1	3,5

Решение типового варианта аттестационной работы по теме «Неопределенный и определенный интегралы. Дифференциальные уравнения»

Задание 1. Найти интегралы:

a)
$$\int \frac{2(\arcsin x + x)}{\sqrt{1 - x^2}} dx,$$
 6)
$$\int \frac{(x - 1)dx}{(x - 7)\sqrt{x + 2}}$$

Решение.

а) Так как $d(\arcsin x) = dx/\sqrt{1-x^2}$, то получим

$$\int \frac{2(\arcsin x + x)}{\sqrt{1 - x^2}} dx = 2 \int \frac{\arcsin x}{\sqrt{1 - x^2}} dx + 2 \int \frac{x dx}{\sqrt{1 - x^2}} = 2 \int \arcsin x d(\arcsin x) - \frac{d(1 - x^2)}{\sqrt{1 - x^2}} = 2 \cdot \frac{\arcsin^2 x}{2} - 2\sqrt{1 - x^2} + C = \arcsin^2 x - 2\sqrt{1 - x^2} + C.$$

Контроль.

$$\left(\arcsin^2 x - 2\sqrt{1 - x^2} + C\right)' = 2\arcsin x \cdot \frac{1}{\sqrt{1 - x^2}} + 2 \cdot \frac{2x}{2\sqrt{1 - x^2}} = \frac{2\left(\arcsin x + x\right)}{\sqrt{1 - x^2}}.$$

б) Положим $\sqrt{x+2} = t$, тогда $x = t^2 - 2$, dx = 2t dt. Следовательно,

$$\int \frac{(x-1)dx}{(x-7)\sqrt{x+2}} = \int \frac{(t^2-2-1)2t\,dt}{(t^2-2-7)\cdot t} = 2\int \frac{t^2-3}{t^2-9}\,dt = 2\int \frac{(t^2-9)+6}{t^2-9}\,dt =$$

$$= 2\int dt + 12\int \frac{dt}{t^2-9} = 2t + 2\ln\left|\frac{t-3}{t+3}\right| + C = 2\sqrt{x+2} + 2\ln\left|\frac{\sqrt{x+2}-3}{\sqrt{x+2}+3}\right| + C.$$

3adahue 2. (01-15). a = 100, b = 0.04, C = 0.0027.

Решение. Найдем функцию дохода, если

$$MR(q) = 100 - 0.04q - 0.0027q^2$$
.

$$R(q) = \int MR(q) dq = \int (100 - 0.04q - 0.0027q^{2}) dq = 100q - 0.02q^{2} - 0.0009q^{3} + C.$$

При q=0 доход, естественно, равен нулю, так что C=0 и

$$R(q) = 100q - 0.02q^2 - 0.0009q^3$$
.

Уравнение спроса находим из равенства $R = p \cdot q$:

$$p = \frac{R}{q} = 100 - 0.02q - 0.0009q^2$$
.

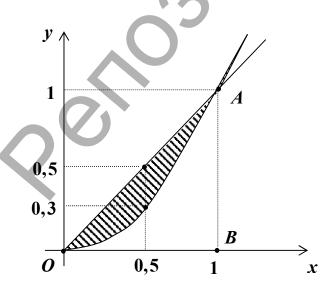
Задание 2. (16-30). a = 25, b = 49, C = 0.8, n = 5.56.

Решение. В нашем случае функция предельной склонности к потреблению запишется в виде

$$MC(y) = \frac{1}{\sqrt{25y + 49}} + 0.8.$$

Находим функцию потребления

$$C(y) = \int MC(y) dy = \int \left((25y + 49)^{-1/2} + 0.8 \right) dy = -\frac{2}{25} \cdot \sqrt{25y + 49} + 0.8y + A.$$


По условию C(0) = 5,56, поэтому $5,56 = \frac{14}{25} + A$, A = 5.

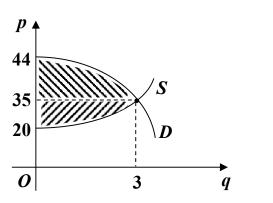
Окончательно, $C(y) = 0.08\sqrt{25y + 49} + 0.8y + 5.$

3adahue 3 (01-15).
$$a = 0.89$$
, $b = 0.11$, $p = 15\%$.

Решение. Уравнение кривой Лоренца имеет вид $y = 0.89x^2 + 0.11x$. Тогда $y(0.15) = 0.89 \cdot 0.15^2 + 0.11 \cdot 0.15 = 0.036$. Значит 15 % наиболее низко оплачиваемого населения получает 3,6 % совокупного национального дохода.

Коэффициент Джинни равен

$$L = \frac{\int_{0}^{1} (x - 0.89x^{2} - 0.11x) dx}{S_{\Delta OAB}} = \frac{0.89 \int_{0}^{1} (x - x^{2}) dx}{0.5 \cdot 1 \cdot 1} = \frac{2 \cdot 0.89 \left(\frac{x^{2}}{2} - \frac{x^{3}}{3}\right)\Big|_{0}^{1}}{1} = \frac{2 \cdot 0.89 \cdot \frac{1}{6} = 0.297}{1} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2}$$


Задание 3 (16-30). a = 44, b = 1, m = 1, n = 2, k = 20.

Решение. Запишем уравнение спроса и предложения согласно данным задачи: D: $p = 44 - q^2$, $S = q^2 + 2q + 20$.

Определим точку рыночного равновесия (D = S):

$$44 - q^2 = q^2 + 2q + 20 \Rightarrow q^2 + q - 12 = 0, \ q_0 = 3, \ p_0 = 35.$$

Выигрыш потребителей равен (см. (1.3)).

$$\int_{0}^{3} (44 - q^{2}) dq - 3.35 =$$

$$= \left(44q - \frac{1}{3}q^{3} \right) \Big|_{0}^{3} - 105 =$$

$$= 44.3 - \frac{1}{3}.3^{3} - 105 = 18$$

а выигрыш поставщиков -

и поставщиков –
$$3 \cdot 35 - \int_{0}^{3} \left(q^{2} + 2q + 20\right) dq = 105 - \left(\frac{1}{3}q^{3} + q^{2} + 20q\right)\Big|_{0}^{3} = 27.$$

3adahue 4 (01-15). $A_0 = 30, k = 0.08, t_0 = 1.5, T = 6.$

Решение. Запишем закон изменения инвестиций

$$R(t) = \begin{cases} 0, & 0 \le t \le 1, 5, \\ 30e^{-0.08(t-1.5)}, & t > 1, 5. \end{cases}$$

Среднее значение дохода от инвестиций за 6 лет равно

$$R_{cp}(t) = \overline{R(t)} = \frac{1}{T} \int_{0}^{T} R(t) dt = \frac{1}{6} \left(\int_{0}^{1.5} 0 dt + \int_{1.5}^{6} 30 e^{-0.08(t-1.5)} dt \right) = 5 \int_{1.5}^{6} e^{-0.08(t-1.5)} dt =$$

$$= -\frac{5}{0.08} \cdot e^{-0.08(t-1.5)} \Big|_{0.5}^{6} = -62.5 \left(e^{-0.36} - e^{0} \right) = -62.5 \left(0.698 - 1 \right) = 18.875 (ycn. ed.).$$

3adahue 4 (16-30). $a = 667, b = 0.5, c = 2, x_1 = 121, x_2 = 144.$

Решение. Используя формулу (1.1.), находим среднее затрачиваемое на изготовление одного изделия в период освоения:

$$t_{cp} = \frac{1}{144 - 121} \cdot \int_{121}^{144} \left(667 \, x^{-0.5} + 2 \right) \, dx = \frac{1}{23} \left(1334 \, \sqrt{x} + 2x \right) \Big|_{121}^{144} =$$

$$=\frac{1}{23}\big(1334\big(12-11\big)+2\big(144-121\big)\big)=\frac{1}{23}\cdot 1380=60\big(\mathit{мин}\big).$$

Задание 5. a = 363, b = 3, Q = 8.

Решение. Найдем сначала для функции q = D(p) функцию ей обратную:

$$q = D(p) = \sqrt{\frac{363}{p}} - 3 \Rightarrow p = D^{-1}(q) = \frac{363}{(q+3)^2}.$$

При уровне выпуска Q=8 единиц фирме следует назначить цену $P=363/\left(8+3\right)^2=3$. Потребительская рента равна

$$\int_{0}^{8} D^{-1}(q) dq - P \cdot Q = 363 \int_{0}^{8} \frac{dq}{(q+3)^{2}} - 3 \cdot 8 = -363 \cdot \frac{1}{q+3} \Big|_{0}^{8} - 24 = -363 \left(\frac{1}{11} - \frac{1}{3}\right) - 24 = 11 \cdot 8 - 24 = 64.$$

Задание 6. $S_0 = 18$, k = 0.03, p = 12%, t = 6.

Решение. При удельной процентной норме i = 0,12 и при $K_t = 18(1+0,03t)$ согласно (1.2) получим дисконтированную сумму

$$K_{d} = \int_{0}^{6} 18(1+0.03t)e^{-0.12t} dt = 18 \int_{0}^{6} (1+0.03t)e^{-0.12t} dt =$$

$$= \begin{vmatrix} u = 1+0.03t, & du = 0.03 dt \\ dv = e^{-0.12t} dt, & v = -\frac{1}{0.12}e^{-0.12t} \end{vmatrix} = 18 \left(-\frac{1+0.03t}{0.12}e^{-0.12t} \right) \Big|_{0}^{6} + \frac{0.03}{0.12} \int_{0}^{6} e^{-0.12t} dt =$$

$$= 18 \left(-\frac{1+0.18}{0.12}e^{-0.72} + \frac{1}{0.12} - \frac{0.03}{0.12^{2}}e^{-0.12t} \right) \Big|_{0}^{6} =$$

$$= 18 \left(\frac{1}{0.12} (1-1.18 \cdot e^{-0.72}) - \frac{0.03}{0.12^{2}} (e^{-0.72} - 1) \right) \approx 18(3.5467 + 1.0691) =$$

$$= 18 \cdot 4.6158 = 83.084.$$

Таким образом, для получения одинаковой наращенной суммы через 6 лет ежегодные капиталовложения от 18 млрд. руб. до 21,24 млрд. руб. равносильны одновременным первоначальным вложением 83,084 млрд. руб. при той же непрерывной процентной ставке p = 12 %.

Задание 7. Проинтегрировать уравнения

a)
$$x^{-1} \cdot e^{-y} dx + \sqrt{1 + \ln^2 x} dy = 0$$
, 6) $y' - \frac{2x}{x^2 + 1} y = (4x + 1)(x^2 + 1)$.

Решение. а) Разделим обе части уравнения на множитель $e^{-y} \cdot \sqrt{1 + \ln^2 x}$, получим уравнение с разделенными переменными

$$\frac{dx}{x\sqrt{1+\ln^2 x}} + \frac{dy}{e^y} = 0 \Rightarrow \int \frac{dx}{x\sqrt{1+\ln^2 x}} + \int e^{-y} dy = C.$$

Следовательно, общий интеграл уравнения имеет вид

$$\ln \left| \ln x + \sqrt{1 + \ln^2 x} \right| - e^{-y} = C.$$

б) Так как данное уравнение первого порядка — линейное, то будем искать его общее решение в виде $y = u(x) \cdot v(x) = u v$, откуда y' = u'v + u v'. Уравнение примет вид

$$u'v + u\left(v' - \frac{2x}{1+x^2}v\right) = (4x+1)(x^2+1).$$

Неизвестную функцию v(x) находим из уравнения

$$v' - \frac{2x}{1+x^2}v = 0$$
, $v = exp\left(-\int \left(-\frac{2x}{x^2+1}\right)dx\right) = e^{\ln(x^2+1)} = x^2+1$.

При таком выборе функции v(x) получим, что

$$u'(x^2+1)=(4x+1)(x^2+1), u'=4x+1, u=2x^2+x+C.$$

Общим решением уравнения будет функция

$$y=u\cdot v = (2x^2 + x + C)(x^2 + 1).$$

3adahue 8. a = 46, b = 2, k = 0.015, $q_0 = 1$.

Решение. а) Искомое дифференциальное уравнение имеет вид

$$\frac{dq}{dt} = ml \ p(q) \cdot q(t) = k(a - bq)q. \tag{3.1}$$

Все величины в правой части уравнения (3.1) положительны, т.е. q'(t) > 0, а потому q(t) - функция возрастающая.

При заданных величинах a, b, k уравнение (3.1) запишется

$$dq = -0.015(2q - 46)q dt = -0.03(q - 23)q dt.$$
(3.2)

б) Разделяя переменные в этом уравнении, получим

$$\frac{dq}{q^2 - 23q} = -0.03 dt$$
или
$$\frac{dq}{(q - 11.5)^2 - (11.5)^2} = -0.03 dt.$$

Интегрируя последнее равенство, находим общее решение (3.2):

$$\int \frac{dq}{(q-11,5)^2 - (11,5)^2} = -0.03 \int dt + C_1, \quad \frac{1}{23} \ln \left| \frac{q-11,5-11,5}{q-11,5+11,5} \right| = C_1 - 0.003t,$$

$$\ln \left| \frac{q-23}{q} \right| = 23C_1 - 0.03 \cdot 23t = 23C_1 - 0.69t.$$

Положим $23C_1 = \ln |C|, C \neq 0,$ тогда $\ln \left| \frac{q-23}{q} \right| - \ln |C| = -0.69t,$

откуда

$$\frac{q-23}{q} = Ce^{-0.69t} \Rightarrow q = \frac{23}{1 - Ce^{-0.69t}}.$$
 (3.3)

Итак, общее решение уравнения (3.2) есть функция (3.3), которая называется функцией снабжения или логистикой.

Из начального условия $q(0) = q_0 = 1$ определим C:

$$1 = \frac{23}{1 - C} \Rightarrow 1 - C = 23, C = -22.$$

Искомым частным решением уравнения (3.2) является функция

$$q = \frac{23}{1 + 22e^{-0.69t}},\tag{3.4}$$

которая и описывает рост выпуска продукции в условиях конкуренции.

Кривая с уравнением (3.4) называется логистической кривой.

Очевидно, что $q(t) \to 23$ при $t \to \infty$. Значит при $t \to \infty$ прямая q = 23 есть горизонтальная асимптота логистической кривой.

в) Найдем интервалы выпуклости и вогнутости кривой (3.4) и ее точку перегиба.

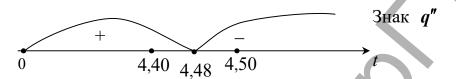
Из равенства (3.2) следует, что

$$q'(t) = -0.03(q-23)q = -0.03(q^2-23q).$$

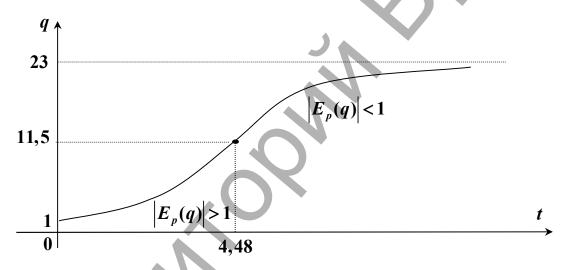
Дифференцируя это равенство по t, находим вторую производную функции q(t):

$$q''(t) = -0.03(2q-23)q'(t), q'(t) > 0.$$

Ясно, что вторая производная обращается в нуль при q_1 = 11,5. Вычислим значение t_1 , при котором функция q(t) принимает значение q_1 :


$$11,5 = \frac{23}{1 + 22e^{-0.69t}} \Rightarrow 1 + 22e^{-0.69t} = 2 \Rightarrow e^{-0.69t} = \frac{1}{22} \Rightarrow -0.69t = \ln\frac{1}{22} \Rightarrow t_1 = 4.48.$$

Исследуем знак второй производной в окрестности точки t_1 :


$$q(4,40) = \frac{23}{1 + 22 \cdot e^{-0.69 \cdot 4.40}} \Rightarrow 11,18, \quad q''(4,40) = -0.03(2 \cdot 11,18 - 23) > 0,$$

$$q(4,50) = \frac{23}{1 + 22 \cdot e^{-0.69 \cdot 4.50}} \Longrightarrow 11,58, \quad q''(4,50) = -0.03(2 \cdot 11,58 - 23) < 0.$$

Следовательно, на промежутке (0; 4,48) кривая (3.4) вогнута, а на промежутке $(4,48;\infty)$ она выпукла. Точка (4,48;11,5) – точка перегиба.

Строим график функции q(t)

г) Дадим экономическое пояснение построенному графику, для чего найдем эластичность $\mathrm{E}_p(q)$ спроса по цене.

Поскольку p = 46 - 2q, то q = 23 - 0.5p.

Тогда q'(p) = -0.5 и

$$E_p(q) = p \cdot \frac{q'}{q} = (46 - 2q)(-0.5) \cdot \frac{1}{q} = -\frac{46 - 2q}{2q} = 1 - \frac{23}{q}.$$

Если $t \in [0;4,48)$, то $q \in [q_0;q_1) = [1;11,5)$, а дробь $\frac{23}{q} > 2$. Значит,

 $\left| {\rm E}_p(q) \right| > 1$ и спрос эластичен, что соответствует прогрессирующему росту выпуска продукции; если же $t \in \left({4,48;\infty } \right)$, то $q \in \left({{q_1;23}} \right) = \left({11,5;23} \right)$, $0 < \frac{{23}}{q} < 2$, $\left| {{\rm E}_p(q)} \right| < 1$ - спрос неэластичен, рынок насыщен, рост выпуска

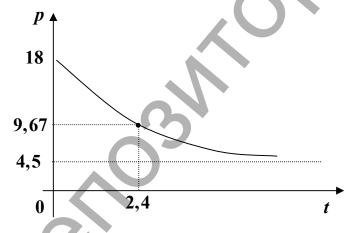
продукции замедляется. При $t = 4,48, q = q_1 = 11,5$ спрос нейтрален $\left(\left|\mathbf{E}_{p}(q)\right|=1\right).$

д) При $t \to \infty$ логистическая кривая имеет горизонтальную асимптоту q = 23, откуда следует, что предельный объем выпуска продукции равен 23 условным единицам.

Задание 9.
$$a_0 = 100$$
, $a_1 = 14$, $b_0 = 28$, $b_1 = 2$, $k = 0.025$, $p_0 = 18$, $t_1 = 2.4$.

Решение. 1) По данным задачи запишем уравнения спроса и предложения: D = 100 - 14p, S = 28 + 2p. Равновесная цена равна

$$p^* = \frac{a_0 - b_0}{a_1 + b_1} = \frac{100 - 28}{14 + 2} = 4,5$$
 (усл.ед.).


2) Дифференциальное уравнение изменения цены имеет вид

$$\frac{dp}{dt} = p' = -k((a_1 + b_1)p - (a_0 - b_0)) = -0.025(16p - 72) = -0.4(p - 4.5)$$

с общим решением $p = 4.5 + Ce^{-0.4t}$.

щим решением $p = 4.5 + Ce^{-0.47}$. При t = 0, $p = p_0 = 18$, тогда C = 13.5. Закон изменения цены от времени определяется функцией

$$p = 4.5 + 13e^{-0.4t} = 4.5(1 + 3e^{-0.4t}).$$

 $t \to \infty$, TO $p(t) \rightarrow 4,5$ и имеет место устойчивость. Прямая p = 4,5 есть горизонтальная асимптота графика функции p(t).

3) В момент времени $t_1 = 2,4$ цена товара равна $p_1 = 4.5(1+3e^{-0.4\cdot 2.4}) = 9.67$

4) Из графика видно, что предельная цена равна 4,5 усл. единиц.

Задание 10. Проинтегрировать уравнения

a)
$$y'' - 6y' - 7y = 0$$
, $y(0) = 5$, $y'(0) = 3$; 6) $y'' + 4y' + 13y = 9(x-1)e^{-2x}$.

Решение. а) Характеристическое уравнение $\lambda^2 - 6\lambda - 7 = 0$ имеет корни $\lambda_1 = -1$ и $\lambda_2 = 7$. Следовательно, общее решение уравнения имеет вид $y = C_1 e^{-x} + C_2 e^{7x}$.

Дифференцируем это равенство по x, получим $y = -C_1 e^{-x} + 7C_2 e^{7x}$. Для определения C_1 u C_2 имеем систему уравнений

$$\begin{cases} y(0) = 5, \\ y'(0) = 3, \end{cases} \Rightarrow \begin{cases} C_1 + C_2 = 5, \\ -C_1 + 7C_2 = 3, \end{cases} \Rightarrow \begin{bmatrix} C_2 = 1, \\ C_1 = 4. \end{cases}$$

Искомое частное решение $y = 4e^{-x} + e^{7x}$

б) Корни характеристического уравнения $\lambda^2 + 4\lambda + 13 = 0$: $\lambda = -2 \pm 3i$. Функция $\overline{y} = e^{-2x} (C_1 \cos 3x + C_2 \sin 3x)$ - общее решение соответствующего однородного уравнения. Частное решение неоднородного уравнения будем искать в виде

$$y_* = (Ax + B)e^{-2x},$$

$$y_*' = Ae^{-2x} - 2(Ax + B)e^{-2x} = (A - 2Ax - 2B)e^{-2x},$$

$$y_*'' = -2Ae^{-2x} - 2(A - 2Ax - 2B)e^{-2x} = (-4A + 4Ax + 4B)e^{-2x}.$$

Подставляя выражения для y_*, y_*', y_*'' в исходное уравнение, получим тождество по независимой переменной:

$$(-4A+4Ax+4B)e^{-2x}+4(A-2Ax-2B)e^{-2x}+13(Ax+B)e^{-2x}=9(x-1)e^{-2x},$$
откуда

$$9Ax + 9B = 9(x-1)$$
, T.e. $A = 1$, $B = -1$.

Тогда

$$9Ax + 9B = 9(x-1), \text{ r.e. } A = 1, B = -1.$$

$$y_* = (x-1)e^{-2x},$$

$$y = \overline{y} + y_* = e^{-2x}(C_1\cos 2x + C_2\sin 2x) + (x-1)e^{-2x} = e^{-2x}(C_1\cos 2x + C_2\sin 2x + x - 1).$$

3adahue 11. $a_0 = 35$, $a_1 = 3$, $a_2 = 4$, $a_3 = 3$, $b_0 = 5$, $b_1 = 7$, $b_2 = 2$, $b_3 = 12$, $t_1 = 1, 5.$

Решение. Так как D = 3p'' - 4p' - 3p + 35, S = 12p'' + 2p' + 7p + 5, то искомым дифференциальным уравнением будет уравнение

$$9p'' + 6p' + 10p = 30. (3.5)$$

Это линейное неоднородное ДУ второго порядка с постоянными коэффициентами. Корни его характеристического уравнения $\lambda_{1,2} = -\frac{1}{3} \pm i$. Поэтому $9\lambda + 6\lambda + 10 = 0$ равны общим решением соответствующего однородного уравнения будет функция

$$\overline{p} = e^{-t/3} \left(C_1 \cos t + C_2 \sin t \right).$$

Установившаяся цена $p^* = 3$, а общее решение уравнения (3.5)

$$p = \overline{p} + p^* = e^{-t/3} (C_1 \cos t + C_2 \sin t) + 3.$$
 (3.6)

2) Выделим из (3.6) решение, удовлетворяющее начальному условию $p(0) = p_0 = 0$, $p'(0) = p'_0 = 4$. Дифференцируя (3.6), получим

$$p' = -\frac{1}{3}e^{-t/3}\left(C_1\cos t + C_2\sin t\right) + e^{-t/3}\left(-C_1\sin t + C_2\cos t\right). \tag{3.7}$$

Тогда из равенств (3.6) и (3.7) по начальным условиям имеем:

$$\begin{cases} C_1 + 3 = 0, \\ -\frac{1}{3}C_1 + C_2 = 4, \end{cases} \Rightarrow \begin{bmatrix} C_1 = -3, \\ C_2 = 3. \end{cases}$$

Следовательно, частное решение примет вид

$$p = 3 + e^{-t/3} \left(-3\cos t + 3\sin t \right) = 3\left(1 + e^{-t/3} \left(\sin t - \cos t \right) \right). \tag{3.8}$$

Функция (3.8) выражает изменение равновесной цены на рынке при заданных начальных условиях.

Найдем решение уравнения (3.5) при смешанных начальных условиях $p(0)=p_0=0,\ \ D(0)=D_0=21.$ Дифференцируем равенство (3.7):

$$p'' = \frac{1}{9}e^{-t/3} \left(C_1 \cos t + C_2 \sin t \right) - \frac{1}{3}e^{-t/3} \left(-C_1 \sin t + C_2 \cos t \right) - \frac{1}{3} \cdot e^{-t/3} \left(-C_1 \sin t + C_2 \cos t \right) + e^{-t/3} \left(-C_1 \cos t - C_2 \sin t \right) =$$

$$= e^{-t/3} \left(\frac{1}{9} \left(C_1 \cos t + C_2 \sin t \right) - \frac{2}{3} \left(-C_1 \sin t + C_2 \cos t \right) - \left(C_1 \cos t + C_2 \sin t \right) \right).$$
(3.9)

При t=0 и $p_0=0$ из равенств (3.6), (3.7) и (3.9) получим соответственно:

$$C_1 = -3$$
, $p'_0 = -\frac{1}{3}C_1 + C_2 = 1 + C_2$, $p''_0 = \frac{1}{9}C_1 - \frac{2}{3}C_2 - C_1 = \frac{8}{3} - \frac{2}{3}C_2$. (3.10)

Подставляя C_1 , p_0' u p_0'' из (3.10) в уравнение спроса, будем иметь

$$3\left(\frac{8}{3} - \frac{2}{3}C_2\right) - 4(1 + C_2) - 3 \cdot 0 + 35 = 21, C_2 = 3.$$

Таким образом, при смешанных условиях $p_0 = 0$, $D_0 = 21$ частное решение примет вид (3.8).

Пусть требуется найти решение уравнения (3.5), удовлетворяющее смешанному условию $p(0)=p_0=0,\ S(0)=S_0=21.$ Как и в предыдущих случаях $C_1=-3,\$ а подставляя значения $p_0'\$ и p_0'' в уравнение предложения, найдем C_2 :

$$12\left(\frac{8}{3} - \frac{2}{3}C_2\right) + 2(1 + C_2) + 7 \cdot 0 + 5 = 21, \quad C_2 = 3.$$

Построим график функции (3.8), записав ее в виде

$$p = 3\left(1 + \sqrt{2}e^{-t/3}\sin\left(t - \frac{\pi}{4}\right)\right) = 3 + 3\sqrt{2}e^{-t/3}\sin\left(t - \frac{\pi}{4}\right)$$

Из графика видно, что приближение равновесной цены к установившейся цене $p^*=3$ носит колебательный характер с амплитудой колебаний равной $3\sqrt{2}\,e^{-t/3}$.

4) Для момента времени $t_1 = 1,5$ цена будет равна

$$p_1 = 3 + 3\sqrt{2} e^{-0.5} \sin\left(1.5 - \frac{\pi}{4}\right) \approx 4.7$$
 (усл. ед.).

Литература

- 1. Апатенок Р.Ф., Маркина А.М. и др. Элементы линейной алгебры и аналитической геометрии. Мн.: Выш. шк., 1986. 272с.
- 2. Булдык Г.М. Сборник задач и упражнений по высшей математике с примерами решений. Мн.: ООО «Юнипресс», 2002. 400с.
- 3. Ведина О.Н., Десницкая В.Н. и др. Математика. Математический анализ для экономистов. М.: «Филинъ», Рилант, 2000. 360с.
- 4. Высшая математика для экономистов. / Н.Ш. Кремер, Б.А. Пушко, И.М. Тришин, М.Н. Фридман; Под ред. Проф. Н.Ш. Кремера. М.: Банки и биржи, ЮНИТИ, 1997. 439с.
- 5. Высшая математика: Общий курс / А.И. Яблонский, А.В. Кузнецов и др.; Под общ. Ред. С.А. Самаля. Мн.: Выш. шк., 2000. 351с.
- 6. Жевняк Р.М., Карпук А.А. и др. Ч.1-Общий курс высшей математики. Орша: АРФА, 1996. 318c.
- 7. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике. М.: «Дело и Сервис», 2001. 368с.
- 8. Индивидуальные задания по высшей математике: Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной. / Под ред. А.П. Рябушко. Мн.: Выш. шк., 2000. 304с.
- 9. Колесников А.Н. Краткий курс математики для экономистов. М.: $ИH\Phi PA$ -M, 1997. 208c.
- 10. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании. М.: «Дело», 2001. 688с.
- 11. Красс М.С. Математика для экономических специальностей. М.: ИНФРА-М, 1998, 464с.
- 12. Малыхин В.И. Математика в экономике. М.: ИНФРА-М, 1999. 356c.
- 13.Общий курс высшей математики для экономистов. / Под ред. В.И. Ермакова. М.: ИНФРА-М, 2000. 656с.
- 14. Сборник задач по высшей математике для экономистов. / Под ред. В.И. Ермакова. – М.: ИНФРА-М, 2001. - 575c.
- 15.Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике. Ч-1. М.: Финансы и статистика, 1999. 224с.
- 16. Солодовников А.С., Бабайцев В.А., Браилов А.В, Шандра И.Г. Математика в экономике. Ч-2. М.: Финансы и статистика, 1999. 376с.
- 17. Справочник по математике для экономистов. / Под ред. В.И. Ермакова. М.: Выш. шк., 1997. 384с.
 - Сборник задач и упражнений по высшей математике: Общий курс. / А.В. Кузнецов, Д.С. Кузнецова и др. Мн.: Выш. шк., 1994. 284с.

Содержание

Вопросы учебной программы	3
Перечень основных задач	5
Задания к аттестационной работе по теме «ФНП»	12
Задание 1	12
Задание 2	12
Задание 3	13
Задание 4	14
Задание 5	15
Задание 6	16
Задание 7	17
Задание 8	18
Решение типового варианта аттестационной работы по теме «ФНП»	19
Задание 1	19
Задание 2	22
Задание 3	23
Задание 4	23
Задание 5	24
Задание 6	25
Задание 7	26
Задание 8	28
1. Интеграл в экономике	30
2. Применение ДУ	34
Задания к аттестационной работе по темам «НИ. ОИ. ДУ»	38
Задание 1	38
Задание 2	40
Задание 3	41
Задание 4	42
Задание 5	43
Задание 6	43
Задание 7	44
Задание 8	45
Задание 9	46
Задание 10	47
Задание 11	49
Решение типового варианта аттестационной работы по темам «НИ. ОИ. ДУ»	» 51
Задание 1	51
Задание 2	51
Задание 3	52
Задание 4	53
Задание 5	54
Задание 6	54
Задание 7	55
Задание 8	55
Задание 9	58
Задание 10	58
Задание 11	59
Литература	62

Учебное издание

Составители: Гладкий Иван Иванович Махнист Леонид Петрович Рубанов Владимир Степанович Сидоревич Михаил Павлович

Практикум по высшей математике

Часть Н

Функции нескольких переменных. Неопределенный и определенный интегралы. Дифференциальные уравнения.

Редактор Т.В. Строкач Ответственный за выпуск М.П. Сидоревич Технический редактор А.Д. Никитчик Компьютерный набор Д.Н. Мищирук

Подписано в печать 10.09.03г. Формат 60х84 1/16. Бумага писч. Усл.п.л. 3,7. Уч.изд.л. 4,0. Тираж 150 экз. Заказ № 763.

Отпечатано на ризографе УО «Брестский государственный технический университет». 224017, Брест, ул. Московская, 267.