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1 FUNCTIONS

1.1 Functions
Definition Let X and Y be sets. A function from X to Y is a rule or method for assigning
to each elementin X a unique elementin Y.

N e fix)

a« e fla)

Fig.1.1

A function may be given by a formula. In daily life a function is often indicated by a table.
A function is often denoted by the symbol f. The element'that the function assigns to the
element x is denoted f(x) (read f of x). In practice, though, almost everyone speaks inter-

changeably of the function f or the function f(x).

Example 1 Let f(x)= x? for each real number/x. Compute (a) f(3), (b) f(2) and (c)
f(-2).
Solution
(a) f(3)=3%=9.
(b) f(2)=2% =4.
(c) f(-2)=(-2)* =4.

Definition Let X and Y be sets and.letf be a function from X to Y. The set X is
called the domain of the functiont If'f(x) =y, y is called the value of f at x. The set of all

values of the function is called therange of the function.

When the function is given'by a formula, the domain is usually understood to consist of all
the numbers for which the formula‘is defined.

The value f(x) of.afunction f at x is also called the output; x is called the input or ar-
gument. If y =f(x), the symbol x is called the independent variable and the symbol y is
called the dependent variable.

If both the inputs and outputs of a function are numbers, we shall call the function numeri-
cal. In some more advanced courses such a function is also called a real function of a real var-
iable:

If both the domain and range of a function consist of real numbers, it is possible to draw a
picture that displays the behavior of the function.

Definition Graph of a numerical function. Let f be a numerical function. The graph of f
consists of those points (x, y) such that y=Ff (x).

For instance, the graph of the squaring function f(x) = x? consist of the points(x, y) such

that y = X, Itis the parabola shown later.

Not every curve is the graph of a function. For instance, the curve in Fig. 1.2 is not the

graph of a function. The reason is that a function assigns to a given input a single number as
3



the output. A line parallel to the y axis therefore meets the graph of a function in more than

one point. This observation provides a visual test for deciding whether a curve in a plane is the
graph of a function y = f(x). If some line parallel to the y axis meets the curve more than

once, then the curve is not the graph of a function. Otherwise it is the graph of a function. The
curve in Fig. 1.3 is the graph of a function.

Y YA

a,cj

(a,b)

Fig.1.3. Fig.1.2.

Example 2 Let f be the squaring functionf(x) = X% Compute (@) f(2+3) and (b)
f(2+h).

Solution (a) For any number x ,f(x) is the squareof that number. Thus

f(2+3)=(2+3)*> =5%=25
(b) Similarly,
f(2+h)=(2+h)* 24 +4h+h?.

Warning. A common error is to assume'that (2 + 3) is somehow related tof(2) + f(3).
For most functions there is no relationdetween the two numbers. In the case of the function
X%, f(2)+f(3)=22+3%=4+9=13, but, f(2+3)=25.

Example 3 Let f be the cubing function f(x)=x">.

f(2+0.1)-1(2).
Solution

f(2+0.1)=f(2)=f(2.1)-f(2) = (2.1 —2° =9.261-8 =1.2611.

Exercise Set 1
In Exercises 41010 graph the functions.

Evaluate the difference

1. f(x) = X 2. f(x)=-2x. 3. f(x)=3x°.
4. fK) 214 x% 5. f(x)=1-x°. 6. f(x)=2—3x°.
2
7. f(x)= x> — x. 8. f(x)= x> +2x +1. 9. f(x) = .
(X)= x"—x (X)= X" +2x+ (x) T
1
10. f(x) = .
(x) 1+ 2x°

In Exercises 11 to 20 describe the domain and range of each function.
1. f(x)=+/x.. 12. f(x)=/x+3. 13. F(x) =4 - x2 |
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2 2
14, f(x) =4+ x*. 15.f(x)=—. 16. f(x) = —.
X 1+ x
1 1 1
17. f(x)=—. 18. f(x)=—;. 19. f(x) =—.
X X X
2
20. f(x) = :
(X) =172

In each of Exercises 21 to 24 compute as decimals the outputs of the given function for the
given inputs.
21. f(x)=x+1:(a)-1; (b) 3; (c) 1.25; (d) 0.
2

22. f(x) = 5= (a)-3; (0) 3; (0) % (d) 99,
23. f(x) = x°: (a) 142; (b) 4-1.

24. f(x) %: (a) 5-3; (b) 4-6.

In Exercises 25 to 30 for the given functions evaluate and simplify the given expressions.
(Assume that no denominator is 0.)

25. f(x)=x°: f(a+1)—f(a).

26. f(x) :%: f(a+h)-f(a).
_ 1 f(d)-f(c)
27. f(x)-xz. 1
28. f(x) = 1 : f(x+h)—f(x).
2x +1 h
29. f(x):x+1:M.
X d-c
30, f(x) = 3 — . TXEN=T00)
X h

31. Graphf(x) = x(x = 1)(x +1).
(a) For which valuesof x is f(x)=07?

(b) Where does the graph cross the x axis?
(c) Where.does the graph cross the y axis?

1.2 Composite Functions
This‘section describes a way of building up functions by applying one function to the output

of another. For instance, the function y = (1+ x? )100 is built up by raising 1+ x? to the one-

hundredth power. Thatis, y = u'®, where u =1+ x2.

The theme common to these two examples is spelled out in the following definition.
Definition (Composition of functions) Let f and g be functions. Suppose that x is such

that g(x) is in the domain of f. Then the function that assigns to x the value f(g(x)) is
called the composition of f and g. Itis denoted fo g.
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Thusif g(x)=u and f(u)=y,then (fog)(x)=y.(fog isread as f circleg or as
f composed with g). In practical terms, the definition says: "To compute f o g, first apply g
and then apply f to the result".

A function can be the composition of more than two functions. For example, /(1+ x2)° is
the composition of three functions. First 1+ x2 is formed; then the fifth power; then a square
root. More formally, the assertion that y = +/(1+ x?)° is the same as saying that ¥ = \/ﬂ
u=v®and v =1+ x2.

Example 1 Write y = 2 asa composition of functions.

Solution

y =2", where u = x°.
Example 2 Letf(x)=2x +1 and g(x)= x*. Compute (f o g)(x).and (g of)(x). Are

they equal?

Solution

(fo@)(x)=f(g(x)) = F(x*) =14 2x.
(g =F)(x)=g(f(x)) = g(14 2x) = (1+2x).

Since the function (1+2x)? is not equal to 1+2x2,%.o g is not equal to g of. This
shows thatf o g is not necessarily equalto g o f .

Example 3 Let f(x) =—x. Compute (f o f)(X).

Solution

(f o F)(x) = F(f(X)) = F(—x) = —(-x) = x.

Thus (f o f)(x) = x.

Certain functions behave nicely when.composed with the function —x . That is, their values
at —x are closely related to their values at x . The following definitions make this precise.

Definition (Even function) A function f such that f(—x) = f(x) is called an even function
(See Figure 1.4).
Consider, for instance/ f(3)= x* . We have
f(—x) = (—x)* = x* =f(x).
Thus f(x) = x* isian.even function.
In fact, for any. evemvinteger n, f(x) = x" is an even function (hence the name).

Definition (Odd function) A function f such that f(—x)=—f(x) is called an odd func-
tion(See Figure 1.5).

The function f(x) = x° is odd since
f(—x) = (-x)® = —x* = —f(x).

For any odd integer n,f(x) = x" is an odd function.

Most functions are neither even nor odd. For instance, x® + x* is neither even nor odd
since (—x)° + x* =—x> + x*, which is neither x + x* nor —(x* + x*). However, many
functions used in calculus happen to be even or odd. The graph of such a function is symmet-
ric with respect to the y axis or with respect to the origin, as will now be shown.
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Consider an even function f. Assume that the point (a,b) is on the graph of f. That
means that f(a)=b. Sincef is even, f(—a)= b. Consequently, the point (—a,b) is also

on the graph of f. In other words, the graph of an even function is symmetric with respect to
the y axis.

X ol/ ‘D,(I.\u

.___
|
-
= e
=
-

Fig. 1.4 Fig. 1.5

Exercise Set 2
In each of Exercises 1 to 4 find the function y = f(x).definedsby the composition of the

given functions.

1.y=u® u=x2

2. y:1+u2,u=1+x.

3. y:\/U, u=1+2v,v=x>.

4.y:1,u:3+v,v:x2.
u

1.3 One-to-one Functions'and Their Inverse Functions
With some functions, "the output determines the input". For instance, the cubing function,

f(x)= x*, has this property. If we‘are told'that the output of this function is, say, 64, then we

know that the input must have been 4.*However, the squaring function, f(x) = x2, does not
have this property. If we are‘told that output of this function is, say, 25, then we do not know
what the input is. It could be 5.0r -5, since 52 = 25 and (-5)* = 25.

Definition A function,that assigns distinct outputs to distinct inputs is called a one-to-one
function.

For instance, X3..is ‘a"0ne-to-one function, but x? (with domain taken to be the entire axis)
is not one-to-one.

The graph of one-to-one numerical function has the property that every horizontal line
meetsuit.in‘more than one point. To see why, consider the line y = k in Fig. 1.6.

“V

y= fix)
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Fig. 1.6



If it meets the graph of a functionf in at least two distinct points, say (x,,k) and (x,,k),
then f(x,) = k and f(x,)= k. This means that is not a one-to-one function, since the out-
puts corresponding to the inputs x, and x, are equal, namely, k .

On the other hand, if each horizontal line meets the graph of a functionf in more than one
point, then f is one-to-one.

Definition If f(x,)<f(x,) whenever x, < x,, then f is an increasing function. If
f(x,) > f(x,) whenever x, < x,, then f is a decreasing function.
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Fig. 1.7

These are illustrated in Fig. 1.7. (These two types of functions are also called monotonic.)

The function f(x)= x? is not increasing if its'demain is taken to be the entire x axis.

However, it is an increasing function if it is considered only for x > 0.
Definition Let y =f(x) be a one-to-one function. The function g that assigns to each

output of f the corresponding unique input is.called the inverse of f. That is, if y = f(x),
then x =g(y).

For example, y = x* is a one-t=one function. Its inverse is found by solving for x in terms
of y; thatis, x =3[y .

Example 1 Determine the inverse of the "doubling” function f defined by f(x) = 2x.

Solution If y = 2x, theresis only one value of x for each value of y, and it is obtained by

solving the equation/y =2x for x: x = % Thus f is one-to-one and its inverse function g

is the "halving"function: If y is the input in the function g, then the output is %

For instance, £(3) =6 and g(6) = 3. Thus (3,6) is on the graph of f, and (6,3) is on
thegraph of g« Since it is customary to reserve the x axis for inputs, we should write the for-

mulafor g, the "halving" function, as g(x) = g :

Example 2 One graph is obtained from the other by reflecting it across the line y = x . This
can be done because, if (a,b) is on the graph of one function, then (b,a) is on the graph of
the other. If you fold the paper along the line y = x, the point (b,a) comes together with the
point (a,b), as you will note in Fig. 1.8. This relation between the graphs holds for any one-to-
one function and its inverse.
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Fig. 1.8

These examples are typical of the correspondence between a one-to-one function and its
inverse. Perhaps the word "reverse" might be more descriptive than "inverse". One final matter
of notation: we have used the letter g to denote the inverse of f. It'is common to use the

symbol £~" (read as "f inverse") to denote the inverse function. Wepreferred to delay its use
because its resemblance to the reciprocal notation might cause confusion. It should be clear
from the examples that =", does not mean to divide 1 by.f. The"symbol inv f would be un-

ambiguous. However, it is longer than the symbol £~ and the Weight of tradition is defied £~
Inverse functions come in pairs, each reversing the effect of the other. This table lists some
pairs of inversely related functions:

Function f Inverse Function g

Cubing, y = x°. Clibe toot; x = 3y .

Cube root, y = Ix. Cubing, x = y°.

Squaring, y = x2, x> 0. Square root, x = \/; y>0.
Square root, y = Jx, x>0 Squaring, x =y, y >0.

2 LIMITS AND CONTINUOUS FUNCTIONS
2.1 The Limit of a Function
Three examples willvintroduce the notion of the limit of a numerical function. After them, the
concept of a limit will be defined.

Example 1 Let f (x) = 2x2 +1. What happens to f (x) as x is chosen closer and closer
to 37
Solution Let us make a table of the values of f (x) for some choices of x near 3. When

xdis close 103, 2x% +1 is close to 2-32 +1=19. We say that “the limit of 2x% +1 asx
approaches 3 is 19" and write

lim (2x% +1) =19.
x—3
Example 1 presented no obstacle. The next example offers a slight challenge.

Example 2 Let f(x)= (x3 —1)/(x2 —1). Note that this function is not defined when

x =1, for when x is 1, both numerator and denominator are 0. But we have every right to
ask: How does f(x) behave when x is near 1 but is not 1 itself?



Solution First make a brief table of values of f(x), to four decimal places, for x near 1.
Choose some x larger than 1 and some x smaller than 1. For instance.

3
£(1.01) = 1.07" -1 _1.030301-1 _0.030301 _ 15075,

1.0 -1 1.0201-1  0.0201
(If you have a calculator handy, evaluate (x3 - 1) / (x2 - 1) at 1.001 and 0.999 &s well)

There are two influences acting on the fraction (x3 - 1) / (x2 - 1) when x isnear. 1. On

the one hand, the numerator x> — 1 approaches 0; thus there is an influenée pushing the frac-

tion toward 0. On the other hand, the denominator x% -1 also approaches 0; division by a
small number tends to make a fraction large. How do these two opposing influences balance
out?

The algebraic identities

x3 -1 :(x2 +x+1)(x—1)
x? -1 =(x+1)(x-1)
enable us to answer the question.
Rewrite the quotient (x3 — 1) / (x2 — 1) as follows: When x = 1, we have

x3—1_(X2+X+1)(X_1)_x2+x+1
x2-1 (x+Dx-1)  x+1 7

so the behavior of (x3 — 1) / (x2 — 1) for x near", but not equal to 1, is the same as the be-

havior of (x2 + X+ 1) / (x +1),for xunear1, but not equal to 1. Thus

31 X2 x+1
lim —— = lim ————.
x>1xc -1 x->1 x+1
Now, as x approaches,1,2%2 + x + 1 approaches 3 and x + 1 approaches 2. Thus
x*+x+1_3

im—— =—
x->1  xX+1 2

from which it.follows that
x*-1 3

lim ——=—
x>1xc -1 2

Notethat g =1.5, which is closely approximated by f(1.01) and f(0.99).

The arrow — will stand for “approaches”. According to Example 2, as
3
x*-1 3

> >
x“-1 2
This notation will be used in the next example and often later.

X -1,
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Example 3 Consider the function f defined by f(x) = X

X
The domain of this function consists of every number except 0. For instance,
3 3
f3)=====1
(3) 33
and
-3 -3
f(-3)=—==—=-1
(=3) 3 3

When x is positive, f(x)=1. When x is negative, f(x)=—1. This4s shown in Fig. 2.1.
The graph does not intersect the y axis, since f is not defined for x= 0. The hollow circles
at (0,1) and (0,—1) indicate that those points are not on the graph. Whatihappens to f(x) as
x—>07?

Fig. 21
Solution As x — O through positive numbers, f(x) — 1 since f(x) =1 for any positive
number. When x is near 0, it is not the case that#(x) is near one specific number.

Thus lim f(x)does not existy that is, lim = does not exist. However, ifa=0,
x—0 x—>O‘X‘

lim f (x) does exist, being 1 whena is positive and -1 when a is negative. Thus lim f (x)
X—a x—a

exists for all a other than 0.
Whether a functionf has/atlimit at a has nothing to do with f(a) itself. In fact, a might not

even be in the domain“of,f «See, for instance, Examples 2 and 3. In Example 1, a = 3 hap-
pened to be in the domain of £, but that fact did not influence the reasoning. It is only the be-
havior of f(x) for x.near a that concerns us.

These three examples provide a background for describing the limit concept which will be
used throughout the text.

Consider@ functionf and a number a which may or may not be in the domain of f. In or-
der to discuss the behavior of f(x) for x near a, we must know that domain of f contains

numbers arbitrarily close to a. Note how this assumption is built into each of the following def-
initions.

Definition( Limit of f(x) at a) Let f be a function and a some fixed number. Assume that
domain of f contains open intervals (c,a) and (a,b), as shown in Fig. 2.2. If there is a num-

ber L such that as x approachesa, either from the right or from the left, f (x) approach-

esL, thenL is called the limit of f(x) as x approaches a. This is written
11



lim f(x)

X—a

L

or
f(x)>L as x—>a.

R = e w— -l
o —— — — 8,

0 a X 0

Fig. 2.2

Definition( Right-hand limit of f (x) at a) Let f be a function and assome fixed number.
Assume that the domain of f contains as open interval (a,b). If,@s x approaches a from
the right, f(x) approaches a specific number L, then L is'called therright-hand of f(x) as

X approaches a.
This is written

lim, £(x) =L
X—a

or
as x > a, f(x) L.
The assertion that
lim,, f (x) =L
X—a

is read "the limit of f of x as x approaches‘a".(See Fig.2.3)
The left-hand limit is defined similarly. The only differences are that the domain of f must

contain an open interval of the form (c,a) and f (x) is examined as x approaches a from

the left.(See Fig.2.4)
The notations for the left-hand limit are

lim_f(x)=L
X—a
o asx—a, f(x)->L
-." 3 VA
Jix) - L \ ’ flx) T~
0 FE=ar) X 0 S e & >
Fig. 2.3 Fig 2.4

. X . X
As Example 3 showed |lim — =1 and lim — =-
x—0" ‘X‘ x—0~ ‘X‘

We could also write, for instance.
12
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X

As x > 0",
]

— 1. Note that if both the right-hand and the left-hand limits of f exist at

a and are equal, then limf (x) exists. But if the right-hand limits are not equal, then
X—a

. . . . X .
limf (x) does not exist. For instance, lim — does not exist.
X—a x—0 ‘x‘

By contrast, the tamest functions are the “constant” functions. If, say, a function L.is con-
stant, then f (x) =L forall x. We have
lim f(x)=L.
X—a
It may seem strange to say that “the limit of L is L,” but in practice this offers no difficulty.

For instance,

1+ X2
lim 5 = lim1=1
x—=>51+ x x—5
and Iim1* =Ilim1=1.
x—3 x—3
1
0 x
Fig. 2.5

Exercise Set 3
In Exercises 1 to 14 find the limits, all'of which exist. Use intuition and, if needed, algebra.

2 2
1. lim (x +7 2. lim{(4x -2 i X~ —4 4 jim X =9
x—>5( ) x—>1( ) 3. ,I(ILPQ X—2 ' xILnS X—-3
4 6
5. lim X1 6 im X1 7. lim — 8. lim SX+°
x—1x3 —1 x—>1x3 -1 x=>3X+2 x—>5 4x
9. lim 25 10. lim 7° 1. lim Jx 12. lim J4x — 4
X—3 x—3 x—07" x—>1
x -1 .o x—1
13 Aima2n 14. lim
ot X — 1 ot [x 1

In Exercises 15 to 22 decide whether the limits exist and, if they do, evaluate them.

2 2
1+ h)* -1 1+ h)* -1
15, lim UHA)" 1 16, fim UEA) 1
h—1 h—0
11 11
17. lim X—2 18. lim X—2
x>2 X —2 x>3 X —2

13



g, lim YX+4-2 20 lim YX+t4+2
x—0 X x—0 X
(Hint: Rationalize the numerator.)

21 lim (Vx-4+2) 22. lim 64*

x—4* x—0

2.2 Computations of Limits
Certain frequently used properties of limits should be put on the record.
Theorem Let f and g be two functions and assume that
lim f(x) and lim g(x)

X—a X—a

both exist. Then
1. lim (f(x)+g(x)) = lim f(x) + lim g(x).

x—a x—a x—a
2. lim ((x) = g(x)) = lim f (x) - lim g (¥).
3. lim kf(x) =k lim f(x) for any constantk .
X—a X—a
4. )I(linaf(x)g( )_)I(linaf(x))l(linag(x).
lim f( x
5. fim 1) _ a0 ) i g(x)#0.
X—a (x) lim g(x) xSa
X—a
6. 1im 7(x)7 = (1im £ tim £(x) > 0
(7 = (Im LR () >0
Example 1 Suppose that )I(lgw?’f( )=4 and )I(lgwsg( ) =5; discuss )I(lin?’f(x)/g(x).
Solution By property 5, lim f(x)/ g(x) exists and Iimmzi
P x—3 Q(X) 5

No further information about f and g is needed to determine the limit of f(x)/g(x) as

x — 3.
Example 2 Suppose'that [im f =0 and i = 0; discuss lim f / )
xamp upp lim (x) X|Ln3g(x) iscuss  lim (x)/g(x)
Solution In contrast to Example 1, in this case property 5 gives no information, since
I|rn3 g( ) 0./It is necessary to have more information aboutf and g.
X5

Forinstance, if
f(x)=x*-9 and g(x)=x-3,

then
limf(x)=0 and limg(x)=0

x—3 x—3

and the limit of the quotient is

14



2 _ 3)(x-3
im X9 i CF8) i i3y -6
x-3 X—3 x—3 Xx-3 x—3
Loosely put, “when x is near 3, x2 — 9 is about 6 times as large as x — 3."

A different choice of f and g could produce a different limit for the quotient £(x)/ g (x).
To be specific, let

f(x):(x—3)2 and g(x)=x-3.
Then )I(lgwsf(x):o and lmg(x):o.

And the limit of the quotient is
2
-3
im =3 jim (x-3) =0,
x->3 Xx—-3 x—3

In this case we could say “(x—3)2 approaches 0 much fastersthan does x — 3, when

x—>3/

In short, the information that lim f(x)=0 and lim g(x)=0 is not enough to tell us
X—3 X—>3

how f(x)/g(x) behaves as x — 3.
Sometimes it is useful to know how f (x) behaves when x is a very large positive number

(or a negative number of large absolute valug)y*Example 3 serves as an illustration and intro-
duces a variation on the theme of limits.
Example 3 Determine how f (x) = 1/ x“behaves for (a) large positive inputs and (b) nega-

tive inputs of large absolute value.

Solution First make a table of values,as shown in the margin. As x gets arbitrarily Iarge,1
X

approaches 0.
(a) This is similar to (a). For instance,

f(~1000) = —0.001.

As negative numbers™x are chosen of arbitrarily large absolute value, 1 approaches 0.
X

(See Fig.2.6)

Fig.2.6
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Rather than writing “as x gets arbitrarily large through positive values, f (x) approaches

the number L " it is customary to use the shorthand
lim f(x)=L.

X—>0

This is read: "as x approaches infinity, f(x) approaches L,” or ‘the limit of (x) as x
approaches infinity is L .” For instance,

lim 1 =0.
X—0 X
More generally, for any fixed positive exponent a,
.1
lim —=0.
X—0 X

Similarly, the assertion that “as negative numbers x are chosen of arbitrarily large absolute
value, f(x) approaches the number L " is abbreviated to
lim f(x)=L.

X—>—0©

Forinstance, lim 1 =0.
X—>—wo X
The six properties of limits stated at the beginning of'the section hold when “x — a" is re-
placed by "x — " orby " x — —o0."

It could happen that as x — oo, a function,f(X) becomes and remains arbitrarily large

and positive. For instance, as x — oo, x* gets arbitrarily large. The shorthand for this is

Im £ ( X )= oo.
X[)noo (X) *
For instance,
lim x° = .
X—>0
It is important, when reading.the shorthand
lim f(X) = o0,

X—>0

to keep in mind that *oo"is not a number. The limit does not exist.

Properties 1 to,6"cannot, in general, be applied in such cases. Other notations, such as
lim f(x)=-6 orlim f(x)= oo are defined similarly. For instance,

X—>0 X—>0

lim x° = —0.
X—>—00

lt_can be shown that if, as x—>oof(x)—>o and g(x)—>L>0, then
lim f(x)g (x) = 0. This fact is used in the next example.

X—>0

Example 4 Discuss the behavior of 2x° — 11x? +12x when x is large.

Solution First consider x positive and large. The three terms, 2x3,-11x2, and 12x, all
become of large absolute value. To see how the function 2x> —11x? +12x behaves for

large positive x , factor out X3
16



2x3—11x2+12x=x3£2—ﬂ+%)
X X

Now, since ﬂ and 2 — 0 as X > x,

X x2
im(2-1,12) 2
X—00 X X

Moreover, as X — o0, X° —> oo, Thus

lim x3(2—ﬂ+%j = o,
X—>00 X X

Hence lim (2x —11X2+12X)=oo.
X—>©0

Now consider x negative and of large absolute value. The argumentis similar. Use Eq. (1),
3

and notice that lim,_,__ x~ = —oo and
lim (2—ﬂ+@] —2.
X—>—00 X X
It follows that ~ lim (2x3 ~11x2 + 12x) = o0,

X—>—00

Example 5 Determine how f(x) = (x3 +6x% +10x + 2) / (2x3 + X%+ 5) behaves for

arbitrarily large positive number x .

Solution As x gets large, the numerator. x° + 6x% +10x + 2 grows large, influencing
the quotient to become large. On the other-hand;,.the denominator also grows large, influenc-
ing the quotient to become small. An‘algebraic device will help reveal what happens to the
quotient. We have

3 2 X3(1+6+1c2)+23j 1+6+1C2)+23
f(x):x +6x +10x+2: X X x°) _ X X2 X% 20
2x° + x> +5 1 5 1 5 '
x3(2++3) 2+—+—
X X X X

Now we can see what happens to f(x) when x is large.

As x increases, 6% x — 0,10/ x> 50,2/ x> 0,1/ x >0 and 5/ x> — 0.
Thus
f(x)—> 1+0+0+0 :1.
2+0+0 2
So as x gets arbitrarily large through positive values, the quotient

(x3 +6x% +10x + 2) / (2x3 + X% + 5) approaches % In short,

X2 +6x2+10x+2 1
lim 3 5 =—.
x—>o  2X° +x°+5 2

The technique used in Example 5 applies to any function that can be written as the quotient
of two polynomials. Such a function is called a rational function.

17



Let f(x) be a polynomial and let ax™ be its term of highest degree. Let g (x) be another

polynomial and let bx™ be its term of highest degree.
Then
f n f n
im L) i @ g im LX) 2
x>0 (g (X) x—x px™M X—-n g (X) x——o hxM
(The proofs of these facts are similar to the argument used in Example 5.) In shart, when
working with the limit of a quotient of two polynomials as x — oo or as x —» —oo;disregard
all terms except the one of highest degree in each of the polynomials. The next example illus-
trates this technique.
Example 6 Examine the following limits:

(@ lim 3x* +5x2 (b) lim X3 —16x
x—x —x* +10x +5 x>0 5x% + x> —5x
4
(c) lim XX

x>0 B x> — X2
Solution By the preceding observations,

: 3x* +5x2 . x* o
a) | = lim —=_lim (=3) =-3.
()xinoo_x4+1ox+5 xinoo_x"' XI—>oo( )
3 3
(b) lim —X 10X _ iy X L L _ o,
x>0 5X" + x° —=5x  x>abx W\ x>0 dX
© fim 2t im X im X~
X——0 BX° — X2 e 6X° x>0 B a

Example 7 Examine lim (\/ x24 x = x).

X—>0
Solution As x — o, both \X2+ x and x approach oo. It is not immediately clear how
their difference \ x2 + x/==x behaves. It is necessary to use a little algebra and rationalize

the expression:
— R VX2 +x—x
Iim( X2+X_X): Iim( X2+XX)E“X2+x+X;

X—>0 X—>0

Q4 ELE - X = lim X -
x>0 X2 4 x4 x X—’w\/x2(1+1/x)+x X"°°X(\/1+1/X+1)
1 1

= |lim —.

xom A1/ X +1 2

Example 8 How does f(x) =1/ x behave when x is near 0?

Solution The reciprocal of a small number x has a large absolute value.
For instance, when x =0.01,1/ x =100; when x =-0.01,1/ =-100. Thus, as x ap-

18



proaches 0 from the right, l which is positive, becomes arbitrarily large. The notation for this
X

o1
is lim — = oo.
x—=0+ X

As x approaches 0 from the left, % which is negative, has arbitrarily large absolute val-

ues. The notation for this is lim 1 = —o0,

x—0 X

The many different types of limits all have the same flavor. Rather than spell'each out in de-
tail, we list some typical cases.

Notation In Words Concept Example
lim f(x)=1. | As x approaches a, | f(x) is defined«in | lim (2x+1)=7
e f(x) approaches L. | gome opefi _inter- .
vals(c,a) and(a,b)
and, asx_approaches
a from'the right or from
the  lefty,f(x) ap-
proaches,L .
lim f(x)=L. As X approaches isf(x) s defined for all | . 1 _ 4
o . e =
- (positive) infinity, x beyond some num- | X-= X
f(x) approaches™s | pay and, as x gets
large through positive
values, f(x) ap-
proaches L.
lim f(x)=L |As X \approaches | f(x) is defined for all | . X+1_,
P : e SR
- negptiye infinity, x to the left of some | Xx>—= X
f(x) approachesL | yumber and, as the
negative number Xx
takes on large absolute
values, f(x) ap-
proachesL .
lim f(X) = As x approaches in- | f(x) is defined for all | lim x® = oo
X—>0 X—>0

finity, f(x) ap-

proaches positive in-
finity.

X beyond some num-
ber and, asx gets
large through positive

values, f(x) becomes

and remains arbitrarily
large and positive.
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lim f(x)=c0 |Asx approaches a |f(x) is defined in| 1 _
e from the right, f(x) | some open interval | x>0" X
approaches (positive) | (a,b), and, asx ap-
infinity. proaches a from the
right, f(x) becomes
and remains arbitrarily
large and positive.
lim f(x)=-c0 |As X approaches| f(x) is defined in| & 1 _ |
x—a" afrom the right, some open interval | 1 15X
f(x)  approaches (a,b), and, asx ap-
negative infinity. proaches a from the
right, f(x) becomes
negative and” |f (x|
becomes and remains
arbitrarily large.
limf(x)=co | As x approaches a, | f(x)" is| defined for| . 1 _
e f(x)  approaches | some open intervals | x—0 x°
(positive) infinity. (e,a) and (a,b), and,
as. Xapproaches a
from either side, f(x)
becomes and remains
arbitrarily  large and
positive.

Exercise Set 4
In Exercises 1 to 26 examine.the given limits and compute those which exist.

1. lim (x5 —100x4)

2. lim (—4x5 +35x2)

X—>0 X0
3. lim (6x5+21x3) 4. lim (19x6+5x—300)
X—>—© X—>—0
5. lim (-x° 6. lim (—x*
lim () lim (-x*)
. 6X° & x _100x° +22
7. lim 10 8. lim —
x>0 2X " +5x+8 xono X +21
A x° +1066x% —1492x . 6x°—x?+5
9. lim 10. lim 3
X—>0 2x —1984 x—0 3x° 100X + 1
3 3
11, lim X+ 2. lim X *2X
x>0 X™ + 2 x>0 X'+ X+7
13, lim - 14. lim 14
x—0t X x—0" X
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15. lim A 16. lim A

.3 3
x—0" X x—>0 X
17. lim (\/x2+100—x) 18, Iim1(\/x2+5—\/x2+3)
X—>00 X—>

19. lim (\/x2 +100x — x) 20. lim (sz 100x —Jx% + 50x)

X—>0 X—>0
\/9x2 +Xx+3

C AAX? £ 2x +1
lim

21. 22. lim
X—>00 3x X—>—00 X
 AAx®+x ) \/x2+3x+1
23. Im ———— 24. lim
x>0 ,/g9x? _3x X—=0 \/1 6x° + X+2
25. lim —— 2. lim —
x>t X —1 x—>—1 (x 4+ 1)

2.3 Asymptotes And Their Use In Graphing
If lim f (x) =L, where L is a real number, the graph of y'=f (x) gets arbitrarily close

X—>00
to the horizontal line y =L as x increases. The line“y = L is called a horizontal asymptote
of the graph of f.An asymptote is defined similarly if. f(x) — L as x — —o.

If lim f(x)=o0 orif lim f(x)=oo, the'graph of y =f(x) resembles the vertical line
x—at x—a~

x = a for x near a. The line x = a is/called\a vertical asymptote of the graph of f. A similar
definition holds if lim . f(x) =% oriflim _f(x)=—o.
X—a X—a

Fig. 2.7 shows some of these asymptotes.

¥4 ¥

a X

(a) lim fix)=c (b) lim f(x)=w (©) lim f(x)=—m

I=a r=a* x—d

Fig. 2.7
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Horizontal and Vertical Asymptotes in Graphing
Some examples of graphing rational functions will show the usefulness of asymptotes.

Example 1. Using asymptotes, graph f(x) =1/ x*.
Solution. When x = 0, the function is undefined. However, when x is near 0, 1/ x? is a
large positive number, since x? is a small positive number, Thus

.1
I|m —2200.
x—0 x

This means that the graph of f(x)=1/ x? approaches the upper part of.the vertical as-

ymptote x = 0 both from the right and from the left.
Since
lim i:O and lim i:0.

X—>0 X2 X—>—00 X2

The x axis is a horizontal asymptote. All this informationds incorporated in Fig. 2.8.

),
\

Fig. 2.8
Example 2. Graph f(x)= (x2 +1) / X.

Solution. After dividing x«into X2+ 1, we can write

1
f = —.
(x) x+X

When || is lafge, F(x) differs from x by the small quantity 1 8o when |x] is large, the
X

graph of f .isw«close.to the line y = x. When x is negative, f(x) = X +1/ x is smaller than

X 4Since A issnegative. So for x negative the graph of f lies below the line y = x. Similar
X

reasoning shows that for x positive the graph of f lies above the line y = x.

Next search for any vertical asymptotes. Near x = 0 the function becomes arbitrarily large.
In fact.

: 1 : 1
lim | x+—|=oand lim | x+— |=—o0.
x—0" X x—0 X
The y axis is a vertical asymptote. The graph in Fig. 2.9 incorporates the information about

the tilted and vertical asymptotes.
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Fig. 2.9

Exercise Set 5
In Exercises 1 to 14 use asymptotes to sketch the graph of the functions.

1.f(x):xi12 2.f(x):X1?
3.f(x):(x+1)2 4.f(x)=(x+1)3

° y:x21—x 6'y:x‘°’1—x

9. y =% 10,y = (Xx_zz)x()—(;)Z)
11.y=X3+2);22+X+4 12.y=);2+_j
13.y=x23+1 14.;/:)(;(?11

2.4 Equivalent Infinitesimal Functions. The Table of Equivalent Infinitesimal Functions
The limits evaluatediin‘Sect. 2.1 and 2.2 were found by algebraic means, such as factoring,
rationalizing, or.canceling. But some of the most important limits in calculus cannot be found
so easily. To'reinforce the concept of a limit and also to prepare for the calculus of trigonomet-
ric functions,/we shall determine
| sind
6—0
Since'both the numerator, sin@, and the denominator, 8, approaches 0, this is a challeng-
ing limit.
Theorem 1. Let sin @ denote the sine of an angle of @ radians. Then
. Sin@
lim ——=1.
00 @

The Squeeze Principle If g(x) < f(x) < h(x) and
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lim g(x)=L=lim h(x),

X—a X—a
then
lim f(x)=L.
im0
Example 1. Find lim (sin5x)/5x.
X—>0
Solution. Observe thatas x >0, 5x — 0. Let & =5x. Thus
. sin5x sind
lim = lim =1.
x—»0 5x 650 6
Example2. Find Iimo(sin 5x)/2x.
X—>
Solution. A little algebra permits one to exploit the result found in Example 1:
. sindx . sinbx 5x . sinbx 5 SR
lim = lim -— = lim — =1 ===
x—0 2X x—»0 5x 2xX x-0 bx 2 2, 2

From a practical point of view this section showed that if angles.are measured in radians,
then the sine of a small angle is “roughly” the angle itself: thatis
sinx = X.
This is another way of saying that x is small, the‘quotient (sin x) / x is close to 1. In en-

gineering and physics sinx is often replaced by, x“when x is small. Moreover, tgx may

also be replaced by x for small x . This being a reasonable estimate is justified by the fact that
sin x

. tanx . . Ssinx\( .. X
lim =limEOSX — | 9im === || lim =1.1=1.
x>0 X X— X xX—0 X x—=>0COS X

So tgx =~ x for small x. Similarly, f{gx ~ sin x for small x .

Exercise Set 6

. Sinx . Sin2x . Sin3x
1. lim —— 2. lim 3. lim
x—0 2X x>0 X x—0 Bx
. 2 .12
4. tim 2% 5. lim 31" ¢ 6. lim SN
x—0Sin3x -0 @ h—x0 R
2 8. lim @cot g . 1-cosd
7. lim fan" 6 9;0 Q. Ilm—2
00 @ -0 0
- _ . 2
10. lim ”%9 11. lim Hﬁ 12 lim 3N X
6—>0" 0 9—0" o x—0 X2
-0 Sind 6—0 Sin@

Example 3. Find lim ?/ﬂ
x—0 X

Solution. As x — O,ﬂ — 1. Moreover, the cube root function is continuous. Therefore,
X
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lim i/—s'”x :i/lim SIMX _31-1.

x—0 X x—>0 X
Example 3 generalizes as follows.

Let f be a continuous function. If g is some other function for which lim g(x) exists and
X—a

is in the domain of f and g(x) is in the domain of f for x near a, then

jim £ (g (x)) = f()l(iinag(x)).

X—a
In Example 4, f(x) = ¥x and g(x)=(sinx)/ x.
Definition. A function 7(x) is called infinitesimal function in the point x = x,, if lim f(x)=0

These functions are denoted by small Greek letters (a(x), B(x), 7(x)9)
Definition. Infinitesimal functions «(x) and g(x) are called equivalent infinitesimal functions

in the point x =, , if lim o) _
=% [(x)
Equivalent infinitesimal functions in the point x = x,are denotedias a(x) = f(x)
Theorem. Let a(x) = a,(x), B(x) = B,(x) . If 11330 % =L then }i_)rg ;—8 =L

The table of Equivalent infinitesimal functions is often used in solving problems.
sin a(x) ~e(x)

tg a(x)~a(x)
aresin (%)= a(x)

arctg a(x) = a(x)
" _ 1~ a(x)
In(1+ a(x)) = a(x)

N+a(x)-1= %a(x)

In(l=42) oy 1+7x° -1

Tx

§in” 3x

Example 4. Find a)lim —— b) lim
-0 gresin” Sx =0 e

Solution. As x— 0, then sin” 3x — 0,arcsin” 5x — 0,In(1-4x) - 0,e’* =1 -0
V1+7x =150, arctg”2x — 0

>0 qretg’2x

a)
)
Jim 2> ij = (gj = [sin2 3x =~ (3x)’ =9x°,arcsin’ 5x = (5x)* = 25x2} =
x>0 aresin” Sx -\ 0

9x* 9
1m =—
0055 25

limM = (Oj = [ln(l —4x) =In(1+(—4x)) = —4x,e”* —1~ 7x] =

=0 @™ ] 0
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/ 3 3
limLﬁ1 = (gj = [ 1+7x° =12 7x",arctg’2x ~ (2x)* = 4x2J =lim 7x2 =
=0 gretg”2x 0 x>0 4x
= Zlirnx =0
4 x—0
Exercise Set 7
: 23 2 .
1 lim ™ 2x 2 tim sm2 3x 3 [jy BrCSInX 4 tim ln(i+2X)
-0 arcsin® 3x? 0 g’y =0 qretg5x 00
3 . 12’3 . Nl+x-1 _gxt e
5. limM 6. lim-& 2% 7. lim x2 8; lim%
=0 ' —] =0 o7 ] =0 qretg x 0 fgedx
2 3/ 2 / 3 ) 7
9. lim—>* 10, lim YA 2L g T ST Y2 i
x—0 arctg 2x x—0 tgzx x>0 ln(l_6x3) x>0 al”ctg5x
2.5 Continuity

Definition (Continuity from the right at a number a ). Assumesthat f(x) is defined at a and
in some open interval (a,b). Then the function f is continuousat a from the right if
lim f(x)=F(a).
x—a’
This means that
1. lim f(x) exists and
x—at
2. that limitis f(a) .
Definition (Continuity from the left at a number a ). Assume that f(x) is defined at a and
in some open interval (c,a). Thenthe funetion f is continuous at a from the left if
lim f(x)=f(a).
X—a
This means that
1. lim f(x) exists and
X—a
2. that limitis“f(a)-
The next definition applies if the function is defined in some open interval that includes the

number a/ It essentially combines the first two definitions.
Definition (Continuity at a number a). Assume that f(x) is defined in some open interval

(b,c) that contains the number a. Then the function f is continuous at a if
lim f(x)=f(a).

X—a

This means that

1. lim f(x) exists and
X—a

2. that limitisf(a).
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This third definition amounts to asking that the function can be continuous both from the
right and from the left at a.

Example 1 Let f(x) = x? for all x. Show that f is continuous ata = 3.
Solution. As x — 3,f(x) = x> approaches 9; that is,

lim x* =9.
X—3
Next, compute £(3), which is 32 or 9. Since Iim3f(x) exists and equals f(3), f.is con-
X—

tinuous at 3. (In fact, f is continuous at each real number.)
Example 2 Let f(x) = Jx for x > 0. Show that f is continuous fromthe rightata=0.

Solution. As the graph of f(x)= Jx i Fig.2.10 reminds us, the domain of f does not

contain an open interval around 0. It is meaningful to speak of “continuitysfrom the right" at 0
but not of “continuity from the left."

}'A

(L1

0 X

Fig.2.10

Since v/x approaches 0 as x approaches O lim f (x)=0. Is this limit the same as
x—0"

f(0)? Since f(0) = JO =0 the answer is “yes." In short, f is continuous from the right at 0.

Definition (Continuous function)sLet. f be a function whose domain is the x axis or is
made up of open intervals. Then  ‘is.a continuous function if it is continuous at each number
a in its domain.

Thus x? is a continuous.function. So is 1 whose domain consists of the intervals (—oo,0)
X

and (0,+o0). Although.this function explodes at 0, this does not prevent it from being a contin-
uous function. The key to being continuous is that the function is continuous at each number in

its domain. Thesnumber 0 is not in the domain of 1
X

Only a glight modification of the definition is necessary to cover functions whose domains
involve,closed intervals. We will say that a function whose domain is the closed interval [a, b]

is«continuous if it is continuous at each point in the open interval (a,b), continuous from the
right at,a, and continuous from the left at b. Thus V1= x? is continuous on the inter-
val[-1,1].

In a similar spirit, we say that a function with domain [a,+o0) is continuous if it is continu-

ous at each point in(a,+o0) and continuous from the right at a. Thus Jx s a continuous
function. A similar definition covers functions whose domains are of the form (-0, b].
Definition (Sum, difference, product, and quotient of functions). Let f and g be two func-
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tions. The functions f +g, f—g, f-g and r are defined as follows.

(fF+9)(x)="f(x)+g(x) for x in the domains of both f and g.
(f —g)(x)=f(x)—g(x) for x in the domains of both f and g.
(f-g)(x)=f(x)-g(x) for x inthe domain of both f and g.

[gj( )= (( )) for x in the domains of both f and g, g(x) =0.

If f and g are defined at least in an open interval that includes the number a and if f and
g are continuous at a, thensoare f +g,f —g and f - g. Moreover,if g(a) # 0 é is also

continuous at a.
A function obtained by the composition of continuous functions isalsoicontinuous. That is, if
the function g is continuous at a and the function f is continuousat g(a), then the compo-

sition, f o g is continuous at a. For instance, the function Y14 x2)is continuous since both
the polynomial1+ x? and the cube root function are continuous:

THEOREM The following types of functions are continuous at every number in their do-
mains: Polynomials, rational functions ,root functions, trigonometric functions, inverse trigono-
metric functions, exponential functions, logarithmic funetions.

If fis defined near a (in other words, fis defined on an open interval containing a, except
perhaps at a), we say that it is discontinuous at a (or has a discontinuity at a) iff is not
continuous at a.

Physical phenomena are usually continuous. For instance, the displacement or velocity of a
vehicle varies continuously with time, as‘does a person’s height. But discontinuities do occur in
such situations as electric currents.

Geometrically, you can think'ofia function that is continuous at every number in an interval
as a function whose graph has,no break in it. The graph can be drawn without removing your
pen from the paper.

Example 3 Where are each.of the following functions discontinuous?

1

2
(@) F(x) = X X2 ) Fx) =12 70
X5 2 lx—O
X°ex—2 2
Qfx)=1"%_2 7 (d) £(x) =[|x]]
1,x=2
Solution

(a) Notice that f(2) is not defined, so f is discontinuous at 2. Later we'll see why f is con-
tinuous at all other numbers.

(b) Here f(0) =1 is defined but lim f(x) = lim 12 does not exist. (See Example 1 in
x—0 x—0 x

Section 2.3.) So f is discontinuous at 0.
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(c) Here f(2) =1 is defined and

2 — — —
jim £(x) = lim X=X =2 _ jim X=X i3
X—2 X—2 X—2 X—2 (X—2) X—2

exists. But
lim f(x) = f(2)

X—2

so f is not continuous at 2.
(d) The greatest integer functionf(x) = UXU has discontinuities at all‘of the integers be-

cause lim [ |x]|]does not exist if n is an integer.
X—>n

Figure 2.11 shows the graphs of the functions in Example 3. In each case the graph can't
be drawn without lifting the pen from the paper because a hole or break or jump occurs in the
graph. The kind of discontinuity illustrated in parts (a) and (c)«s callediremovable because we
could remove the discontinuity by redefiningf at just the single number 2.

[The functiong(x) = x +1 is continuous.] The discontinuity.in part (b) is called an infinite
discontinuity. The discontinuities in part (d) are called jump discontinuities because the
function “‘jumps” from one value to another.

Fig. 2.11

2.6 The Maximum-Value Theorem and The Intermediate-Value Theorem

Continuous functions have two properties of particular importance in calculus: the “maxi-
mum-value" property-and.the*intermediate-value" property. Both are quite plausible, and give
a glance at the graph of a “typical" continuous functions. No proofs will be offered; they de-
pend on the precisedefinitions of limits given in Secs. 2.7 and 2.8 and are part of an advanced
calculus course.

The first theorem asserts that a function is continuous throughout the closed interval [a, b]

at which\f takes on a maximum value. That is, for some number ¢ in [a, b]
f(c)>f(x)

forall x"in [a,b].

Similarly, f takes on a minimum value somewhere in the interval.

To persuade yourself that this theorem is plausible, imagine sketching the graph of a con-
tinuous function. As your pencil moves along the graph from some point on the graph to some
other point on the graph, it passes through the highest point and also through the lowest point.
(See Fig. 2.12.)
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Fig. 2.12

The maximum-value theorem guarantees that a maximum value exists, but.it. does not tell
how to find it. The problem of finding the maximum value (and minimum value) is discussed in
Chap. 4.

Example 1 Let f(x) =cos x and [a,b] =[0,3x]. Find all numbersqn [0,37}.at which f
takes on a maximum value. Also find all numbers in [0,37] at which f takes on a minimum
value.

Solution. Fig. 2.13 is a graph of cos x forx in [0,37]. Inspection ofthe graph shows that
the maximum value of cosx for 0 < x <3z is 1, and‘it is_attained when x =0 and
when x = 27 . The minimum value is -1, which is attained when‘x = 7z and when x = 3.

The maximum and minimum values of a function are frequently called its extreme values or
extremum. Thus the extreme values cos x of for x_in [0,37] are 1 and -1.

0 ,—,'\7 A 2w 5w ; X
TS o &

Fig. 2.13

To apply the maximum-value theorem, we must know that the function is continuous and
the interval is closed (that is, contains its endpoints). The next two examples show that if either
of these assumptions is deleted, theiconclusion no longer needs hold. In Examples 2 and 3 the
interval is not closed.

X2 (x +1)°
(x—2)*(x-4)"
that f does not have asmaximum value for x in (a,b).

Solution. Fer Xx* near 4, f(x) gets arbitrarily large since the denominator
(x —2)?(Xx —4)* s close to 0. The graph of f for x in (2,4), is shown in Fig. 2.14. This
funetion is continuous throughout the open interval (2,4 ), but there is no number ¢ in (2,4)
atwhich f has a maximum value. However, f has a minimum value, f(3) =576 .

Example 2 Let f(x)= and let (a,b) be the open interval (2,4). Show

N — =
T

Fig. 2.14
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Example 3 Let (a,b) be the open interval (0,1). Show that f(x) = 1 does not have a
X

maximum value in (a,b).

Solution. Fig. 2.15 shows the pertinent part of the graph of f(x)=1. Since
X

1 . " . .
lim — = +oo, the function has no minimum value for x in (0,1). It does take on values arbi-
x—0" X

trarily close to 1 for inputs that are close to 1, but there is no number in the open interval(0, 1)
at which f(x) is equal to1.

Vi
|
1+ o

0.7

0.5 ————— - —

0.3

N o e e

0 10

Fig. 2.15

The next theorem says that a function which is ‘continuous throughout an interval takes on
all values between any two of its values.

Intermediate-Value Theorem

Let f be continuous throughout the closed interval [a,b]. Let N be any number f(a) and

f(b). [That is, f(a)< N <f(b) if f(a)<f(b).or f(a)>N >f(b) if f(a)>f(b)] Then
there is at least one number ¢ in [ajb] suchthat f(c)=N.

In ordinary English, the intermediate-value theorem reads: a continuous function defined on
[a,b] takes on all values between, f(a) and f(b). Pictorially, it asserts that a horizontal line

of height N must meet the graph of f at least once if N is between f(a) and f(b), as

shown in Fig. 2.16. In other words, when you move a pencil it passes through all intermediate
heights.

fib)

fla)

0 L'I C ("' Cy ?’J X
Fig. 2.16

Even though the theorem guarantees the existence of ¢, it does not tell how to find it. To
find ¢, we must solve an equation, namely, f(c)=N.

Example 4 Use the intermediate-value theorem to show that the 2x° + x? —x+1=5
has a solution in the interval [1,2].
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Solution Let P(x) = 2x° + x> — x +1. Then
P1)=2-+1?-1+1=3
and
P(2)=2-2°+2%2-2+1=19.

Since P(x) is continuous and 5 is between P(1) =3 and P(2) =19 we may.apply the
Intermediate-value theorem to P(x) in the case a=1,b=2 and N =5. Thus there is at
least one number ¢ between 1 and 2 such that P(c)=5. This completes the answer. (To
get a more accurate estimate for a number ¢ such that P(c) =25 find a:shorter interval for
which the intermediate-value theorem can be applied. For instances” P(1.2)~ 4.7 and
P(1.3) ~ 5.8. By the intermediate-value theorem, there is a number ¢ in [1.2,1.3] such
that P(c)=5).

Example 5 Show that the equation x° — 2x2 + x +11=0_has at least one real root.

Solution. For x large and positive the polynomial P(x)& x° — 2%*+ x +11 is positive |
since lim P(x) = c]. Thus there is a number b such that'P(b) > 0. Similarly, for x nega-

X—>0

tive and large value, P(x) is negative [since lim P(x) = —oo]. Selecta numbera such that
X—>+00

P(a)<O0.
The number 0 is between P(a) and P(b). Since P(x) is continuous on the interval
[a,b] there is a number ¢ in [a,b] such that P(e)= 0. This number c is a real solution to

the equation x°> —2x% + x +11=0.

2.7 Precise Definitions of “ lim f () = “and “ lim f(x)=L"
X —>00 X—>00
In the definitions of the limits,considered in Secs. 2.1 and 2.2 appear such phrases as “ x
approaches a", “f(x) approaches a specific number," "as x gets large," and “f(x) be-
comes and remains arbitrarily large". Such phrases, although appealing to the intuition, seem
to suggest moving objects and, call to mind the motion of a pencil point as it traces out the
graph of a function.
In this section we'examine how Weierstrass would define the concepts:
lim f(x)=oc0 and lim f(x)=L
X—>0 X—>0
Throughout, #f" refers to a numerical function. Use the next section we consider
“limd F(x ) =L

X—a

Recall the definition of * lim f(x) = oo ” given in the table in Sec. 2.2.

X—>0

Informal definition of lim f (x) = o0, f(x) is defined for all x beyond some number and,
X—>0

as x gets large through positive values, f(x) becomes and remains arbitrarily large and posi-
tive.
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To take us part way to the precise definition, let us reword the informal definition, para-

phrasing it in the following definition, which is still informal.
Reworded informal definition of lim f (x) =oo[ assume that f(x) is defined for all x
X—>0

greater than some number c .
If x is sufficiently large and positive, then f(x) is necessarily large and positive.
For each number E there is a number D such that for all x > D itis true that
f(x)>E.
Think of the number E as a challenge and D as the reply. The larger E .is, the larger D
must usually be. Only if a number D (which depends on E ) can be found forievery number

E can we make the claim that * lim f(x) =’

X—>0

Example 1 Using the precise definition, show that lim 2x = .
X—>00

Solution. Let E be any number. We must show that there is.anumber D such that when-
ever x > D, it follows that 2x > E . For example, if E =50, then D =25 would do. It is
indeedon E .

Now, the inequality2x > E is equivalent to

X >—
2

In other words, if x>§ then 2x>FE. So ng suffices. That is, for

x > D = 2x > E . We conclude immediately.that

lim2x'=cw.
X—>00

Informal definition of lim £ (x) = [] assume that f(x) is defined for all x beyond some
X—>00

number c]. As x gets large.through positive values, f(x) approaches L.

Again we reword this definition before offering the precise definition.

Reworded informal definition of lim f (x) = L [assume that there is a number ¢ such that

X—>0

f(x) is definedfor all. x > c]

If x is sufficiently large and positive, then f(x) is necessarily near L.

Again, theprecise definition parallels the reworded informal definition. In order to make the
phrase "f(x)wis necessarily near L" precise, we shall use the absolute value of f(x)—L to
measure the distance from f(x) to L. The following definition says that “if xis large enough,

then [f(x) — L| is as small as we please."
Precise definition of lim f(x) =L [assume that f(x) is defined for all x beyond some

X—>0

number c].
For each positive number ¢ there is a number D such that for all x > D itis true that

F(x)-L|<e.
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The positive number & is the challenge, and D is a response. The smaller ¢ is, the larger
D usually must be chosen. The geometric meaning of the precise definition of lim f(x) =L

X—>0

is shown in Fig. 2.17.

y= flx)

) fix)is
J in liere

0 N v

when x is in liere

Fig. 2.17

Example 2 Use the precise definition of * lim f(x) = L” to'show'that,lim (1 + 1) =1.

X—>00 X—0 X

Solution. Here f(x)=1+1/x, which is defined for all x> 0. The numberL is 1. We
must show that for each positive number & however.small, there is a numberD such that, for

all x>D,
‘(1 + 1j =1<&
X
Inequality reduces to
1
—h<&:
X
Since we shall consider only x 2 0, thisinequality is equivalent to
Tee
X
Multiplying inequality by-the positive number x gets the equivalent inequality
1< ex.
Division of inequality by.the positive number & gets
—<Xxorx> 1
& &

These steps.arereversible. This shows that D =1/ ¢ is a suitable reply to the challenge ¢.

If x >1/ &, then
4
X

According to the precise definition of * lim f (x) =L" ,we may conclude that

X—>0

lim (‘I + 1)
X—>00 X

< é&.

1.
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2.8 Precise Definition of * lim f(x) =L"
X—a

Recall the informal definition given in Sec. 2.2.
Informal definition of lim f(x) =L
X—a

Let f be a function and ais some fixed number. Assume that the domain of f contains
open intervals (c,a) and (a,b) for some number ¢ < a and some number b > a.

If, as x approaches a, either from the left or from the right, f(x) approaches a specific
numberL, then L is called the limit of f(x) as x approaches a. This is written

limf(x)=L.
im ()
Keep in mind that a need not be in the domain of f . Even if a happens to.be in the domain
of f, the value f(a) plays no role in determining whether lim £ (x) =L .
X—a

Reworded informal definition of lim f (x) =L [assume that f(X) is defined for all x in
X—a

some intervals (c,a) and (a,b)].
If x is sufficiently close to a but not equal to a, thenwf(x) is necessarily nearL .

The precise definition parallels the reworded informal.definition. The letter 6 that appears in
it is lower case Greek “delta," equivalent to the.English letter d.

Precise definition of lim f (x) = L [assume that f(x) is defined in some intervals (c,a)
X—a

and (a,b)]:
For each positive number ¢ there.is a positive number & such that for all x that satisfy the
inequality
O<|x-a|<&s
itis true that

F(x)-L]<s.
Example 1 Usg the precise definition of * lim f(x) = L" to show that lim x? =0.
X—a x—0

Solution..In this case a=0 and L =0. Let & be a positive number. We wish to find a
positive number & such that for 0 <|x — 0| < & it follows that ‘xz - O‘ <&

Since ‘xz‘ = ‘xz‘, we are asking, "for which x is \x\ < &"? This inequality is satisfied
when
x| < Ve.
In other words, when |x| </, it follows that ‘xz - O‘ <& Thus & = e suffices. (For in-

stance, when ¢ =1,0 = V1 =1is a suitable response. When & = 0.01,6 = 0.1 suffices.)
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Example 2 Use the precise definiton of "limf(x)=L" to show that

X—a

lim (3x +5) =11.

X—2
Solution. Here a =2 and L =11. Let & be a positive number. We wish to find a number
&> 0 such that for 0 <|x —2| < & itfollows that |(3x +5) - 11 < &.

So let us find out for which x itis true that |(3x +5) — 11| < &. This inequiality-is-equiva-

lent to
B3x-6|<e
or
3]x-2/<¢
or
x-2| < Ly
3

Thus & = £/ 3 is an adequate response. If 0 < |x-2| < & /3, then |(3x +5) - 11| < .

2.9 The Number e
Definition (The number e ).
n
e:Ikn(1+1) =(fﬁ::2718281828

n—o n

n
Observe that for large n the expression (1 +1j is of the form
n

big _number
(1%small_number)™ - .

So we may consider

(1+ x)VX

When x is near 0, even if x is not of the form 1/n, that is, not the reciprocal of an integer.

It can be shownthat lim (1+ x)1/ * exists and equals e

x—0
. 1/x
lim (1 =e. *
xI—>0( +X) e (%)

Often (*).is.taken as the definition of e. It is this expression for e that will be used in the

next section, where we will find derivatives of the logarithm functions.

From. the fact that Iim0(1 + X)1/x = e, we can obtain order of closely related limits. For in-
X—

stance, fl)wno (1 + 2h)1/ 2h _ e, (Note that 2h — 0 and the exponent is the reciprocal of 2h).
_)
1/h

Example 1 Find lim (1+2h)"".
h—0
Solution. The expression (1+ 2h)1/ " is not of the form (1+ h)1/ n
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Since 1/h is not the reciprocal of 2h. A little algebra gets around this obstacle:

2 2
im (1+20)"" = lim (1+2)"%" = lim ((1+2n)"*" )| = ( lim (1+ 2h)1/2h) — ¢’
h—0 h—0 h—0 h—0

Example 2 Find lim( 3x_1j .

o\ 3x =35
Solution.
2x+3 2x+3 2x+3
— - 3x—-1-(3x-5
lim(3x lj :(lw):lim(1+3x 1_1j T Yk b CLu) | P
e\ 3x -5 x> 3x-5 x> 3x-5

4
_ (25+3)
4 NP 4 B\ Sxrl2 L B2 8
=lim| 1+ =lim| | 1+ =lime3*3 =73 2’
x>0 3x—5 x>0 3x—-5 X

Exercise Set 8
Examine the following limits:

4 4
(a) lim (x2 +5x) (b) lim 3x" -100x +3 © lim 3x" -100x+3
x> x>n 5x* 4+ 7x—1 x>0 5x4 4 7x -1
o x? - . sin3t _6x5
@ lim 200x~ — x“ -5 (@) lim sin 0 lim 6x° + 4x
X—>—0 x4+ x x>0 6f X—>-o x 4+ X4+5
. _ 3 3
(9) Jim 27 () tim X22 i) lim X *8
X—© X>0X 4D o
() lim sinl (k) lim sinx () lim 1+3C;OSX
x—0 X X —0 X—>00 X
m) lim Jx-4 (), lim (\/4x2+5x—\/4x2+x)
x—>16 X —160 X—>0

In Exercises 1 to 52 examine the limits. Evaluate those which exist. Determine those which
do not exist and, amongithese; the ones that are infinite.

xS+ X3 -1 . x*-16
1. lim 2. lim 3. lim
x—1 x2+1 x—1 X2—1 xX—2 x3_8
4 7 2 9
4. lim X3“16 5. lim —7— +1 6. lim —X1O+6X+3
x>0 x° —8 x-x 2x" + x° +300 Xo—o x 7 — x -1
3 4 2
7. lim g lim XX *+1 0. lim YX =2
Xo>—o x° 41 x>-o 3x° +4 x>4 X—4
_ x—81
10. lim = 1. lim —— 12, lim ——
x—81x -9 x>t X —1 x>t X —1
13. lim (\/2X2 _\/2X2_6X) 14. lim 2V* 15. lim 2"/
X—>00 x—07" x—0~
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100
16. lim 2" 7 0im GENx2) e (X
X—o0 x—» (X +3)(x+4) x—>—oo(2x+50)100
19. lim 225X 20 cos X 21, lim SINX
‘x—z/21+sin x " x—>r/21-sin x " x>0 3x

sin x

24. |lim secx
+

22 lim 212 23. lim ,cosx .
x—wo 33X xX—>zl2 x5
' ' ' . .1
25. lim sinx 26. lim cscx 27 lifn sin—
x>0 x>0 X—>o0 X
28, lim xsin— 29. lim x? cos x 300" %im x? cos x
X—>0 X X—>0 xX—>ul4
in’ 2x . sin’3x . Jarcsin x
31, lim— 32. lim 33, lim
¥ arcsin’ 3x° =0 tg?9x 0 gretg5x
. In(1+2x) . In(1+4x%) . 1g73x
34. 1 In(1+4x") _
XII)I(')l e4x_l 35 11{)18 o 1 36 £1£I(} e7x2 )
VI+x -1 1-8x" —1 5x°
37. lim 38. lim————= ~ 39.lim
=0 qretg’x 0 1g72x" 0 qretg®2x
J1+4x" -1 T4 7% -1 . €0s2x—cos5x
40. lim———— 41, lim=—=" 42. lim
a0 1g°x 0 In(1 —6x°) x>0 5x°
.2 o 2 ) 1_ 6 _ 0.5x-1
43, i SM 3x2 sin” 5x A4, Tim coi X 45 1im [ 1
x>0 tg"9x 0 qretg5x ol x+1
4-0.5x
46. |im—“+2x‘3 47 tim [ 2¥1 48. |im‘”—x—3
x—4 Vx -2 xoe\ 2x+3 8 2+3x
. 342 5-9x 50 . \/ﬁ ' dr—1 4x+3
49. lim ||m3 > 51. lim
oo\ 3x+1 X1 x4 -1 xoo\ 4x =5

52-69. Find the. numbers at which f is discontinuous. At which of these numbers isf con-
tinuous from the right, from the left, or neither? Sketch the graph of .

(X +4,x <—1 Xx+1,x<0

B2NM(X) =4 x*+2,-1< x <1 53. f(x)=4(x+1%,0< x < 2
\2x,x21 \—x+4,x22
X+2,x<-1 m,xgo

54. f(x)=4x*+1-1< x <1 55. f(x)=40,0< x <2
\—x+3,x21 \x—2,x>2
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sinx,x <0 1,x<0

56. f(x)=<x,0<x<2 57. f(x)=42",0< x <2
0,x>2 X+3,XxX>2
3x+4,x<-1 X3, x < -1

58. f(Xx)=4x*-2,-1<x<2 59. f(x)={x—-1-1<x<3
X, X>2 -X+5x>3
-1,x<0 2,x <-1

60. f(x)=<cosx,0<x<rx 61. f(x)=<1-x,-15x <1
1-x,x>rx Inx,x >1
-Xx; x<0 3-Xx; X<-2

62. f(x)=4{sinx; 0<x<rx 63. f(x)=1X% -5, —2=x <3
X—-2, X>rx 7~2x; 'x>3
—x2; x<0 -2x; x<0

64. f(x)={tgx; 0<x<rx/4 65. fi(x)=x/x; 0<x<4
2, x>runl4 1 x>4
4 3

66. f(x)=42 67. f(x)=73

68. f(x):252x1‘2 69. f(x)=2_1i‘

3 DERIVATIVES

3.1 The Derivative
Definition (The derivative ofa function at the number x ) Let f be a function that is defined
at least in some open interval'that contains the number x . If
. f(x+h)—f(x)
lim
h—0
exists, it is called the derivative of f at x and is denoted f'(x). The function is said to be dif-
ferentiable at x.
If the functionf is defined only to the right of x, in an interval of the form[x, b) then in the

definition of the“derivative “h — 0” would be replaced by “h — 0™ ”.The function is then said
to be “differentiable on the right." A similar stipulation is made if f is defined only in an interval
of the from (a, x] and the function is said to be “differentiable on the left."

The numerator, f(x + h) —f(x) is the change, or difference, in the outputs; the denomina-
tor, h, is the change in the inputs. Keep in mind that x + h can be either to the right or left of
x . Similarly, f(x + h) can be either larger or smaller than f(x).

A few examples will illustrate the concept of the derivative.
Example 1 Find the derivative of the squaring function at the number 2.
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Solution. In this case, f(x) = x? for any input x . By definition, the derivative of this func-
tionat 2 is

2 52 2 2 52
jim 2N =27 AT =27 ainy =4,
h—0 h h—0 h h—0
We say that “the derivative of the function f(x) = x? at2is 4."
The next example determines the derivative of the squaring function at any input; not just
at 2.
Example 2 Find the derivative of the function f(x) = x? at any number x.

Solution By definition, the derivative at x is
(x +h)? - x? x? +2xh + h? - x?

lim = lim = lim (2% h) = 2x.
h—0 h h—0 h h—0

The derivative of the squaring function at x is 2x .That the /derivative of the function
f(x) = x? is the function 2x is denoted
(x?) =2x.
This notation is convenient when dealing with a specific function. [Warning: don't replace x

by a specific number in this notation. For instance, do‘notwrite that (32) equals 2-3. This is
not correct).

The result in Example 2 can be interpreted in terms,of each of the four problems in Sec. 3.1.
For example, we know from Example 2 that the, slope of the tangent line to the parabola

y = x? at the point (x,x?) is 2x . In particular, the slope of the tangent line at (1,1?) is
2-1=2 a result found in Sec 3.1. Alsoy.according to the formula for the derivative,
(x?Y =2x the slope of the tangent line to)y =x? at (-1,(=1)?) is 2-(=1)=—2 and at
(0,0) is 2-0 =0 A glance at Fig. 3.1 shows that these are reasonable results. The deriva-
tive of f(x) = x? is a function. dt.assigns to the number x the slope of the tangent line to the
parabola y = x? at the pointi(x,x2).

Fig. 3.1

Thenext two examples illustrate the idea of the derivative with functions other than X,

Example 3 Find f'(x) if f(x) = x°.

Solution. In this case, f(x + h) = (x + h)® and f(x) = x>. The derivative of the function
at x is therefore

3.3 3 2 2 133
jim XA = X7 X ASXSXRT BT = X7 (352 4 3xh 4 h?) = 3x2)
h—0 h h—0 h h—0
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The derivative of x° at x is 3x2.
Theorem 1 For each positive integer n,

(x” )I = nx"".
Direct application of this theorem yields, for instance:
the derivative of x* is 4x*1 = 4x3:
the derivative of x° is 3x>~" = 3x?:
the derivative of x? is 2x%~" = 2x;
the derivative of x'is 1-x™1 =1
(in agreement with the fact that the line given by the formula y = x hasslope 1).

The next theorem generalizes the fact that (\/; ) = 1 which can‘be written

2Jx

(for those x at which both x” and x” are defined).

Now that we have the concept of the derivative, we are in a position to define tangent line,
speed, magnification, and density, terms used only intuitively until now. These definitions are
suggested by the similarity of the computations made in the four problems in sec. 3.1.

(y 27 Y 1)
(% —x3)
P, (x,,y,) are any two distinct points on the line. Now it is possible to define the slope of a
curve at a point on the curve.(In all five definitions it is assumed that the derivative exists.)

Definition (Slope of a curve). The slope of the graph of the function f at (x,f(x)) is the
derivative of f at x.

Definition (Tangent line to a curve). The tangent line to the graph of the function f at the
point P(x,y)is the line through P that has a slope equal to the derivative of f at x.

Definition (Velocity and speed of a particle moving on a line). The velocity at time ¢t of an
object whose position on a line at time t is given by f(t) is the derivative of f attime t. The
speedof the particle is the absolute value of the velocity.

Note the distinction between velocity and speed. Velocity can be negative; speed is either
positive or 0.

Definition (Magnification of a linear projector). The magnification at x of a lens that pro-
jects the point x of one line onto the point f(x) of another line is the derivative of f at x.

Definition (Density of material). The density at x of material distributed along a line in such
a way that the left-hand x centimeters have a mass of f(x)grams is equal to the derivative of

The slope of a nonvertical (line equals the quotient where P;(X;,y,) and
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f at x.
Exercise Set 9

In Exercises 1 to 16 use the definition of the derivative to find the derivatives of the given
functions.

1. x* 2. x° 3. 3x 4. 7x
5. x> +3 6. 4x° +5 7. -5x% +3x 8. x> —2x243
1 1
9. 7-/x 10. X% +3/x 11, — 12,
X X+ 2
13, 14 x +2 15.3-— 16
X X X X

In Exercises 17 to 20, use Theorems 1 and 2 to find the derivatives ofithe given functions at
the given numbers.

1
17. x*atx = —1 18. x4atx=§ 19. x°atx ='a 0. xPatx =+/2

3.2 Differentiation Rules
After presenting another f'(x) this section shows-the relation between "having a derivative"

and “being continuous." It concludes by introducing thewnotion of an “antiderivative."
It is also common to give the difference or changesh the name Ax "delta x"). The differ-

f(x+ Ax)—Tf(x)

ence quotient then takes the form and the derivative is defined as

Fi(x) = "mo flx+ AAX) —f(x) |
AX— X

Furthermore, the difference in the outputs'is often named Af or Ay :
f(x+ Ax)—f(x) = Af

and so f(x + Ax) = f(x)+ Af .

The latter equation says‘that“the value of the function at x + Ax is equal to the value of
the function at x plus the change in the function". With Ax denoting the change in the inputs

and Af denoting the‘change'in the outputs, we have
f'(x)= lim A—f
Ax—0 AX

Fig. 3.2dllustrate the A notation for the difference quotient.

Qlx,. flx,))

P(x,, f(x) , #

\
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Fig. 3.2
Example 1 Find (x2 )' using the A notation.

Solution. By the definition of the derivative, the derivative of the squaring function at x is
2 .2 2 2 2
jim XEAX) = XT oy X 2XAXH (AX)" = X7 i 9+ Ax) = 2.
Ax—0 AX Ax—0 AX Ax—0
So the derivative of x? is 2x, in agreement with the result in Example 2 of the preceding
section.

This section develops methods for finding derivatives of functions, or what'is called differen-
tiating functions. With these methods it will be a routine matter to find, forinstance, the deriva-

(x2 —6) (’I + x2)3
120x°
great effort) finding the limit of a difference quotient.

Before developing the methods, it will be useful to find the derivative of any constant func-
tion.

Theorem 1 The derivative of a constant function is 0; in symbols,
(c)' =0 or @=o orde=0.
dx
Theorem 2 If f and g are differentiable functions;.then so is f + g . Its derivative is given
by the formula

tive of f(x)= without going back to the definition of the derivative and (at

(f+g)' =f'+qg'.
Similarly, (f —g) =f' ~g'.
Proof. Give the function f + g the name u . That is,

u(x) =f(x)+9(x)
Then u(x + Ax) = f(x +Ax)+g(x + Ax) so,

AU = U(X + AX) = U(X)EF(X+AX) + g(x + Ax) — (F(x) + 9(x)) = (F(x + Ax) - F(x)) +
+(9(x + Ax) - g(x)y=Af+ Ag

Thus u/(x) =M™ 22 = jim 27489 _ i AT i A9 gy g
AX—>0AX  Ax>0 AX Ax—0 AX Ax—>0 AX
Hence f +.g isdifferentiable, and
(f+g)' =f'+g'.

A similar argument appliesto f — g .
Example 2. Using Theorem 2, differentiate x2 + x°>.

Solution. (x* + x®) = (x2 )I + (x3 )l = 2x + 3x2.

Example 3. Differentiate x* — Jx -6.
Solution.
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4_Jx—6Y=(x*) —(Vx) —(6) = s 1 o .5 1

X X —6)=(x X 6) =4x 0=4x _

< =) () -6 = -5 2%
Theorem 3. If f and g are differentiable functions, then so is f - g. Its derivative is given

by the formula

(f-g)' =f.g+g'-f.
Proof. Call the function f - g simply u. That s,
u(x)=f(x)-g(x)
Then u(x + Ax) =f(x + Ax)-g(x + Ax).
Rather than subtract directly, first write
f(x+Ax)=f(x)+ Af and g(x + Ax)=g(x)+Ag.

Then u(x + Ax) = (f(x)+ Af)-(g(X)+Ag) =f-g +f-Ag +.g=AF4 Af - Ag

Hence
Au=u(x+Ax)—u=Ff-g+f-Ag+g-Af+ Af -Ag <F-g=F -Ag+g- -Af +Af-Ag
and

Au:f-Ag+g-Af+Af-§ :
AX AX AX AX
Ag . Af , N . . .
As Ax — O’A_ —>g x — f' and, becausef. is differentiable (hence continuous),
X X

Af — 0. It follows that
u'(x)= lim ﬂ:f’-g+g’-f+0-g’:f’-g+g’-f

Ax—0 AX
Therefore, u is differentiable and

(u)':f’-g+g’-f.

Example 4. Find ((x2 Yo x* = x - 6))

Solution. (Note thatwin Example 2 and 3 the derivatives of both factors, x? + x3 and

x* —Jx -6 were found.)
By theorem 3;

((X2+X3)'(X4—\/;—6))' :(x2+x3),-(x4—\/;—6)+(x4—\/;—6)

=(2X+3X2)'(X4—&—6)+(4x3—ﬁj-(x2+x3)

A special case of the formula (f -g)' =f"-g+g'-f occurs so frequently, that it is singled

out in Theorem 4.
Theorem 4. If ¢ is a constant function and f is a differentiable function then ¢ - f is differ-
entiable and its derivative is given by formula

(c-f)':c-f’.

!

!

-(x2+x3):
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Any polynomial can be differentiated by the methods already developed, as Example 5 illus-
trates.

Example 5 Differentiate 5x” —3x? + 8 — is -z
X

Solution.
(577 -axt o= et (o0 (o) o 0] (] () -

— 5(x7)' - 3(x2)' - (x‘3)' =7x%-3-2x—(-3)-x* =7x° - 6x #3x°
It will next be shown that if the functionsf and g are differentiableat a number x, and if

g(x) =0 then r is differentiable at x .

g
Theorem 5. If f and g are differentiable functions, then so'is é and
[ij :f-g——zg-f (where g(x) #0).
g g
x> -4 '
Example 6. Compute | — :
X“+3
Solution.
[x3 —4}' ) (x° —4)' (x*+3)-(¥°-4)- (% +3) 3¢ (x® +3)-2x(x* - 4) )
2 - 2 - 2 -
X“+3 (x2+3) (x2+3)
U 3x* +9x% —2x* +8x o x* 19x® +8x
(x2 +3)2 (x2 +3)2
Corollary 1

1Y g
(Ej = _gz (where g(x) = 0).
The differentiation techniques obtained so far do not enable us to differentiate such func-

tions as(1+2x)100, V1+x2, sinx®.
Wecould differentiate (1+2x)100, but only with great effort, by first expanding

(1 + 2x)100 to form a polynomial of degree 100 and then differentiating that polynomial. This
100

section develops a shortcut for differentiating composite functions, such as (1+2x)

V1+ x2 and sin x® which are built up from simpler functions by composition.
If f and g are differentiable functions, is the composite function f o g = f(g(x)) also dif-
ferentiable? If so, what is its derivative? More concretely: If y =f(u) and u = g(x) then y
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a ,
dx
Take the simple case, y =3u and u =2x . Hence y = 6x. Inthis case,

d—y=3, %:2 and Q=6.
du dx ax

is a function of x . How can we find y’ =

So Yy is the product of the derivatives 4 and % This observation suggests the all-
dx du dx
important chain rule, which will be proved at the end of this section after several examples
showing how it is used.
The Chain Rule (Informal Statement)

If y is a differentiable function of u and u is a differentiable function of x, then y is a dif-
ferentiable function of x and

dy dy auv ., .
= or =
dx du dx Y= Yu M
dy dy du

The equation is read as “derivative of y withsrespect to x equals deriva-

dx du dx
tive of y with respect to u times derivative of u with.respectto x".

Example 7.Differentiate 1+ x>

Solution. y =1+ x? is a composite functiony = Ju whereu =1+ x2.
By the chainrule, y, =y, - U,

X

(W)I =(\/U)'u °(1+x2)'

_L.Zx—L
x 2Ju Vit X2

Example 8.Differentiate sin x>
Solution. y = sinx* can be.expressed as y = sinu whereu = x°.
By the chain rule,

(sin x> )' = (sin u)'u : (x3)' = cosu-3x? =cos x° - 3x2
X
Example 9.Differentiate (1+ 2x)100 .

Solution. y = (1+ 2x)1 % is the composition of y = "% and u =1+ 2x.
By the chain-rule,

((1 + 2x)1°°)' - (u1°°)' .(1+2x) . =100u®® -2 =200 (1+ 2x

' 100
u X ) .

We summarize the differentiation formulas we have learned so far as follows.
Table of Differentiation Formulas
1.(c) =0 5.(c-f) =c-f'
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2. (f+g)' =f'+g'

3. (f—g)':f’—g’

4, (f-g)':f’-g+g’-f

f fl-g-g'-f
6.|=|=—T=5—
g g
g B

g g

8. (f(g(x))) =1 g,

Using the definition of derivative, limit and rules of differentiation, we can/getithe table of de-

rivatives of elementary functions.

1. (x” )' = nx"""

8. (cosx)' = —sinx

9. (tgx)' =

LA
2.[x”] =—x" >
n CosTX
4 4 1
) =e* 10. (ct =—
> (e ) © (o) sin® x
' Y 1
4. (a*) =a* -1 0 11.(arcsinx) =
(a ) a*-lna,a > ( ) T2
’ 1 4 1
5. (I =— 12, (arccos x) = —
(Inx) =~ ( ) —
6. (log, x) = ina 13. (arctgx) = Ty
inx) = 14. (arcctgx) = —
7. (sinx) =cosx (arcctgx) .
Vx2—3x—9
Example 10. Differentiate —————.
sinx
Solution.
e\/x2—3x—9 ' (e“xz_3x_9j -(Sinx3)—(e“‘2"3x‘9j-(sinx3),
sind. /| T (sin 33 )2 -
e\ -3x-9 1 -(2x-3)-sinx’ - eV -3x-9 505 x3 . 32

B .de2—3x—9

(sin x* )2

Exercise Set 10
In Exercises 1 to 48 differentiate with the aid of formulas, not by using the definition of the

derivative.
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1. y=3x3+4x%>-x-2
tgx — 3ctgx .
4, y=2L" 27
TR
_(2x 1),
3x3

7.y

10. y = x°-cos x;

16. y = 1arcz‘g

19. 2x°—-x-1.

22 v _ V1+x? )
X

2. y=—-—1+

28, y-_X % .

My=— 2
2 .
M. y= \/garctg(?;x—ﬂ,

37. y:(—'

10 sin?7x

2
43, y = VX" =8,

'y: 6X3 J

46. y:LIn 1N

J2 Aax?

2. y=x-In2+e*

o.y =Lln7x;

4.5

8. y =e?*.sinx;

11. y:(3x2—6x+8)21;

14. y = 2)(_1-\/2+x—x2

4

17. y = e™** -arcsin(e®¥);
20. y =In(1+2")

2.y =|n(3x2 —7x—8);

26. y = 26" +1

29. VZ%f93X—cos4x;

32. y:§ (tge")

1 X
35. y =——Intg =
=297

38, y = %m(e“ +1)

41. yzlnﬂ—arctgx
X+1

44\ 3x-1
' 3x% - 2x+1

47 _(x—4) 8x—x°-7
Ly = 5

3. y =siny/3 +3cos6x;

6. y =arctgdx +3r;

_ cos®3x,
3sin6x’
12. y =sinJx ;
-2
15. v — sin“4x :
4 cos8x
18. y&sin®7x
2
21 =co.s 4x;
sin8x

24,y =arcsine”

27 sin?2x

~ 2cos4x’
30. y =In(6x? - x)

33 - cos? 2x
' 4sindx’

36. y = x-arcsin7x
39. y =In(3x° - 7x)?;

42. y =(ctg3x)-2e*

2
45. y = co§ 8x
16sin16x

48. y = x-e'9%

In each of Exercises 49 to 51 find the slope of the given curve at the point with the given x

coordinate.

49. y=3x>+4x>-x-2at x=2

90. y = at x=3

2x +1

51. yzx/;'(X-I-Z) at x=4.

3.3 Implicit Differentiation. Logarithmic Differentiation. Calculus With Parametric Curves
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The functions that we have met so far can be described by expressing one variable explicit-
ly in terms of another variable — for example,
y=+/x" =3 ory=sin5x
or, in general, y = f(x). Some functions, however, are defined implicitly by a relation between
x and ysuch as
x*+y =4 or X’ +y =4xy .
We don't need to solve an equation for y in terms of x in order to find the.derivative of y .

Instead we can use the method of implicit differentiation. This consists of differentiating both
sides of the equation with respect tox and then solving the resulting equation‘fer ’. In the

examples and exercises of this section it is always assumed that the given equation deter-
mines y implicitly as a differentiable function of x so that the method ofiimplicit differentiation

can be applied.
Example 1

(@) If x* +y* =4, findy’.

(b) Find an equation of the tangent to the circle x* + y* = 4 atthe point(3,4).
Solution.

(a) Differentiate both sides of the equation x* + y*= 4

(f+yﬁ;:@yx

(), =0

Remembering that y is a function of x and using the Chain Rule, we have

2%+2y-y'=0
Now we solve this equation for. y":
Joo2X_ X
2y Yy

(b) At the point (344) wehavex=3 andy=4,s0)'= —%
An equation of the tangent to the circle at (3,4) is therefore

y—4=—%(x—3) or3x+4y=4.
Example 2.1f'x” + y* =4xy, find y'.

Solution. Differentiating both sides x” + y* =4xy with respect tox, regarding y as a

function®of x, and using the Chain Rule on the term »* and the Product Rule on the term
4xy, we get
3x2 420 =4y +4x) .
We now solve for y':
2y —4xy' =4y —3x°
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y'-(2y—4)c):4y—3x2
, 4y -=3x°
(2y — 4x) '
The calculation of derivatives of complicated functions involving products, quotients, or

powers can often be simplified by taking logarithms. The method used in the following example
is called logarithmic differentiation.

Example 3. Differentiate
2x? =DV1+x°
- 3x° '

Solution. We take logarithms of both sides of the equation and use the Laws of Logarithms
to simplify:

— 2 1 2 3
lny—ln(Zx —1)+§ln(l+x )—1n(3x )
Differentiating implicitly with respect to x gives
1 1 1 1 1
4x+—- 5 3
2 l#x 3x

T

Solving for y", we get

Y=y ( 4x A & N 3 j
2x* -1 4 x® x)
Because we have an explicit expressionfor y , we can substitute and write
CxP-DNTsxA [ 4x x 3
y = 3 . 2 +

3x 2 x

¥ -1 1+x X

Example 4. Differentiate y =(sin x)% .
Solution. We take logarithms of both sides of the equation and use the Laws of Logarithms
to simplify:
Iny=>5¢"-In(sinx)
Differentiating implicitly with respect to x gives
l-y' =5¢" -In(sinx)+ 5" - —
y sin x

-COSX

Solvingffory” swe get
Y =y-5°- (ln(sinx) + ctgx) :
Because we have an explicit expression for y , we can substitute and write
y'=(sin x)sex -5¢e” -(ln(sin x)+ ctgx) :

Some curves defined by parametric equations x=x(¢) and y= y(z) can also be ex-
pressed, by eliminating the parameter, in the form y = F'(x).

If we substitute x = x(¢) and y = y(¢) in the equation y = F(x), we get

y(t) = F(x(1))
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and so, if x=x(z), y=y(¢),and y = F(x) are differentiable, the Chain Rule gives
yi(0) = Fi(x) - x;(0)
Ifx'(¢) # 0, we can solve for F'(x):
F’(X) — yf (t)
x,(¢)
Using Leibniz notation, we can rewrite last equation in an easily remembered form:
()
Yy =", (1)
x,(?)

x=\/1—t2,

_1
y=r

Example 5 Differentiate

Solution. Using formula(1), we get

m 1
Vi ‘) %
_d —
!_yt’(t)_ 1‘2 _ 1_t2
yx_ ' - 1 - 3 )
x,(1) = (-2) !
NI 12
Exercise Set 11

In Exercises 1 to 24 differentiate with the aid of formulas.

2(3x° —2)-(2x-7) et (2x> =91+ 3x2
l. y= 2. y=(arctg5x) " 3. y= e
1541+ x X
3 [ 2
. nx x—=1DV5+x . X
4, y=(sm\/;)1 vy 5.y= ( 4) 3 6. y =(arcsin x)°
X
(x8+1)\/x8+1 " C@xP-x-1)
7. y= 8. y=(Inx) 9. y= -sin5x
: 1252 342+ 4x
104%° $4p2=5xy 11. e =5x-6y 12.arcsin(3x—y):x3 -y
13.1g(xy) =sin2x —3cosy | 14. x* +2y° =2 15. ™7 =x* +2y
Y
5 x=~\2-1*, _
x=+1-1¢*, X =1+sint,
16. { 17. 1 18. { 5 )
=Jtg(1+1). = y =2-—cost.
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19 {x: s 2, [ et 21 x:ﬁl
' y =arcsin(t —1). . — o]t . = .
y e +1. y \/:

1

xX=-, X =1tgt, x=A~t-1,

2.1 ! 23, | 24, ;
_ 1 Y == . y= .
y_t2+1' L sin 2t Ji—1

3.4 Linear Approximations And Differentials
We have seen that a curve lies very close to its tangent line near the point of tangency. In
fact, by zooming in toward a point on the graph of a differentiable function, we noticed that the
graph looks more and more like its tangent line. This observation is.thexbasis for a method of
finding approximate values of functions.
The idea is that it might be easy to calculate a value /() of afunction, but difficult (or even

impossible) to compute nearby values of . So we settle for the easily computed values of the
linear function L whose graph is the tangent line of f1at.(a, f(a)).
In other words, we use the tangent line at (a, f(a)) ‘@s an approximation to the curve
y = f(x) when xis near a . An equation of this tangentiine is
y— fla)=%(a)(x—a)
and the approximation
S~ fla)+ fi(a)(x—a)
is called the linear approximation or tangent line approximation of f/ at a. The linear
function whose graph is this tangent/line, thatis,
L(X)= f(a)+ f'(a)(x —a)
is called the linearization of f at'a.

The ideas behind linear,approximations are sometimes formulated in the terminology and
notation of differentials.
If y = f(x), where=fuis adifferentiable function, then the differential dx is an independ-

ent variable; that is, dx can be given the value of any real number. The differential dy is
then defined intermsiof dx by the equation
dy = f'(x)dx
Sody is adependent variable; it depends on the values of x and dx. Ifdx is given a spe-
cific value and"is taken to be some specific number in the domain of £, then the numerical
value.of dy is determined.
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Fig.3.3
The geometric meaning of differentials is shown in Figure 3.3¢ Let P(x,f(x)) and

O(x+ Ax, f(x+ Ax)) be points on the graph of f and let dx = Ax. The corresponding
changein y is

Ay = f(x+Ax)— f(x)
The slope RP of the tangent line is the derivative f'(x)..Thus the directed distance from S
to Ris dy = f'(x)dx . Therefore dy represents the amount that the tangent line rises or falls
(the change in the linearization), whereas Ay represents,the amount that the curve y = f(x)

rises or falls when x changes by an amount dx .
Notice that the approximation Ay ~dy becomes,better as Ax becomes smaller. Notice

also that dy was easier to compute than Ay . For. more complicated functions it may be im-
possible to compute Ay exactly. In such cases the approximation by differentials is especially

useful.
In the notation of differentials, the linear approximation can be written as

f(x+Ax)= f(x)+dyvor f(a+Ax)= f(a)+ f'(a)Ax.
Example 1. Use a differential'to estimate J67.
Solution. The object is to‘estimate the value of the square root function f'(x) = Jx atthe
input x =67. In this case, f(64) is know. We have
1 1 1
64)=8 and f'(x)=—==, f'(64)=——=—.
1 (64) f()zﬁf()zﬂ T
Since 67=64+3, f(x+Ax) = f(x)+dy,Ax=3. Therefore,
V6T~ f(64)+dy = f(64)+ f'(64)-3 =8+%-3=8.1875.

A calculator shows that to four decimal places, J67 ~8.1854 . So the estimate obtained
by theddifferential is not far off.

Exercise Set 12
In Exercises 1 to 12 use a differential to estimate

1.37 2. 310 3. 91026 4.325
5.sin31° 6. cos61° 7. tg47° 8. ctg31°30’

9. In(zg46”)

10. sin131°

M. arcctg0.95

12. arctg1.02
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3.5 Higher Derivatives
Velocity is the rate at which distance changes. The rate at which velocity changes is called
acceleration. Thus if y= f(¢r) denotes position on a line at time ¢, then the derivative

P _ y'=v(t) equals the velocity, and the derivative of the derivative, that is

dt
i)
dt\ dt
equals the acceleration.

Definition The derivative of the derivative of a function y = f(x) is.called the,second de-
rivative of the function. It is denoted

d’y
x>’

VL), v, PG,
%y
2

If y= f(¢) where ¢ denotes time, the second derivative y
t

is also denoted y".

For instance, if y=x>,)' = (x3) =3x%and y" = (3x2)! = 6x.
Definition The derivative of the second derivative

a3,
dx| dx’ 4

is called the third derivative and is denoted many ways, such as

3
TP 1Y, 0.

dx®’
The fourth derivative f ) (). Is defined as the derivative of the third derivative and is repre-
sented by similar notations. Similarly, f (”)(x) is defined for n=35,6,...
Definition The derivatives 1 (”)(x) for n> 2 are called the higher derivatives of y = f(x).
(The first derivative'is also denoted f (1)(x) )
Example-t=Compute ") if y = x> —5x% +9x —7 if n is a positive integer.
Solution.
y'=3x>—10x+9
" =(3x2 —10x+9)' =6x—10
y"=(6x-10)'=6
Since y(4) is constant, its derivative, y(s ) s equal to 0 for all x. Similarly,
y(6) = O,ym =0 and so on.

As Example 1 may suggest, for any polynomial P(x) of degree at most 3, y(”) =0 for all
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integers n > 4. The next example is quite different.
Example 2. Compute y(") if y=sinx.
Solution.

Y = (sinx)’ =COSX = sin(x + %)

!

»"=(cosx) =—sinx=sin(x+2- %)
y" =(-sin x)' =—cosx =sin(x+3 -%)
) = (—cosx) =sinx=sin(x+4- %)

y(S) — (sinx)' = cosx = sin(x +5 -%) :
Note that y(4) =y, y(s) = y" and so on. The higher derivatives repeat every four steps.
y(") =(sin x)(") = sin(x $# -%) .
im;ir;ilgc?llowing example shows how to find the second,derivative of a function that is defined

Example 3 Find y", if x* + y* =16.
Solution. Differentiating the equation implicitly with respect to x , we get

4850403y =0
Solving for )" gives
' x3
y =73

Y
To find y" we differentiate this expression for " using the Quotient Rule and remembering

that y is a function of x :
' 3\ .3 3\ .3
" L x3j __(x ) "y —(y ) "X __3x2-y3—3y2-y"x3

2 6
) !
If we now substitute last equation into this expression, we get
3x2-y3—3y2- S PESS 2 4 4
i _3x2-y4+3-x6__3x '(y T X )

y'=- 6 = )7 )

But the values of x and y must satisfy the original equation x* + y* =16. So the answer
simplifies to
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. 3x2.16 x?
V=T =48
y y

Note 1 If some curves defined by parametric equations x=x(t), y=y(t) and

!

V.= yf—(t) the second derivative of the function y is differentiated by formula:

x,(7)
y:(&j :(y;,)t-
x )

Example 4 Find " if 1
y=-.
t

Solution. Using formula y! = 0 , we get

1
A0 2 V1-7°
y = yt — t = .
X Xt’(t) 1 —2t) t3
241-¢2
Using formula y”z(if) =( x,)f , we get
% ) Xy

3-2¢2
=4 A - A
' _3_2t2 2 2
), g :(3—2Z) 1t
x; 1 (—2Z) tS
21—7
Exercise Set 13

In Exercises 1to 18 find "
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1. y=3x3+4x%>-x-2

2. y=x-In2+¢e*

3. y =sin/3 +3cos6x

tgx — 3ctgx (2x% 1) ,
4, y =" "2 5.y= Ly =e?.
y 72 V=733 6. y =e“*-sinx
7. y =x°-cosx 8. y:(3x2—6x+8)21 9. y =sin®7x
10. y =2Ve* +1 1. x> +4y? =5xp 12. "V =5x -6y
=t +sint
13. 2 +2)2 == 14, & =x* 12y 15, {x V' ¥
y y =2 —ost.
le, x:\/;, X =1gt,
16.{ ! 1 17. 1 18. 1
241 1-¢ sin 2t
In Exercises 19 to 24 find ")
19. y=¢" 20. y=cosx 21. y=sin3x
22. y:l 23. y=In3x 24. y =sin® x
X

3.6 L'Hopital’s Rule
The problem of finding a limit has arisen in=graphing a curve and will appear often in later
chapters. Fortunately, there are some general techniques for computing a wide variety of lim-
its. This section discusses one of the mestimportant of these methods - I'Hopital’s rule, which
concerns the limit of a quotient of two functions.
Theorem 1 describes a general technique for dealing with the troublesome quotient

f(x)
9(x)
when f(x) — 0 and g ()= O (it is known as the zero-over-zero case of 'Hopital’s rule).
Theorem 1 (L'Hopital's. rule). Let a be a number and let f'(x) and g(x) be differentiable
over some open interval (a,b). Assume also that g'(x) is not 0 for any x in that interval. If

lim f(x)=0, lim g(x)=0and lim M:L,

+ ]
x—a" x—at x—a" g (X)

Then
im T )
x—>a+g(X)
5
Example 1 Find lim 25—

x—1" x° —1
Solution. In this case,

a=1 f(x)=x"-1 and Iim(x3—1):0

x—1"
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According to I'Hopital’s rule,

im =1 jim )
x—>1t X3—1 x—>1" (x

w
|
—
—~—

if the latter limit exists. Now

5 :
.(X—1) _5x* 5, 5
lim = |im — = lim —x“=—.
x—>1" (X3 — 1)' x—>1"3X x—1" 3 3

5_
Thus fim X1 -2
x> x° =1 3
sinx —x
3

Example 2 Find lim
x—0 X

Solution. As x — 0, both numerator and denominator approach 0By I'Hopital’s rule,
im sinx—x _ im cos X1

x—0 x3 x=>0, 3 x2

Butas x — 0O, both cos x —1— 0. So use I'Hopital’s,rule again:
. _cosx—-1 . “=sinx
lim ——— = lim
x—>0 3x x=>00. 06X
Both sinx and 6x approach 0 as x — 0. Usewl'Hopital's rule yet another time:
. —sinx ... —=CcosXx 1
lim =lim =——.
x>0 06X x>0 6 6
The next theorem presents a form of I'Hopital's rule that covers the case in which

f(x) — o0 and g(x) — 0. It is.called the infinity-over-infinity case of I'Hopital’s rule.
Theorem 2 L’Hopital’s rule (infinity-over-infinity case). Let f(x) and g(x) be defined and
differentiable for all x largerthan some fixed number. Then, if

lim f(x) =, lim g(x)=c and lim F'(x) =L
X—>0

X <565 Xx—x g '(X)
It follows that
f
jim £)
X—>© g (X)
Example 3.Use I'Hopital’s rule to find lim X
X—w @
Solution. By Theorem 2,
X x' .1
lim — = lim = lim—=0
xoo @X x> (ex)' x—wo g%
3
Example 4 Find lim —
X—>00 2X

Solution. Since both numerator and denominator approach o« as x — oo, I'Hopital’s rule
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may be applied. It asserts that
X ) 3x? ) 6x ) 6
lim — = lim =I|m—2=I|m —
X—0 2X X—0 2X In2 X—>00 2X (|n 2) X—>00 2X (|n 2)

Thus as x — o0,2* grows much faster than x>.
Transforming some limits so that I'Hopital's rule applies to many limit problems can be
transformed to limits to which I'Hopital’s rule applies. For instance, the problem of finding

lim xlnx
x—07"

does not seen to be related to I'Hopital’s rule, since it does not involve the'quotient.of two func-
tions. As x — 0™, one factor, x, approaches 0 and the other factor, 4n x , approaches —oo. It

is not obvious how their product, xIn x, behaves as x — 0™. But a little‘algebraic manipula-
tion transforms it into a problem to which I'Hopital’s rule applies, as the next example shows.
Example 5 Find lim xInx

x—>0+
Inx

1

X

Solution .Rewrite xIn x as a quotient .Let f(x)=Inxand g(x) :l. Note that
X

. o
lim Inx = —0 andClim — = .

x—07" x—0t X
A case of Theorem 2, with x — 0, asserts.that
fim X i WX i (Cx) =0
x—0" 1/ X xSov=-1/x x—0
Thus fim 10X _ .
x—0" 1/ x
From which it follows that lim. xIn'x = 0. (The factor x, which approaches 0, dominates

x—0"
the factor In x, which gets.arbitrarily large in absolute value).

Exercise Set 14
In Exercises 1 to 46 check that I'Hopital’s rule applies and use it to find the limits.

3 7 .
1. lim =8 2. tim X~ 3. lim SN3X
x—2 x° -4 x—1x° —1 x—0 SiN2x
4. lim 02 5. lim X 6. lim X
x50 (sin X) X—0 @ X—0 3
7 )I(m1—)c;(2)sx 8 )l(iino ?II’I.X—;( 9 Iimolta1n3X
sinx) x-0In(1+ x)
/2 2 in—T1
10, tim %57/2) 1 tim INX) 12. lim S0_X
Xx—1 In x ' X[)T!O X x—0 eZX -1
. 1/x . . ctgx X _
13. lim (1-2 14. lim (1+sin2 ; : e” -1
xl—>0( x) xl—>0( +sin2x) 15. lerTc}+(SlnX)( )
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16. lim x%Inx 17. lim (tgx)°* |18, lim (&*=1)inx
x—0" x—0" x—0"
X X . log, x
19. lim 20, lim 2+ X 21, lim —92%
x—o0 3% x—wo 3% x— logs X
22, lim 1092 X 23. lim (1—L) 24.
x>1log, X x>0l X sinX lim (\/x2+3—\/x2+4x).
X—>0
2 X _ 2, 24
25, lim X_F3COSSX g6 i € 1 X 57 i 3X F X2 X
x—o x° —2sindx x—oeX +1/ x x—>05x° + X° +x
3 2 _ . ' 30. lim 5sin3
28. Iim 3X3+X2 X 29. fim X S o
x—05x3 + x% + x x—o 4 +8in X
31. lim (X—1)|n(X—1) 32 i tQX 33. lim (cos x 1x
x—1" : x—|>r7Tz]/2X—(7z/2) x—>0( )
i 1/x . Sin2x 2
34. XILrBLx 35. lim > 36."im Xx7-1
x—0 SIN3X XS — 1
X 3 X 2 . 1
57 lim xe (X1+x) 38, 1im X€ ;3)(()8 65 1300 1im (Ctgx—_—)
Xx—0 eX -1 x=>0 e —1 x—0 Sin X
. sin7x-sin3x X _ X Sy _ta3
40. lim : M, fim 2= 42, lim 9 X-197x
x—0 sin x x—0 SinX x—»0 1-Cc0S X
3 .
43, lim X8 44, lim 210X 45 lim|— 2
x—2x%2 15 x—rl2 Sin3 X x-»>0\1-cosx x
1
46. lim X
x->0tan  2x

e

3.7 The Hyperbolic Functions And Their Inverses

noted.€ht, is given by the formula
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cht =
2

t

e —e

sht =
2

_elvet

Certain combinations of the ‘exponential functions e* and e ™ occur often enough in dif-
ferential equations and engineering — for instance, in the study of electric transmission and
suspension cables — 1o be given names. This section defines these so-called hyperbolic func-
tions and obtains their.basic properties. Since the letter x will be needed later for another pur-

pose, we willuse'the letter ¢ when writing the two preceding exponentials, namely, e’ and
—t

Definition"(The hyperbolic cosine). Let t be a real number. The hyperbolic cosine of ¢, de-

Definition (The hyperbolic sine). Let t be a real number. The hyperbolic sine of ¢, denoted
Sht, is given by the formula




The four other hyperbolic functions, namely, the hyperbolic tangent, the hyperbolic secant,
the hyperbolic cotangent, and the hyperbolic cosecant, are defined as follows:

tht :ﬁ sec ht =L ctht =ﬂ,cscht :i
cht cht sht sht

Each can be expressed in terms of exponentials. For instance,

tht = (et+e‘1)/2 el yet

As t —> o0,e!”* and e! — 0. Thus lim tht =1. Similarly, Jim thi'=1.
—>00 —>—00

The derivatives of the four hyperbolic functions can be computed directly.

(ent) =| S50 | =S —snt
t_t\ t Lt
(sht)'= © _26 _° +26 = cht

, (sht) - 1
tht) = 4
(tht) (chtj ch?t
' cht ' 1
tht) =| 25 =
(ctht) (shtj sht

4 USING THE DERIVATIVE AND LIMITS WHEN GRAPHING A FUNCTION

4.1 Using The First'Derivative When Graphing a Function

The primitive and inefficient way:to graph a function is to make a table of values, plot many
points, and draw a curve through the points (hoping that the chosen points adequately repre-
sent the function). Chapter 2-refined the technique somewhat. The xand y intercepts are of

aid in graphing, for they'tell where the graph meets the x and y axes. Furthermore, horizon-
tal and vertical asymptotes were discussed; they can be of use in sketching the graph for large
\x\ and also near a‘number where the function becomes infinite (usually because a denomina-

tor is 0). Forinstance, the line x =1 is a vertical asymptote of y = Ll theline y =0 isa
Y —

harizontal asymptote of the same curve. The line x :g is a vertical asymptote of the

curve yu= tgx.
This section shows how to use the derivative and limits to help graph a function.
Definition (Critical number and critical point). A number ¢, at which 7'(¢)=0 is called a

critical number for the function f . The corresponding point (¢, / (c)) on the graph of f is a
critical point on that graph.
Definition (Relative maximum (local maximum)). The function f has a relative maximum
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(or local maximum) at the number ¢ if there is an open interval (a,b) around ¢ such that
f(c)>f(x) forall x in (a,b) that lie in the domain of f. A local or relative minimum is de-
fined analogously.

Definition (Global maximum). The function f has a global maximum (or absolute maxi-
mum) at the number ¢ if f(c)>f(x) for all x in the domain of f. A global minimum is de-
fined analogously.

Note that a global maximum is necessarily a local maximum as well. A local maximum is
like the summit of a single mountain; a global maximum corresponds to Mount Everest:

Fig. 4.1 illustrates the notions of critical points b, ¢, d, e, local maximum#f(b), global max-

imumf(d), local minimumf(c), and global minimum f(&) in the graph of ashypothetical

function. Any given function may have none of these, or some, or all.
Vi

Fig. 4.1

The following test for local maximumeoriecal minimum is an immediate consequence of the
fact that when the derivative is positive the function increases and when it is negative it de-
creases.

First-Derivative Test For Local Maximum (Minimum)

Let f be a function and let ¢ besa number in its domain. Assume that numbers a and b
exist such that a < ¢ < b.and

1. f is continuous on the open interval (a,b).

2. f is differentiable on‘the'open interval (a,b), except possibly at ¢ .
3. f'(x) is positive for all x < ¢ in the interval and is negative for all x < ¢ in the interval.

Then f hasa@ localmaximum at c.

A similar_test, with “positive" and "negative" interchanged, holds for a local minimum (see
Fig.4.2)
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(a) Local maximum (b) Local minimum

Fig.4.2

Informally, the derivative test says, "if the derivative changes sign-at ¢, then the function
has either a local minimum or a local maximum?”.

To decide which it is, just make a crude sketch of the graph near (c, f (c)) to show on
which side of ¢ the function is increasing and on which sidet is decreasing.

Example 1 The graph of the function f(x)=3x*-16x%418x%;-1<x <4 is shown in
Fig. 4.3. You can see that 7(1)=5 is a local maximum, whereas the absolute maximum is
f(-1) = 37. (This absolute maximum is not a local maximum because it occurs at an endpoint.)
Also, f(0)=0is a local minimum and f(3)=-27is both a local and an absolute minimum.
Note that f(x) has neither a local nor an absolute maximum atx = 4.

~1,37) 3= 3% 16x7 + 1827

Fig. 4.3

Examplé 2 Graph f(x) =3x* — 4x>. Discuss relative maxima and minima.
Solution..To find the intercepts note that f(0)=0 and 3x*-4x>=0 when

x° (8x—4)=0 thatis, when x =0 or x = % The derivative is
fi(x)=12x° -12x* =12x* - (x -1).
The critical numbers are the solutions of the equation
12x%-(x-1)=0.
Namely, x =0 and x =1.
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How does the sign of £/(x) =12x> —12x* = 12x? - (x — 1) behave when x is near 0?
fi(x)>0=12x*(x-1)>0= x >1
fi(x)<0=12x*(x-1)<0= x <1.
Thus the sign of f'(x) does not change as x passes through 0. In fact, since f'(x) re-
mains negative (except at 0), the function f is decreasing for x <1. Thus there is no relative

maximum or minimum at x = 0.
How does the sign of f/(x) =12x>-(x —1) behave when x is near 1?

The factor 12x2 remains positive, but (x—1) changes sign from_negative to positive.
Hence at x =1 the function has a local minimum.

Writing f(x) = 3x* —4x> = x* -(3 —ij shows that when |x| isdargenf(x) behaves like
X

3x*, since 4 is near 0. Since 3x* becomes arbitrarily Jarge when x..is large, the function
X

has no global maximum. The graph in Fig. 4.4 shows the x intercepts and the critical points.
Note that when x =1 a global minimum occurs.

In many applied problems we are interested in the.behavior of a differentiable function just
over some closed interval [a,b]. Such a function will have a global maximum for that interval
by the maximum-value theorem of Sec.2.6. Thatimaximum can occur either at an endpoint -a
orb-or else at some number ¢ in the open interval'(a,b). In the latter case,c must be a crit-

ical number, for f'(¢) =0 by the interior-maximum theorem of Sec. 4.1.

y

Fig. 4.4

Fig. 4.5 shows semerof the ways in which a relative or global maximum or minimum can oc-
cur for a function,considered only on a closed interval [a,b].
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0‘ a

Fig. 4.5

The major point to keep in mind is that the maximum value of a functionf that is differentia-
ble on a closed interval occurs
1. At an endpoint of the interval, or
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2. At a critical number [ where f'(x)=0].

Example 3 Find the maximum value of f(x) = x® —3x? + 3x forx in [0,2].
Solution. First compute f at the ends of the interval, 0 and 2:

f(0)=0 and f(2)=2 .
Next, compute f'(x) , which is f'(x) = 3x% —6x +3. Whenis f'(x)=0? When

3x>-6x+3=0
3(x*—2x+1)=0
3(x-1)° =0

Thus 1 is the only critical number, and it lies in the interval [0, 2].

The maximum of f must therefore occur either at an endpoint of thetinterval (at 0 or 2) or at
the only critical number, 1. It is necessary to calculate (1) to determine where the maximum

oceurs:
f)=1r-3.1?+3.1=A1
Since f(0)=0, f(2)=2 and f(1)=1, the maximum value is 2, occurring at the end-
point 2.

Exercise Set 15
In each of Exercises 1 to 9 find all critical numbers of the given function and use the first-
derivative test to determine whether a local maximum, a local minimum, or neither occurs
there.

1. x5 2. x° 3, (x—1)3
4 (x—1)4 5. 3x4+ x° 6. 2x> + 3x°
7. XSin X + COS X 84X 0C0S X + sinx 9 x° +5x°3

In Exercises 10 to 27 graph.the given functions, showing any intercepts, asymptotes, critical
points, or local or global extrema.

10. 3x* —4x3 11. 2x3 —3x? 12. x° —3x% - 9x
13. x° +6x° —15% 14. x* —4x3 - 20x? 15. x° + x> —5x
16. x* + 4x3 17. 3x* +8x°3 18 3x +1
" 3x -1
19,475 20. — 21, —~
x -1 X< -1 X +1
2
22 21 23.2; g X~ +3
2X° - X X°—-3x+2 x2 —1
e x% +1 26.2; 27_2X;2
S X —4x+4 X°—-3x+2

Exercises 28 to 33 concern functions whose domains are restricted to closed intervals. In
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each case find the maximum and the minimum value for the given function over the given in-
terval.

28. x*> —x*,[0,1] 29. 4x% —5x3[0,4] 30. 4x — x2,[0,2]

31, 2x% — 5 [ 32.x° ~3x2-9x,[0,2] g3 X (03]
X +

4.2 Concavity And The Second Derivative
Whether the first derivative is positive, negative, or zero tells a good deal‘@bout a function
and its graph. This section will explore the geometric significance of the second. derivative be-
ing positive, negative, or zero. The following section will show how the second derivative is
used in the study of motion.
Concave Upward and Concave Downward
Assume that f"(x) is positive for all x in the open interval (a,b). Since f"(x) is the de-

rivative of f'(x), it follows that f'(x) is an increasing function throughout the interval (a,b).
In other words, as x increases, the slope of the graph of.y =7(x) increases as we move
from left to right on that part of the graph corresponding to the interval (a, b).

Definition (Concave upward). A function f whose first derivative is increasing throughout
the open interval (a,b) is called concave upward in that interval.

Note that when a function is concave upward, it.is shaped like part of a cup. It can be
proved that where a curve is concave upward-it lies above its tangent lines and below its
chords, as shown in Fig. 4.6(a).

As was observed, in an interval where f(x) is/positive, the functionf is increasing, and so

the function f is concave upward. However,if afunction is concave upward, f'(x) is not nec-
essarily positive. For instance, y = %*"is.concave upward over any interval, since the deriva-
tive 4x3 is increasing. The second derivative 12x2 is not always positive; atx = 0 itis 0.

If, on the other hand, f"(x) is negative throughout (a,b) then f'(x) is a decreasing func-

tion and the graph of f looks like part of the curve in Fig. 4.6(b).
Vi B VA B

\/.

(a) Concave upward (b) Concave downward
Fig. 4.6

Definition (Concave downward). A functionf whose first derivative is decreasing through-
out an open interval (a, b) is called concave downward in that interval.

Example 1. Where is the graph of f(x) = x> concave upward? Concave downward?

Solution. First compute the second derivative. Since f'(x) = 3x2,f"(x) = 6x.
Clearly 6x is positive for all positive x and negative for all negative x. The graph, shown
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in Fig. 4.7, is concave upward if x >0 and concave downward if x < 0. Note that the sense
of concavity changes at x = 0. When you drive along this curve from left to right, your car
turns to the right until you pass through (0,0). Then it starts turning to the left.

¥

14+

0 1 X

Fig. 4.7

Example 2. Consider the function f(x)=sinx for x in [0,27]. Where'is the graph con-

cave upward? Concave downward?
Solution.

y'=(sin x)' =COoSX
y"=(cos x)' = —sin%

The second derivative, —sin x, is negative for¢Q <'x < . It is positive for 7 < x <27
Therefore, the graph is concave downward for, x inw(0,7) and concave upward for x in
(7,2r1).

The sense of concavity is a useful tool in‘sketching the graph of a function. Of special inter-
est in Examples 1 and 2 is the presence ofia paint on the graph where the sense of concavity
changes. Such a point is called an inflection point.

Definition (Inflection point and.inflection number). Let f be a function and let a be a num-
ber. Assume that there are numbers b and ¢ suchthat b < a < ¢ and

1.f is continuous on the open interval (b,c)

2.f is concave upward inithe interval (b,a) and concave downward in the interval (a,c) or
vice versa.

Then the point (4, / (a)) is called an inflection point or point inflection. The number a
is called an inflection'number.

Observe that.if the'second derivative changes sign at the number a, then a is an inflection
number.

If the second derivative exists at an inflection point, it must be 0. But there can be an inflec-
tion"point evensif f"(x) is not defined there, as shown by the next example, which is closely
related to Example 1.

The Second Derivative and Local Extrema

The second derivative is also useful in testing whether at a critical number there is a relative
maximum or relative minimum. For instance, let a be a critical number for the function f and
assume that f"(a) happens to be negative. If f'(x) is continuous in some open interval that
contains a, then f"(a) remains negative for a suitably small open interval that contains a.

This means that the graph of f is concave downward near (a, f (a)) hence lies below its
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tangent lines. In particular, it lies below the horizontal tangent line at the critical point
(a, f (a)). Thus the function has a relative maximum at the critical number a. This observa-

tion suggests the following test for a relative maximum or minimum.

The Second Derivative Test
Suppose f"(x) is continuous near a.

(a) If f'(a)=0 and f"(a) > 0, then f has a local minimum at a.
(b) If f'(a)=0 and f"(a) <0, thenf has a local maximum at a.

Example 3.Discuss the curve f(x)=x*—4x> with respect to concayity;points of inflec-

tion, and local maxima and minima. Use this information to sketch the curve.
Solution Sincef is differentiable throughout its domain, any local extremum can occur only
at a critical number. So begin by finding the critical numbers, as follows:

F(x)=(x* ~4x°) =4x® ~12x? = 4x2(%3).

Setting f'(x) =0 gives x? =0 or x —3 =0. The criticahnumbers are therefore
x=0and x =3.
Now use the second derivative to determine whether either of these corresponds to a local
extremum.
The second derivative is

F(x) = (4x° ~12x2) =42%2% 24x =12x(x - 2)

At x = 3 we have
f"(3) £12°8°224.3=36
Since f'(3)=0 and f"(3) > 0,f has.alocal minimum at x = 3.
How about the other critical number,. x = 07? In this case,
f"(0)=0.
Since f"(0) =0, the second-derivative test tells us nothing about the critical number 0. In-
stead, we must resortito the first-derivative test and examine the sign of

f’(x):(x4 —4x3)’ = 4x° —12x* = 4x*(x - 3) for x near 0. For x sufficiently near 0,

whether to thefightiof 0 or to the left, x? is positive and x — 3 is negative. Thus f'(x) is

negative for_x_near 0. Since f is a decreasing function near 0, it has neither a local maximum
nor a local' minimum at 0.
Since f"(x)=0 whenx =0 or x =2, we divide the real line into intervals with these

numbers as endpoints and complete the following chart.

Interval f"(x) = 12x(x — 2) Concavity

(—o0,0) + upward
(0,2) - downward

(2,+x) + upward

The point (0,0) is an inflection point since the curve changes from concave upward to con-
cave downward there. Also, (2,—16) is an inflection point since the curve changes from con-
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cave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, we sketch the
curve in Fig. 4.8.

' —
. . 7 3 -
inflection \ ° - |
points |
A |
‘
‘

Fig. 4.8

Exercise Set 16

In Exercises 1 to 18 graph the functions, showing any relative maxima, relative minima, and
inflection points.

1. 2x* —5x3 0. 7x% —4x? 3. x5 —3x% -9x
4. x3 +6x° -15x 5. x* —4x° —20x% 6. x>+ x°>-5x
7. 2x% —7x3 8.5x% + 8x3 9 2x +1
" 2x -1
10, — 11, 251 12. —
2x -1 x° -1 X° +1
1 1 x?+3
18y N 15. X
2x° -3 X°-5x+4 X2 —1
15 x? +1 17_2; 18.2)(—_1
: X X —-6x+9 X —-3x+2

4.3 Guidelines For Sketching a Curve

The following checklist is intended as a guide to sketching a curve y = f(x) by hand. Not
every item is.relevant to every function. (For instance, a given curve might not have an asymp-
tote or possess symmetry.) But the guidelines provide all the information you need to make a
sketch that displays the most important aspects of the function.

A. Domain It's often useful to start by determining the domainD of f, that is, the set of
values of x for which y = f(x) is defined.

B. Intercepts The y -intercept is f(0) and this tells us where the curve intersects the y -
axis.To find the x -intercepts, we set y =0 and solve for x. (You can omit this step if the
equation is difficult to solve.)

C. Symmetry
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(i) If f(—x)="f(x) forallx in D, that s, the equation of the curve is unchanged when x is
replaced by —x, then f is an even function and the curve is symmetric about the y -axis.

This means that our work is cut in half. If we know what the curve looks like for x > 0, then we
need only reflect it about the y -axis to obtain the complete curve.

(ii) If f(—x)=—f(x) forall x in D, thenitis an odd function and the curve is symmetric

about the origin. Again we can obtain the complete curve if we know what it looks like
forx > 0. [Rotate 180° about the origin.]

(i) If f(x+ p)="~f(x) forall x inD, where p is a positive constant, then f is"called a
periodic function and the smallest such number p is called the period. If we know what the
graph looks like in an interval of length p, then we can use translation to sketch the entire
graph.

D. Asymptotes

(i) Horizontal Asymptotes. Recall from Section 2.3 that if.(either. [im f(x) =L or

X—>0

lim f(x)=L, then the line y =L is a horizontal asymptote of the curvey = f(x). If it

X—>—0

turns out that lim f (x) = oo (or—oo ), then we do not have an asymptote to the right, but that

X—>0

is still useful information for sketching the curve.
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(i) Vertical Asymptotes. Recall from Section 2.3 that the line x = a is a vertical asymptote
if at least one of the following statements is true:

lim f(x)=—-o0,

lim . f(x)=-,
lim f(X) = o0,
X—a

lim f(x)=o0. (1)
x—at
(For rational functions you can locate the vertical asymptotes by equating the denominator
to 0 after canceling any common factors. But for other functions this methed does not apply.)
Furthermore, in sketching the curve it is very useful to know exactlywhich,of the statements in
(1) is true.
(iii) Slant Asymptotes. Some curves have asymptotes that are oblique;, that is, neither hori-
zontal nor vertical. If
lim [f(x)-(kx+b)]=0

X—>t0
then the line y = kx + b is called a slant asymptote, because the vertical distance between

the curve y =f(x) and the line y = kx + b approaches 0. For rational functions, slant as-

ymptotes occur when the degree of the numerater isimore than the degree of the denominator.
In such a case the equation of the slant asymptote can be found by long division.

For finding y = kx + b we use next formulas:
k= lim 1X)
X—>to X

b= lim (f(x)— kx).

E. Intervals of Increase.or Decrease Use the | /D Test. Compute f'(x) and find the inter-
vals on which it is positive (#7is increasing) and the intervals on which f'(x) is negative(f is

decreasing).
F. Local Maximum and Minimum Values Find the critical numbers of f [the numbers ¢
where f'(c) = 07orif'(c)d oes not exist]. Then use the First Derivative Test. If f'(x) changes

from positive to negative at a critical numberc , thenf(c) is a local maximum. Iff’(x) changes
from negativetopositive at ¢, then f(c) is a local minimum. Although it is usually preferable
to use the First Derivative Test, you can use the Second Derivative Test if f'(c)=0 and
f(e) #0. Then f"(c) > O implies that f(c) is a local minimum, whereas f"(c) < O implies
that f(e) is a local maximum.

G. Concavity and Points of Inflection Compute f"(x) and use the Concavity Test. The
curve is concave upward where f"(x) > 0 and concave downward where f"(x) < 0. Inflection

points occur where the direction of concavity changes.
H. Sketch the Curve Using the information in items A-G, draw the graph. Sketch the as-
ymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and inflection

points. Then make the curve pass through these points, rising and falling according to E, with
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concavity according to G, and approaching the asymptotes. If additional accuracy is desired
near any point, you can compute the value of the derivative there. The tangent indicates the
direction in which the curve proceeds.

Example 1 Use the guidelines to sketch the curve y = — T
X —
Solution

A. The domain is

D ={x|x* =1%0} = (=o0,~1) U (~11) U (1+0).

B. The x-and y -intercepts are both 0.
C. Since f(—x) = f(x), the function is even. The curve is symmetric about the y -axis.
D.

. 2x? o 2x?
lim > = lim —2:2.
x>t x4 —1 x—o*o X

Therefore the line y = 2 is a horizontal asymptote.
Since the denominator is 0 when x = +1, we compute the following limits:

. 2x? . 2x? b 2x? . 2x?

lim = +oo, lim =—o0, lim —; =—o0, [im —

x—>-1 X =1 x—>-1" x° =1 x—>1Xx5 -1 x->1" x° =1

Therefore the lines x = —1 and x =1 are vertical,asymptotes.
2 2 2
k= tim %) _ jim 22X = x = lim ix = lim 2~ jim 2
X—to X X—t0 X< —1 x—to XV — X Xt X

It's means that y = f(x)hasn'’t a slant asymptote.
E.

, 252 YL 4xX(X2 —1)—2x-2x 4x
f(x)=£2 ]: ( ) 2 =- 7"
N e
Since f'(x) >0 whensx< Ovand f'(x) <0 whenx > 0,f is increasing on (—o0,—1) and
(—1,0) and decreasing on (0,1) and (1,+x).
F. The only critical number is x = 0. Since f'(x) changes from positive to negative at 0,

f(0) = 0 is a localmaximum by the First Derivative Test.
G.

!

L ax :_4.(x2—1)2—x.2.(x2—1).2x:_4'X2_1_16X2 )

(x2 — 1)2 (x2 — 1)4 (x2 —1)3
=i

Since 3x2 +1> 0 for all x, we have
f'(x)>0 < x*—1>0 < |x|>1

=4
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and

f'(x)<0 < x*-1<0 < x| <1.
Thus the curve is concave upward on the intervals (—c0,—1) and (1,+cc) and concave

downward on (—1,1). It has no point of inflection since 1 and -1 are not in the domain of f .

H. Using the information in E-G, we finish the sketch in Figure 4.9.

VA
[ |- |
| |
| |
y=2 | |
| |
| o] | X
l [ X
| |
|,f |I
| | ||
x=-1] | wx§
Fig. 4.9.
Exercise Set 17
Use the guidelines of this section to sketch the curve.
1 2 P-32
1. y= _4_> _X
y x4_1 2 y——(x+2J 3 y x2
2 3x—2 2
4, y=20FD" 540~ o Xz6x+9
X +2x+4 X (x=1)
_x3—27x+54 8 - 4 9 v= 4
1. y= X3 9 x*+2x-3 i 342x—x7
P42x—7 12—3x* —8x
10, y=X T2X=7 11, p=22% 12. y=
X2 4213 sy xP 4
C3xt+1 14, 54 _8(x-1)
13 y=" AT (x+1)°
-2 X +4 18, o 12%
16. y= e 17. y= = : 91
Literature

1 Stewart James Calculus Early Transcendental. 2008. pp. 1308.
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