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1 FUNCTIONS 

1.1 Functions 
Definition Let X and Y  be sets. A function from X  to Y  is a rule or method for assigning 

to each element in X  a unique element in Y . 

 
Fig.1.1 

A function may be given by a formula. In daily life a function is often indicated by a table. 
A function is often denoted by the symbol f . The element that the function assigns to the 

element x  is denoted ( )f x  (read f  of x ). In practice, though, almost everyone speaks inter-

changeably of the function f  or the function ( )f x . 

Example 1 Let 2( )f x x  for each real number x. Compute (a) (3)f , (b) (2)f  and (c) 

( 2)f  . 

Solution 

(a) 2(3) 3 9f   . 

(b) 2(2) 2 4f   . 

(c) 2( 2) ( 2) 4f     . 

Definition Let X  and Y  be sets and let f  be a function from X  to Y . The set X  is 
called the domain of the function. If ( )f x y , y  is called the value of f at x . The set of all 

values of the function is called the range of the function. 
When the function is given by a formula, the domain is usually understood to consist of all 

the numbers for which the formula is defined. 
The value ( )f x  of a function f  at x  is also called the output; x  is called the input or ar-

gument. If ( )y f x , the symbol x  is called the independent variable and the symbol y  is 

called the dependent variable. 
If both the inputs and outputs of a function are numbers, we shall call the function numeri-

cal. In some more advanced courses such a function is also called a real function of a real var-
iable. 

If both the domain and range of a function consist of real numbers, it is possible to draw a 
picture that displays the behavior of the function. 

Definition Graph of a numerical function. Let f  be a numerical function. The graph of f 
consists of those points ( , )x y  such that y=f (x). 

For instance, the graph of the squaring function 2( )f x x  consist of the points( , )x y  such 

that 2y x . It is the parabola shown later.  

Not every curve is the graph of a function. For instance, the curve in Fig. 1.2 is not the 
graph of a function. The reason is that a function assigns to a given input a single number as 
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the output. A line parallel to they  axis therefore meets the graph of a function in more than 

one point. This observation provides a visual test for deciding whether a curve in a plane is the 
graph of a function ( )y f x . If some line parallel to the y  axis meets the curve more than 

once, then the curve is not the graph of a function. Otherwise it is the graph of a function. The 
curve in Fig. 1.3 is the graph of a function. 

 
                               Fig.1.3.                                                                   Fig.1.2. 

Example 2 Let f be the squaring function 2( )f x x . Compute (a) (2 3)f   and (b) 

(2 )f h . 

Solution (a) For any number x , ( )f x  is the square of that number. Thus 

2 2(2 3) (2 3) 5 25f       

(b) Similarly, 
2 2(2 ) (2 ) 4 4f h h h h      . 

Warning. A common error is to assume that (2 3)f   is somehow related to (2) (3)f f . 

For most functions there is no relation between the two numbers. In the case of the function 
2x , 2 2(2) (3) 2 3 4 9 13f f      , but, (2 3) 25f   . 

Example 3 Let f  be the cubing function 3( )f x x . Evaluate the difference 

(2 0.1) (2)f f  . 

Solution  
3 3(2 0.1) (2) (2.1) (2) (2.1) 2 9.261 8 1.261f f f f         . 

Exercise Set 1 
In Exercises 1 to 10 graph the functions. 

1. ( ) 3f x x . 2. ( ) 2f x x  . 3. 2( ) 3f x x . 

4. 2( ) 1f x x  . 5. 2( ) 1f x x  . 6. 2( ) 2 3f x x  . 

7. 2( )f x x x  . 8. 2( ) 2 1f x x x   . 9. 
2

2
( )

1
f x

x



. 

10. 
2

1
( )

1 2
f x

x



.   

In Exercises 11 to 20 describe the domain and range of each function. 

11. ( )f x x . 12. ( ) 3f x x  . 13. 2( ) 4f x x  . 
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14. 2( ) 4f x x  . 15. 
2

2
( )f x

x
 . 16. 

2
( )

1
f x

x



. 

17. 
3

1
( )f x

x
 . 18. 

4

1
( )f x

x
 . 19. 

1
( )f x

x
 . 

20. 
2

2
( )

1
f x

x



.   

In each of Exercises 21 to 24 compute as decimals the outputs of the given function for the 
given inputs. 
21. ( ) 1f x x  : (a)-1; (b) 3; (c) 1.25; (d) 0. 

22. 
2

( )
1

f x
x




: (a) -3; (b) 3; (c) 9; (d) 99. 

23. 3( )f x x : (a) 1+2; (b) 4-1. 

24. 
2

2
( )f x

x
 : (a) 5-3; (b) 4-6. 

In Exercises 25 to 30 for the given functions evaluate and simplify the given expressions. 
(Assume that no denominator is 0.) 

25. 3( )f x x : ( 1) ( )f a f a  . 

26. 
1

( )f x
x

 : ( ) ( )f a h f a  . 

27. 
2

1
( )f x

x
 : 

( ) ( )f d f c

d c




. 

28. 
1

( )
2 1

f x
x




: 
( ) ( )f x h f x

h

 
. 

29. 
1

( )f x x
x

  : 
( ) ( )f d f c

d c




. 

30. 
1

( ) 3f x
x

  : 
( ) ( )f x h f x

h

 
. 

31. Graph ( ) ( 1)( 1)f x x x x   . 

(a) For which values of x  is ( ) 0f x  ? 

(b) Where does the graph cross the x  axis? 
(c) Where does the graph cross the y  axis? 

1.2 Composite Functions 
This section describes a way of building up functions by applying one function to the output 

of another. For instance, the function 2 100(1 )y x   is built up by raising 21 x  to the one-

hundredth power. That is, 100y u , where 21u x  . 

The theme common to these two examples is spelled out in the following definition. 
Definition (Composition of functions) Let f  and g  be functions. Suppose that x  is such 

that ( )g x  is in the domain of f . Then the function that assigns to x  the value ( ( ))f g x  is 

called the composition of f  and g . It is denoted f g . 
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Thus if ( )g x u  and ( )f u y , then ( )( )f g x y . ( f g  is read as f  circleg  or as 
f  composed with g ). In practical terms, the definition says: "To compute f g , first apply g  
and then apply f  to the result". 

A function can be the composition of more than two functions. For example, 2 5(1 )x  is 

the composition of three functions. First 21 x  is formed; then the fifth power; then a square 

root. More formally, the assertion that 2 5(1 )y x   is the same as saying that y u , 
5u v  and 21v x  . 

Example 1 Write 
2

2xy   as a composition of functions. 
Solution  

2uy  , where 2u x . 

Example 2 Let ( ) 2 1f x x   and 2( )g x x . Compute ( )( )f g x  and ( )( )g f x . Are 
they equal? 

Solution  
2 2( )( ) ( ( )) ( ) 1 2f g x f g x f x x    . 

2( )( ) ( ( )) (1 2 ) (1 2 )g f x g f x g x x     . 

Since the function 2(1 2 )x  is not equal to 21 2x , f g  is not equal to g f . This 
shows thatf g  is not necessarily equal to g f . 

Example 3 Let ( )f x x  . Compute ( )( )f f x . 
Solution 

( )( ) ( ( )) ( ) ( )f f x f f x f x x x       . 
Thus ( )( )f f x x . 
Certain functions behave nicely when composed with the function x . That is, their values 

at x  are closely related to their values at x . The following definitions make this precise. 

Definition (Even function) A function f  such that ( ) ( )f x f x   is called an even function 
(See Figure 1.4). 

Consider, for instance, 4( )f x x . We have  
4 4( ) ( ) ( )f x x x f x     . 

Thus 4( )f x x  is an even function.  

In fact, for any even integer n , ( ) nf x x  is an even function (hence the name). 
Definition (Odd function) A function f  such that ( ) ( )f x f x    is called an odd func-

tion(See Figure 1.5). 

The function 3( )f x x  is odd since 
3 3( ) ( ) ( )f x x x f x       . 

For any odd integer n , ( ) nf x x  is an odd function. 

Most functions are neither even nor odd. For instance, 3 4x x  is neither even nor odd 

since 3 4 3 4( )x x x x     , which is neither 3 4x x  nor 3 4( )x x  . However, many 
functions used in calculus happen to be even or odd. The graph of such a function is symmet-
ric with respect to the y  axis or with respect to the origin, as will now be shown. 
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Consider an even function f . Assume that the point ( , )a b  is on the graph of f . That 

means that ( )f a b . Sincef  is even, ( )f a b  . Consequently, the point ( , )a b  is also 

on the graph of f . In other words, the graph of an even function is symmetric with respect to 
the y  axis. 

 
                             Fig. 1.4                                   Fig. 1.5 

Exercise Set 2 
In each of Exercises 1 to 4 find the function ( )y f x  defined by the composition of the 

given functions. 

1. 3y u , 2u x . 

2. 21y u  , 1u x  . 

3. y u , 1 2u v  , 3v x . 

4. 
1

y
u

 , 3u v  , 2v x . 

1.3 One-to-one Functions and Their Inverse Functions 
With some functions, "the output determines the input". For instance, the cubing function, 

3( )f x x , has this property. If we are told that the output of this function is, say, 64, then we 

know that the input must have been 4. However, the squaring function, 2( )f x x , does not 

have this property. If we are told that output of this function is, say, 25, then we do not know 

what the input is. It could be 5 or -5, since 25 25  and 2( 5) 25  . 

Definition A function that assigns distinct outputs to distinct inputs is called a one-to-one 
function. 

For instance, 3x  is a one-to-one function, but 2x  (with domain taken to be the entire axis) 
is not one-to-one. 

The graph of one-to-one numerical function has the property that every horizontal line 
meets it in more than one point. To see why, consider the line y k  in Fig. 1.6. 

 
Fig. 1.6 
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If it meets the graph of a functionf  in at least two distinct points, say 1( , )x k  and 2( , )x k , 

then 1( )f x k  and 2( )f x k . This means that is not a one-to-one function, since the out-

puts corresponding to the inputs 1x  and 2x  are equal, namely, k . 

On the other hand, if each horizontal line meets the graph of a functionf  in more than one 
point, then f  is one-to-one. 

Definition If 1 2( ) ( )f x f x  whenever 1 2x x , then f  is an increasing function. If 

1 2( ) ( )f x f x  whenever 1 2x x , then f  is a decreasing function. 

 
Fig. 1.7 

These are illustrated in Fig. 1.7. (These two types of functions are also called monotonic.) 

The function 2( )f x x  is not increasing if its domain is taken to be the entire x  axis. 

However, it is an increasing function if it is considered only for 0x  . 
Definition Let ( )y f x  be a one-to-one function. The function g  that assigns to each 

output of f  the corresponding unique input is called the inverse of f . That is, if ( )y f x , 

then ( )x g y . 

For example, 3y x  is a one-to-one function. Its inverse is found by solving for x  in terms 

of y ; that is, 3x y . 

Example 1 Determine the inverse of the "doubling" function f  defined by ( ) 2f x x . 

Solution If 2y x , there is only one value of x  for each value of y , and it is obtained by 

solving the equation 2y x  for x : 
2

y
x  . Thus f  is one-to-one and its inverse function g  

is the "halving" function: If y  is the input in the function g , then the output is 
2

y
. 

For instance, (3) 6f   and (6) 3g  . Thus (3,6)  is on the graph of f , and (6,3)  is on 

the graph of g . Since it is customary to reserve the x  axis for inputs, we should write the for-

mula for g , the "halving" function, as ( )
2

x
g x  . 

Example 2 One graph is obtained from the other by reflecting it across the line y x . This 

can be done because, if ( , )a b  is on the graph of one function, then ( , )b a  is on the graph of 

the other. If you fold the paper along the line y x , the point ( , )b a  comes together with the 

point ( , )a b , as you will note in Fig. 1.8. This relation between the graphs holds for any one-to-

one function and its inverse. 
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Fig. 1.8 

These examples are typical of the correspondence between a one-to-one function and its 
inverse. Perhaps the word "reverse" might be more descriptive than "inverse". One final matter 
of notation: we have used the letter g  to denote the inverse of f . It is common to use the 

symbol 1f   (read as " f  inverse") to denote the inverse function. We preferred to delay its use 
because its resemblance to the reciprocal notation might cause confusion. It should be clear 

from the examples that 1f  , does not mean to divide 1 by f . The symbol inv f  would be un-

ambiguous. However, it is longer than the symbol 1f   and the weight of tradition is defied 1f  . 
Inverse functions come in pairs, each reversing the effect of the other. This table lists some 

pairs of inversely related functions: 

Function f  Inverse Function g  

Cubing, 3y x . Cube root, 3x y . 

Cube root, 3y x . Cubing, 3x y . 

Squaring, 2y x , 0x  . Square root, x y , 0y  . 

Square root, y x , 0x   Squaring, 2x y , 0y  . 

2 LIMITS AND CONTINUOUS FUNCTIONS 
2.1 The Limit of a Function 

Three examples will introduce the notion of the limit of a numerical function. After them, the 
concept of a limit will be defined. 

Example 1 Let   22 1.f x x   What happens to  f x  as x  is chosen closer and closer 

to 3? 

Solution Let us make a table of the values of  f x  for some choices of x  near 3. When 

x  is close to 3, 22 1x   is close to 22 3 1 19.    We say that “the limit of 22 1x   as x  
approaches 3 is 19” and write 

 2

3
lim 2 1 19.
x

x


   

Example 1 presented no obstacle. The next example offers a slight challenge. 

Example 2 Let      3 21 / 1 .f x x x    Note that this function is not defined when 

1x  , for when x  is 1, both numerator and denominator are 0. But we have every right to 

ask: How does  f x  behave when x  is near 1 but is not 1 itself? 
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Solution First make a brief table of values of  ,f x  to four decimal places, for x  near 1. 

Choose some x  larger than 1 and some x  smaller than 1. For instance. 

 
3

2

1.01 1 1.030301 1 0.030301
1.01 1.5075.

1.0201 1 0.02011.01 1
f

 
   


 

(If you have a calculator handy, evaluate    3 21 / 1x x   at 1.001 and 0.999 as well)  

There are two influences acting on the fraction    3 21 / 1x x   when x  is near 1. On 

the one hand, the numerator 3 1x   approaches 0; thus there is an influence pushing the frac-

tion toward 0. On the other hand, the denominator 2 1x   also approaches 0; division by a 
small number tends to make a fraction large. How do these two opposing influences balance 
out? 

The algebraic identities 

  

  

3 2

2

1 1 1

1 1 1

x x x x

x x x

    

   
 

enable us to answer the question. 

Rewrite the quotient    3 21 / 1x x   as follows: When 1,x   we have 

  

  

23 2

2

1 11 1
,

1 1 11

x x xx x x

x x xx

    
 

  
 

so the behavior of    3 21 / 1x x   for x  near 1, but not equal to 1, is the same as the be-

havior of    2 1 / 1x x x    for x  near1, but not equal to 1. Thus 

3 2

21 1

1 1
lim lim .

11x x

x x x

xx 

  



 

Now, as x  approaches 1, 2 1x x   approaches 3 and 1x  approaches 2. Thus 
2

1

1 3
lim

1 2x

x x

x

 



 

from which it follows that 
3

21

1 3
lim

21x

x

x





 

Note that 
3

1.5,
2
  which is closely approximated by  1.01f  and  0.99 .f   

The arrow   will stand for “approaches”. According to Example 2, as 

1x  , 
3

2

1 3
.

21

x

x





 

This notation will be used in the next example and often later. 

Ре
по
зи
то
ри
й Б
рГ
ТУ



11 

Example 3 Consider the function f  defined by ( )
x

f x
x

 .  

The domain of this function consists of every number except 0. For instance, 
3 3

(3) 1
3 3

f     

and 
3 3

( 3) 1
3 3

f
 

    


 

When x is positive, ( ) 1f x  . When x is negative, ( ) 1f x   . This is shown in Fig. 2.1. 

The graph does not intersect the y  axis, since f  is not defined for 0x  . The hollow circles 

at (0,1)  and (0, 1)  indicate that those points are not on the graph. What happens to ( )f x  as 

0x  ?  

 
Fig. 2.1 

Solution As 0x   through positive numbers, ( ) 1f x   since ( ) 1f x   for any positive 

number. When x  is near 0, it is not the case that ( )f x  is near one specific number.  

Thus  
0

lim
x

f x


does not exist, that is, 
0

lim
x

x

x
 does not exist. However, if 0a  , 

 lim
x a

f x


 does exist, being 1 whena  is positive and -1 when a  is negative. Thus  lim
x a

f x


 

exists for all a  other than 0. 
Whether a functionf  has a limit at a  has nothing to do with ( )f a  itself. In fact, a might not 

even be in the domain of f . See, for instance, Examples 2 and 3. In Example 1, 3a   hap-
pened to be in the domain of f , but that fact did not influence the reasoning. It is only the be-
havior of ( )f x  for x  near a  that concerns us. 

These three examples provide a background for describing the limit concept which will be 
used throughout the text. 

Consider a functionf  and a number a  which may or may not be in the domain of f . In or-
der to discuss the behavior of ( )f x  for x  near a , we must know that domain of f  contains 

numbers arbitrarily close to a . Note how this assumption is built into each of the following def-
initions. 

Definition( Limit of  f x  at a) Let f  be a function and a  some fixed number. Assume that 

domain of f  contains open intervals ( , )c a  and ( , )a b , as shown in Fig. 2.2. If there is a num-

ber L  such that as x  approachesa , either from the right or from the left,  f x  approach-

esL , thenL  is called the limit of  f x  as x  approaches a . This is written 

Ре
по
зи
то
ри
й Б
рГ
ТУ



12 

 lim
x a

f x L


  

or  

 f x L    as  .x a  

 
Fig. 2.2 

Definition( Right-hand limit of  f x  at a ) Let f  be a function and a  some fixed number. 

Assume that the domain of f  contains as open interval ( , )a b . If, as x  approaches a  from 

the right,  f x  approaches a specific number L , then L  is called the right-hand of  f x  as 

x  approaches a . 
This is written 

 lim
x a

f x L


  

or 

as ,x a        .f x L  

The assertion that  

 lim
x a

f x L



 

is read "the limit of f of x  as x  approaches a ".(See Fig.2.3) 
The left-hand limit is defined similarly. The only differences are that the domain of f  must 

contain an open interval of the form ( , )c a  and  f x  is examined as x  approaches a  from 

the left.(See Fig.2.4) 
The notations for the left-hand limit are 

 lim
x a

f x L


  

or    as ,x a       .f x L  

 
Fig. 2.3                                     Fig 2.4 

As Example 3 showed 
0

lim 1
x

x

x
    and 

0
lim 1
x

x

x
  . 

We could also write, for instance. 
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As 0x  , 1
x

x
 . Note that if both the right-hand and the left-hand limits of f  exist at 

a  and are equal, then  lim
x a

f x


 exists. But if the right-hand limits are not equal, then 

 lim
x a

f x


 does not exist. For instance, 
0

lim
x

x

x
 does not exist. 

By contrast, the tamest functions are the “constant” functions. If, say, a function L  is con-

stant, then  f x L  for all x . We have 

 lim .
x a

f x L


  

It may seem strange to say that “the limit of L  is L ,” but in practice this offers no difficulty. 
For instance, 

2

25 5

1
lim lim 1 1

1x x

x

x 


 


 

and  
3 3

lim 1 lim 1 1.x

x x 
   

 
Fig. 2.5 

Exercise Set 3 
In Exercises 1 to 14 find the limits, all of which exist. Use intuition and, if needed, algebra. 

1.  
5

lim 7
x

x


  2.  
1

lim 4 2
x

x


  3. 
2

2

4
lim

2x

x

x




 4. 

2

3

9
lim

3x

x

x




 

5. 
4

31

1
lim

1x

x

x




 6. 

6

31

1
lim

1x

x

x




 7. 

3

1
lim

2x x 
 8. 

5

3 5
lim

4x

x

x


 

9. 
3

lim 25
x

 10. 2

3
lim
x




  11. 
0

lim
x

x


 12.
1

lim 4 4
x

x


  

13.
1

1
lim

1x

x

x




 14.

1

1
lim

1x

x

x




   

In Exercises 15 to 22 decide whether the limits exist and, if they do, evaluate them. 

15. 
 2

1

1 1
lim
h

h

h

 
 16. 

 2

0

1 1
lim
h

h

h

 
 

17. 
2

1 1

2lim
2x

x
x




 18. 

3

1 1

2lim
2x

x
x




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19. 
0

4 2
lim
x

x

x

 
 

      (Hint: Rationalize the numerator.) 

20. 
0

4 2
lim
x

x

x

 
 

21.  
4

lim 4 2
x

x


   22. 
0

lim 64x
x

 

2.2 Computations of Limits 
Certain frequently used properties of limits should be put on the record. 
Theorem Let f  and g  be two functions and assume that 

 lim
x a

f x


      and          lim
x a

g x


 

both exist. Then 

1.         lim lim lim .
x a x a x a

f x g x f x g x
  

    

2.         lim lim lim .
x a x a x a

f x g x f x g x
  

    

3.    lim lim
x a x a

kf x k f x
 

    for any constant k . 

4.        lim lim lim .
x a x a x a

f x g x f x g x
  

  

5. 
 
 

 

 

lim
lim

lim
x a

x a
x a

f xf x

g x g x





   if  lim 0.
x a

g x


  

6.       
 lim

lim lim x a
g x

g x

x a x a
f x f x 

 
   if  lim 0.

x a
f x


  

Example 1 Suppose that  



3

lim 4
x

f x  and  
3

lim 5;
x

g x


  discuss    
3

lim /
x

f x g x .  

Solution By property 5,    
3

lim /
x

f x g x  exists and 
 
 3

4
lim .

5x

f x

g x
   

No further information about f  and g  is needed to determine the limit of    /f x g x  as 

3.x    

Example 2 Suppose that  



3

lim 0
x

f x  and  



3

lim 0;
x

g x  discuss    
3

lim / .
x

f x g x   

Solution In contrast to Example 1, in this case property 5 gives no information, since 

 



3

lim 0.
x

g x  It is necessary to have more information about f  and .g   

For instance, if  

  2 9f x x      and     3,g x x   

then   

 
3

lim 0
x

f x


    and   
3

lim 0
x

g x


  

and the limit of the quotient is  
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  2

3 3

3 39
lim lim

3 3x x

x xx

x x 

 


 
 =  

3
lim 3 6.
x

x


   

Loosely put, “when x  is near 3, 2 9x   is about 6 times as large as 3."x    

A different choice of f  and g  could produce a different limit for the quotient    / .f x g x  

To be specific, let 

   
2

3f x x      and     3.g x x   

Then   
3

lim 0
x

f x


    and    
3

lim 0.
x

g x


   

And the limit of the quotient is  

 
 

 


  



2

3 3

3
lim lim 3 0

3x x

x
x

x
. 

In this case we could say “ 23x   approaches 0 much faster than does 3,x   when 

 3x .”  

In short, the information that  



3

lim 0
x

f x  and  



3

lim 0
x

g x  is not enough to tell us 

how    /f x g x  behaves as 3.x    

Sometimes it is useful to know how  f x  behaves when x  is a very large positive number 

(or a negative number of large absolute value). Example 3 serves as an illustration and intro-
duces a variation on the theme of limits. 

Example 3 Determine how   1/f x x  behaves for (a) large positive inputs and (b) nega-

tive inputs of large absolute value. 

Solution First make a table of values as shown in the margin. As x  gets arbitrarily large,
1

x
 

approaches 0. 
(a) This is similar to (a). For instance, 

 1000 0.001.f     

As negative numbers x  are chosen of arbitrarily large absolute value, 
1

x
 approaches 0. 

(See Fig.2.6) 

 
Fig.2.6 
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Rather than writing “as x  gets arbitrarily large through positive values,  f x  approaches 

the numberL ,” it is customary to use the shorthand 

 lim .
x

f x L



 

This is read: "as x  approaches infinity,  f x  approaches L ,” or “the limit of  f x  as x  

approaches infinity isL .” For instance, 
1

lim 0.
x x

  

More generally, for any fixed positive exponent a ,  
1

lim 0.
ax x
  

Similarly, the assertion that “as negative numbers x  are chosen of arbitrarily large absolute 

value,  f x  approaches the number L ” is abbreviated to  

 lim .
x

f x L


  

For instance, 
1

lim 0.
x x

  

The six properties of limits stated at the beginning of the section hold when “ "x a  is re-
placed by " "x    or by " ."x     

It could happen that as ,x  a function  f x  becomes and remains arbitrarily large 

and positive. For instance, as 3,x x  gets arbitrarily large. The shorthand for this is 

 lim .
x

f x


   

For instance, 
3lim .

x
x


   

It is important, when reading the shorthand 

 lim .
x

f x


   

to keep in mind that " "  is not a number. The limit does not exist. 
Properties 1 to 6 cannot, in general, be applied in such cases. Other notations, such as 

 


 lim
x

f x   or  


 lim
x

f x  are defined similarly. For instance,  

3lim .
x

x


   

It can be shown that if, as  ,x f x   and   0,g x L   then 

   


 lim .
x

f x g x  This fact is used in the next example. 

Example 4 Discuss the behavior of 3 22 11 12x x x   when x  is large. 

Solution First consider x  positive and large. The three terms, 3 22 , 11 ,x x  and 12x , all 

become of large absolute value. To see how the function 3 22 11 12x x x   behaves for 

large positive x , factor out 3 :x   
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3 2 3
2

11 12
2 11 12 2 .x x x x

x x

 
     

 
 

Now, since 
11

x
 and 

2

12
0

x
 as ,x   

2

11 12
lim 2 2.
x x x

 
   

 
 

Moreover, as 3, .x x   Thus 

3
2

11 12
lim 2 ;
x

x
x x

 
    

 
 

Hence   2lim 2 11 12 .
x

x x x


      

Now consider x  negative and of large absolute value. The argument is similar. Use Eq. (1), 

and notice that 3limx x    and 

2

11 12
lim 2 2.
x x x

 
   

 
 

It follows that     3 2lim 2 11 12 .
x

x x x


      

Example 5 Determine how      3 2 3 26 10 2 / 2 5f x x x x x x       behaves for 

arbitrarily large positive number x . 

Solution As x  gets large, the numerator 3 26 10 2x x x    grows large, influencing 
the quotient to become large. On the other hand, the denominator also grows large, influenc-
ing the quotient to become small. An algebraic device will help reveal what happens to the 
quotient. We have 

 

3
3 2 2 3 2 3

3 2
3

33

6 10 2 6 10 21 1
6 10 2

1 51 52 5 22

x
x x x x x x x x xf x

x x x
x xx x

 
            
      
 

  for 0.x    

Now we can see what happens to  f x  when x is large. 

As x  increases,    2 36 / 0,10 / 0,2 / 0,1/ 0x x x x  and 35 / 0.x    
Thus  

 
1 0 0 0 1

.
2 0 0 2

f x
  

 
 

 

So, as x  gets arbitrarily large through positive values, the quotient 

   3 2 3 26 10 2 / 2 5x x x x x      approaches 
1

.
2

 In short, 

3 2

3 2

6 10 2 1
lim .

22 5x

x x x

x x

  


 
 

The technique used in Example 5 applies to any function that can be written as the quotient 
of two polynomials. Such a function is called a rational function. 
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Let  f x  be a polynomial and let nax  be its term of highest degree. Let  g x  be another 

polynomial and let mbx  be its term of highest degree. 
Then  

 
 

lim lim
n

mx x

f x ax

g x bx 
           and      

 
 

lim lim .
n

mx x

f x ax

g x bx 
  

(The proofs of these facts are similar to the argument used in Example 5.) In short, when 
working with the limit of a quotient of two polynomials as x    or as ,x   disregard 
all terms except the one of highest degree in each of the polynomials. The next example illus-
trates this technique. 

Example 6 Examine the following limits: 

(a) 
4 2

4

3 5
lim

10 5x

x x

x x



  
          (b) 

3

4 3

16
lim

5 5x

x x

x x x



 
  

(c) 
4

3 2
lim

6x

x x

x x




  

Solution By the preceding observations, 

(a)  
4 2 4

4 4

3 5 3
lim lim lim 3 3.

10 5x x x

x x x

x x x  


    

   
 

(b) 
3 3

4 3 4

16 1
lim lim lim 0.

55 5 5x x x

x x x

xx x x x  


  

 
 

(c) 
4 4

3 2 3
lim lim lim .

66 6x x x

x x x x

x x x  


   


 

Example 7 Examine  2lim .
x

x x x


    

Solution As ,x  both 2x x  and x  approach .   It is not immediately clear how 

their difference 2x x x   behaves. It is necessary to use a little algebra and rationalize 
the expression: 

     
 

   

 

  



 
     

 

 
   

    

 
 

2

2 2

2

2 2

2 2

lim lim

lim lim lim
1 1/ 11 1/

1 1
lim .

21 1/ 1

x x

x x x

x

x x x
x x x x x x

x x x

x x x x x

x xx x x x x x

x

 

Example 8 How does   1/f x x  behave when x  is near 0? 

Solution The reciprocal of a small number x  has a large absolute value. 
For instance, when 0.01,1/ 100;x x   when 0.01,1/ 100.x      Thus, as x  ap-
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proaches 0 from the right, 
1

x
, which is positive, becomes arbitrarily large. The notation for this 

is 
0

1
lim .
x x 

    

As x  approaches 0 from the left, 
1

x
, which is negative, has arbitrarily large absolute val-

ues. The notation for this is
0

1
lim .
x x

    

The many different types of limits all have the same flavor. Rather than spell each out in de-
tail, we list some typical cases. 

 

Notation In Words Concept Example 

 lim 1.
x a

f x


   As x  approaches a , 

 f x  approaches L . 
 f x  is defined in 

some open inter-
vals( , )c a  and( , )a b  

and, as x  approaches 
a from the right or from 

the left,  f x  ap-

proaches L . 

 
3

lim 2 1 7
x

x


    

 lim .
x

f x L


   As x  approaches 
(positive) infinity, 

 f x  approachesL  

 f x  is defined for all 

x  beyond some num-
ber and, as x  gets 
large through positive 

values,  f x  ap-

proaches L . 

1
lim 0
x x

   

 lim
x

f x L


   As x  approaches 
negative infinity, 

 f x  approachesL  

 f x  is defined for all 

x  to the left of some 
number and, as the 
negative number x  
takes on large absolute 

values,  f x  ap-

proachesL . 

1
lim 1
x

x

x


   

 lim
x

f x


    As x  approaches in-

finity,  f x  ap-

proaches positive in-
finity. 

 f x  is defined for all 

x  beyond some num-
ber and, as x  gets 
large through positive 

values,  f x  becomes 

and remains arbitrarily 
large and positive. 

3lim
x

x


    Ре
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 lim
x a

f x


    As x  approaches a  

from the right,  f x  

approaches (positive) 
infinity. 

 f x  is defined in 

some open interval 
( , )a b , and, as x  ap-

proaches a  from the 

right,  f x  becomes 

and remains arbitrarily 
large and positive. 

0

1
lim
x x

   

 lim
x a

f x


    As x  approaches 
a from the right, 

 f x  approaches 

negative infinity. 

 f x  is defined in 

some open interval 
( , )a b , and, as x  ap-

proaches a  from the 

right,  f x  becomes 

negative and  f x  

becomes and remains 
arbitrarily large. 

1

1
lim

1x x
 


  

 lim
x a

f x


    As x  approaches a , 

 f x  approaches 

(positive) infinity. 

 f x  is defined for 

some open intervals 
( , )c a  and ( , )a b , and, 

as x approaches a  

from either side,  f x  

becomes and remains 
arbitrarily large and 
positive. 

20

1
lim
x x

    

Exercise Set 4 
In Exercises 1 to 26 examine the given limits and compute those which exist. 

1.  5 4lim 100
x

x x


  2.  5 2lim 4 35
x

x x


   

3.  5 3lim 6 21
x

x x


  4.  6lim 19 5 300
x

x x


   

5.  3lim
x

x


  6.  4lim
x

x


  

7. 
3

10

6
lim

2 5 8x

x x

x x



 
 8. 

9

10

100 22
lim

21x

x

x




 

9. 
5 21066 1492

lim
2 1984x

x x x

x

 


 10. 

3 2

3

6 5
lim

3 100 1x

x x

x x

 

 
 

11. 
3

4

1
lim

2x

x

x




 12. 

3

10

5 2
lim

7x

x x

x x



 
 

13. 
4

0

1
lim
x x

 14. 
4

0

1
lim
x x
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15. 
3

0

1
lim
x x

 16. 
3

0

1
lim
x x

  

17.  2lim 100
x

x x


   18.  2 2

1
lim 5 3
x

x x


    

19.  2lim 100
x

x x x


   20.  2 2lim 100 50
x

x x x x


    

21. 
24 2 1

lim
3x

x x

x

 
 22. 

29 3
lim

6x

x x

x

 
 

23. 
2

2

4
lim

9 3x

x x

x x




 24. 

2

2

3 1
lim

16 2x

x x

x x

 

 
 

25. 
1

1
lim

1x x 
  26.  

 1

1
lim

1x x 
  

2.3 Asymptotes And Their Use In Graphing 

If  


lim ,
x

f x L  where L  is a real number, the graph of  y f x  gets arbitrarily close 

to the horizontal line y L  as x  increases. The line y L  is called a horizontal asymptote 

of the graph of .f An asymptote is defined similarly if  f x L  as .x     

If  


 lim
x a

f x  or if  


 lim ,
x a

f x  the graph of  y f x  resembles the vertical line 

x a  for x near a. The line x a  is called a vertical asymptote of the graph of f . A similar 

definition holds if  lim
x a

f x
   or if  lim .

x a
f x

    

Fig. 2.7 shows some of these asymptotes. 

 

 
Fig. 2.7 
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Horizontal and Vertical Asymptotes in Graphing 
Some examples of graphing rational functions will show the usefulness of asymptotes. 

Example 1. Using asymptotes, graph   21/ .f x x   

Solution. When 0x  , the function is undefined. However, when x  is near 0, 21/ x  is a 

large positive number, since 2x  is a small positive number, Thus 

20

1
lim .
x x

   

This means that the graph of   21/f x x  approaches the upper part of the vertical as-

ymptote 0x   both from the right and from the left. 
Since 

2

1
lim 0
x x

  and 
2

1
lim 0.
x x

  

The x  axis is a horizontal asymptote. All this information is incorporated in Fig. 2.8. 

 
Fig. 2.8 

Example 2. Graph     2 1 / .f x x x    

Solution. After dividing x  into 2 1,x   we can write 

 
1

.f x x
x

   

When x  is large,  f x  differs from x  by the small quantity 
1

x
. So when x  is large, the 

graph of f  is close to the line .y x  When x  is negative,   1/f x x x   is smaller than 

x , since 
1

x
 is negative. So for x  negative the graph of f  lies below the line .y x  Similar 

reasoning shows that for x  positive the graph of f  lies above the line .y x  

Next search for any vertical asymptotes. Near 0x   the function becomes arbitrarily large. 
In fact. 

0

1
lim
x

x
x

 
   

 
 and 

0

1
lim .
x

x
x

 
   

 
 

The y  axis is a vertical asymptote. The graph in Fig. 2.9 incorporates the information about 

the tilted and vertical asymptotes.  
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Fig. 2.9 

Exercise Set 5 
In Exercises 1 to 14 use asymptotes to sketch the graph of the functions. 

1.  
1

2
f x

x



 2.  

1

3
f x

x



 

3.  
 2

1

1
f x

x



 4.  

 3
1

1
f x

x



 

5. 
2

1
y

x x



 6. 

3

1
y

x x



 

7. 
4 2

1
y

x x



 8. 

3 2

1
y

x x



 

9. 
 

2

1

1

x x
y

x





 10. 

  
 2

1 2

3

x x
y

x x

 



 

11. 
3 2

2

2 4x x x
y

x

  
  12. 

2 4

4

x
y

x





  

 

13. 
3

2 1

x
y

x



 14. 

3

2 1

x
y

x



 

2.4 Equivalent Infinitesimal Functions. The Table of Equivalent Infinitesimal Functions 
The limits evaluated in Sect. 2.1 and 2.2 were found by algebraic means, such as factoring, 

rationalizing, or canceling. But some of the most important limits in calculus cannot be found 
so easily. To reinforce the concept of a limit and also to prepare for the calculus of trigonomet-
ric functions, we shall determine  





0

sin
lim . 

Since both the numerator, sin ,  and the denominator, ,  approaches 0, this is a challeng-
ing limit. 

Theorem 1. Let sin   denote the sine of an angle of   radians. Then 








0

sin
lim 1. 

The Squeeze Principle If       g x f x h x  and  
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   lim lim ,
x a x a

g x L h x
 

   

then  

 


lim .
x a

f x L  

Example 1. Find  lim sin5 / 5 .
x

x x


  

Solution. Observe that as 0,x     5 0.x    Let 5 .x   Thus 

0 0

sin5 sin
lim lim 1.

5x

x

x 



 
   

Example2. Find  
0

lim sin5 / 2 .
x

x x


  

Solution. A little algebra permits one to exploit the result found in Example 1: 

0 0

sin5 sin5 5
lim lim

2 5 2x x

x x x

x x x 
 

0

sin5 5
lim

5 2x

x

x
 

5 5
1 .

2 2
    

From a practical point of view this section showed that if angles are measured in radians, 
then the sine of a small angle is “roughly” the angle itself: that is 

sin .x x  

This is another way of saying that x  is small, the quotient  sin /x x  is close to 1. In en-

gineering and physics sin x   is often replaced by x  when x  is small. Moreover, tgx  may 

also be replaced by x  for small x . This being a reasonable estimate is justified by the fact that 

0

sin
tan coslim lim

x x

x
x x

x x 


0 0

sin
lim lim 1 1 1.

cosx x

x x

x x 

  
     
  

 

So tgx x  for small .x  Similarly, sintgx x  for small x . 

Exercise Set 6 

1. 
0

sin
lim

2x

x

x
 2. 

0

sin2
lim
x

x

x
 3. 

0

sin3
lim

5x

x

x
 

4. 
0

2
lim

sin3x

x

x
 5. 

2

0

sin
lim





 6. 

2

20

sinh
lim
h h

 

7. 
2

0

tan
lim





 

8. 
0

lim cot


 


 
9. 

20

1 cos
lim







 

10. 
3

0

1 cos
lim








 11.

3
0

1 cos
lim








 12. 

2

20

sin
lim
x

x

x
 

13. 
0

1
lim

sin 
 14. 

0

1
lim

sin 
 

 

Example 3. Find 3

0

sin
lim .
x

x

x
  

Solution. As 
sin

0, 1.
x

x
x

   Moreover, the cube root function is continuous. Therefore, 
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33 3

0 0

sin sin
lim lim 1 1.
x x

x x

x x 
    

Example 3 generalizes as follows.  

Let f  be a continuous function. If g  is some other function for which  


lim
x a

g x  exists and 

is in the domain of f  and  g x  is in the domain of f  for x  near a , then 

     lim lim .
x a x a

f g x f g x
 

  

In Example 4,   3f x x  and    sin / .g x x x  

Definition. A function ( )f x  is called infinitesimal function in the point 0x x , if 
0

lim ( ) 0
x x

f x


  

These functions are denoted by small Greek letters ( ( ), ( ), ( )x x x   ) 

Definition. Infinitesimal functions ( )x  and ( )x  are called equivalent infinitesimal functions 

in the point  0x x  , if 
0

( )
lim 1

( )x x

x

x




  

Equivalent infinitesimal functions in the point 0x x are denoted as ( ) ( )x x   

Theorem. Let 1 1( ) ( ), ( ) ( )x x x x     . If 
0

1

1

( )
lim

( )x x

x
L

x




  , then 

0

( )
lim

( )x x

x
L

x




  

The table of Equivalent infinitesimal functions is often used in solving problems. 
sin ( ) ( )x x   

( ) ( )tg x x   

arcsin ( ) ( )x x   

( ) ( )arctg x x   

( ) 1 ( )xe x    

ln(1 ( )) ( )x x    

1
1 ( ) 1 ( )n x x

n
     

Example 4. Find a)
2

20

sin 3
lim

arcsin 5x

x

x
 b)

70

ln(1 4 )
lim

1xx

x

e




 c)

3

20

1 7 1
lim

2x

x

arctg x

 
 

Solution. As 0x , then 2 2 7sin 3 0,arcsin 5 0, ln(1 4 ) 0, 1 0xx x x e       
3 21 7 1 0, 2 0x arctg x     

a) 

 

2
2 2 2 2 2 2

20

2

20

sin 3 0
lim sin 3 (3 ) 9 ,arcsin 5 (5 ) 25

arcsin 5 0

9 9
lim

25 25

x

x

x
x x x x x x

x

x

x





 
          

 

 

 

b) 

 

7

70

0

ln(1 4 ) 0
lim ln(1 4 ) ln(1 ( 4 )) 4 , 1 7

1 0

4 4
lim

7 7

x

xx

x

x
x x x e x

e

x

x





  
                


  
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c) 

 

3 3
3 3 2 2 2

2 20 0

0

1 7 1 0 7
lim 1 7 1 7 , 2 (2 ) 4 lim

2 0 4

7
lim 0

4

x x

x

x x
x x arctg x x x

arctg x x

x

 



                 

 

 

Exercise Set 7 

1. 
3

2 20

sin 2
lim

arcsin 3x

x

x
 2. 

2

20

sin 3
lim

9x

x

tg x
 3. 

0

arcsin
lim

5x

x

arctg x
 4. 

40

ln(1 2 )
lim

1xx

x

e




 

5. 
3

0

ln(1 4 )
lim

1xx

x

e




 6. 2

2

70

3
lim

1xx

tg x

e 
 7. 

20

1 1
lim
x

x

arctg x

 
 8. 

4

2 20

1 8 1
lim

2x

x

tg x

 
 

9. 
2

20

5
lim

2x

x

arctg x
 10. 

3 2

20

1 4 1
lim
x

x

tg x

 
 11. 

3

30

1 7 1
lim

ln(1 6 )x

x

x

 


 12. 

20

7
lim

5x

x

arctg x
 

2.5 Continuity 
Definition (Continuity from the right at a number a ). Assume that ( )f x  is defined at a  and 

in some open interval ( , )a b . Then the function f  is continuous at a  from the right if  

 lim ( )
x a

f x f a


 . 

This means that 

1.  lim
x a

f x


 exists and  

2. that limit is ( )f a  . 

Definition (Continuity from the left at a number a ). Assume that ( )f x  is defined at a  and 

in some open interval ( , )c a . Then the function f  is continuous at a  from the left if  

 lim ( )
x a

f x f a


 . 

This means that 

1.  


lim
x a

f x  exists and 

2. that limit is ( )f a .  

The next definition applies if the function is defined in some open interval that includes the 
number a . It essentially combines the first two definitions. 

Definition (Continuity at a number a ). Assume that ( )f x  is defined in some open interval 

( , )b c  that contains the number a . Then the function f  is continuous at a  if  

 lim ( )
x a

f x f a


 . 

This means that 

1.  lim
x a

f x


 exists and 

2. that limit is ( )f a .  
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This third definition amounts to asking that the function can be continuous both from the 
right and from the left at a . 

Example 1 Let 2( )f x x  for all x . Show that f  is continuous at 3a  .  

Solution. As 3x  , 2( )f x x  approaches 9; that is, 
2

3
lim 9
x

x


 . 

Next, compute (3)f , which is 23  or 9. Since 
3

lim ( )
x

f x


 exists and equals (3)f , f  is con-

tinuous at 3. (In fact, f  is continuous at each real number.) 

Example 2 Let ( )f x x  for 0x  . Show that f  is continuous from the right at 0a  . 

Solution. As the graph of ( )f x x  in Fig.2.10 reminds us, the domain of f  does not 

contain an open interval around 0. It is meaningful to speak of ‘'continuity from the right'' at 0 
but not of ‘'continuity from the left.'' 

 
Fig.2.10 

Since x  approaches 0 as x  approaches 0,  
0

lim 0
x

f x


 . Is this limit the same as 

(0)f ? Since (0) 0 0f    the answer is ‘'yes.'' In short, f  is continuous from the right at 0. 

Definition (Continuous function). Let f  be a function whose domain is the x  axis or is 
made up of open intervals. Then f  is a continuous function if it is continuous at each number 
a  in its domain. 

Thus 2x  is a continuous function. So is 
1

x
, whose domain consists of the intervals ( ,0)  

and (0, ) . Although this function explodes at 0, this does not prevent it from being a contin-

uous function. The key to being continuous is that the function is continuous at each number in 

its domain. The number 0 is not in the domain of 
1

x
. 

Only a slight modification of the definition is necessary to cover functions whose domains 
involve closed intervals. We will say that a function whose domain is the closed interval [ , ]a b  

is continuous if it is continuous at each point in the open interval ( , )a b , continuous from the 

right at a , and continuous from the left at b . Thus 21 x  is continuous on the inter-
val[ 1,1] . 

In a similar spirit, we say that a function with domain [ , )a   is continuous if it is continu-

ous at each point in( , )a   and continuous from the right at a . Thus x  is a continuous 

function. A similar definition covers functions whose domains are of the form ( , ]b .  

Definition (Sum, difference, product, and quotient of functions). Let f  and g  be two func-
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tions. The functions f g , f g , f g  and 
f

g
 are defined as follows. 

( )( ) ( ) ( )f g x f x g x    for x  in the domains of both f  and g . 

( )( ) ( ) ( )f g x f x g x    for x  in the domains of both f  and g . 

( )( ) ( ) ( )f g x f x g x    for x  in the domain of both f  and g . 

( )
( )

( )

f f x
x

g g x

 
 

 
 for x  in the domains of both f  and g , ( ) 0g x  . 

If f  and g  are defined at least in an open interval that includes the number a  and if f  and 

g  are continuous at a , then so are f g , f g  and f g . Moreover, if ( ) 0g a  ,
f

g
 is also 

continuous at a .  
A function obtained by the composition of continuous functions is also continuous. That is, if 

the function g  is continuous at a  and the function f  is continuous at ( )g a , then the compo-

sition, f g  is continuous at a . For instance, the function 
3 21 x  is continuous since both 

the polynomial 21 x  and the cube root function are continuous. 

THEOREM The following types of functions are continuous at every number in their do-
mains: Polynomials, rational functions ,root functions, trigonometric functions, inverse trigono-
metric functions, exponential functions, logarithmic functions. 

If f is defined near a  (in other words, f is defined on an open interval containing a , except 
perhaps at a ), we say that it is discontinuous at a  (or has a discontinuity at a ) if f  is not 
continuous at a . 

Physical phenomena are usually continuous. For instance, the displacement or velocity of a 
vehicle varies continuously with time, as does a person’s height. But discontinuities do occur in 
such situations as electric currents. 

Geometrically, you can think of a function that is continuous at every number in an interval 
as a function whose graph has no break in it. The graph can be drawn without removing your 
pen from the paper. 

Example 3 Where are each of the following functions discontinuous? 

(a) 
2 2

( )
2

x x
f x

x

 



 (b) 2

1
, 0

( )

1, 0

x
f x x

x




 
 

 

(c) 

2 2
, 2

( ) 2

1, 2

x x
x

f x x

x

  
 

  
 

 (d) ( )f x x     

Solution 
(a) Notice that (2)f  is not defined, so f  is discontinuous at 2. Later we’ll see why f  is con-

tinuous at all other numbers. 

(b) Here (0) 1f   is defined but 
20 0

1
lim ( ) lim
x x

f x
x 

  does not exist. (See Example 1 in 

Section 2.3.) So f  is discontinuous at 0. 
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(c) Here (2) 1f   is defined and 

2

2 2 2 2

2 ( 2)( 1)
lim ( ) lim lim lim( 1) 3

2 ( 2)x x x x

x x x x
f x x

x x   

   
    

 
 

exists. But 

2
lim ( ) (2)
x

f x f


  

so f is not continuous at 2. 

(d) The greatest integer function ( )f x x     has discontinuities at all of the integers be-

cause lim
x n

x


   does not exist if n  is an integer. 

Figure 2.11 shows the graphs of the functions in Example 3. In each case the graph can’t 
be drawn without lifting the pen from the paper because a hole or break or jump occurs in the 
graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable because we 
could remove the discontinuity by redefiningf  at just the single number 2. 

[The function ( ) 1g x x   is continuous.] The discontinuity in part (b) is called an infinite 

discontinuity. The discontinuities in part (d) are called jump discontinuities because the 
function “jumps” from one value to another. 

 
Fig. 2.11 

2.6 The Maximum-Value Theorem and The Intermediate-Value Theorem 

Continuous functions have two properties of particular importance in calculus: the ‘'maxi-
mum-value'' property and the ‘'intermediate-value'' property. Both are quite plausible, and give 
a glance at the graph of a ‘'typical'' continuous functions. No proofs will be offered; they de-
pend on the precise definitions of limits given in Secs. 2.7 and 2.8 and are part of an advanced 
calculus course. 

The first theorem asserts that a function is continuous throughout the closed interval [ , ]a b  

at which f  takes on a maximum value. That is, for some number c  in [ , ]a b  

( ) ( )f c f x  

 for all x  in [ , ]a b . 

Similarly, f  takes on a minimum value somewhere in the interval. 
To persuade yourself that this theorem is plausible, imagine sketching the graph of a con-

tinuous function. As your pencil moves along the graph from some point on the graph to some 
other point on the graph, it passes through the highest point and also through the lowest point. 
(See Fig. 2.12.) 
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Fig. 2.12 

The maximum-value theorem guarantees that a maximum value exists, but it does not tell 
how to find it. The problem of finding the maximum value (and minimum value) is discussed in 
Chap. 4. 

Example 1 Let ( ) cosf x x  and [ , ] [0,3 ]a b  . Find all numbers in [0,3 ]  at which f  

takes on a maximum value. Also find all numbers in [0,3 ]  at which f  takes on a minimum 

value. 
Solution. Fig. 2.13 is a graph of cos x  for x  in [0,3 ] . Inspection of the graph shows that 

the maximum value of cos x  for 0 3x    is 1, and it is attained when 0x   and 
when 2x  . The minimum value is -1, which is attained when x   and when 3x  .  

The maximum and minimum values of a function are frequently called its extreme values or 
extremum. Thus the extreme values cos x of  for x  in [0,3 ]  are 1 and -1. 

 
Fig. 2.13 

To apply the maximum-value theorem, we must know that the function is continuous and 
the interval is closed (that is, contains its endpoints). The next two examples show that if either 
of these assumptions is deleted, the conclusion no longer needs hold. In Examples 2 and 3 the 
interval is not closed. 

Example 2 Let 
2 3

2 4

( 1)
( )

( 2) ( 4)

x x
f x

x x




 
 and let ( , )a b  be the open interval (2,4) . Show 

that f  does not have a maximum value for x  in ( , )a b . 

Solution. For x  near 4, ( )f x  gets arbitrarily large since the denominator 
2 4( 2) ( 4)x x   is close to 0. The graph of f  for x  in (2,4) , is shown in Fig. 2.14. This 

function is continuous throughout the open interval (2,4) , but there is no number c  in (2,4)  

at which f  has a maximum value. However, f  has a minimum value, (3) 576f  .  

 
Fig. 2.14 

Ре
по
зи
то
ри
й Б
рГ
ТУ



31 

Example 3 Let ( , )a b  be the open interval (0,1) . Show that 
1

( )f x
x

  does not have a 

maximum value in ( , )a b . 

Solution. Fig. 2.15 shows the pertinent part of the graph of 
1

( )f x
x

 . Since 

0

1
lim
x x

  , the function has no minimum value for x  in (0,1) . It does take on values arbi-

trarily close to 1 for inputs that are close to 1, but there is no number in the open interval(0,1)  

at which ( )f x  is equal to1. 

 
Fig. 2.15 

The next theorem says that a function which is continuous throughout an interval takes on 
all values between any two of its values. 

Intermediate-Value Theorem 
Let f  be continuous throughout the closed interval [ , ]a b . Let N  be any number ( )f a  and 

( )f b . [That is, ( ) ( )f a N f b   if ( ) ( )f a f b  or ( ) ( )f a N f b   if ( ) ( )f a f b ] Then 

there is at least one number c  in [ , ]a b  such that ( )f c N .  

In ordinary English, the intermediate-value theorem reads: a continuous function defined on 
[ , ]a b  takes on all values between ( )f a  and ( )f b . Pictorially, it asserts that a horizontal line 

of height N  must meet the graph of f  at least once if N  is between ( )f a  and ( )f b , as 

shown in Fig. 2.16. In other words, when you move a pencil it passes through all intermediate 
heights. 

 
Fig. 2.16 

Even though the theorem guarantees the existence of c , it does not tell how to find it. To 
find c , we must solve an equation, namely, ( )f c N .  

Example 4 Use the intermediate-value theorem to show that the 3 22 1 5x x x     
has a solution in the interval [1,2] .  
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Solution Let 3 2( ) 2 1P x x x x    . Then 
3 2(1) 2 1 1 1 1 3P        

and  
3 2(2) 2 2 2 2 1 19P       . 

Since ( )P x  is continuous and 5 is between (1) 3P   and (2) 19P   we may apply the 

Intermediate-value theorem to ( )P x  in the case 1a  , 2b   and 5N  . Thus there is at 

least one number c  between 1 and 2 such that ( ) 5P c  . This completes the answer. (To 

get a more accurate estimate for a number c  such that ( ) 5P c   find a shorter interval for 

which the intermediate-value theorem can be applied. For instance, (1.2) 4.7P   and 

(1.3) 5.8P  . By the intermediate-value theorem, there is a number c  in [1.2,1.3]  such 

that ( ) 5P c  ).  

Example 5 Show that the equation 5 22 11 0x x x     has at least one real root. 

Solution. For x  large and positive the polynomial 5 2( ) 2 11P x x x x     is positive [ 

since lim ( )
x

P x


  ]. Thus there is a number b  such that ( ) 0P b  . Similarly, for x  nega-

tive and large value, ( )P x  is negative [since lim ( )
x

P x


  ]. Select a numbera  such that 

( ) 0P a  .  

The number 0 is between ( )P a  and ( )P b . Since ( )P x  is continuous on the interval 

[ , ]a b  there is a number c  in [ , ]a b  such that ( ) 0P c  . This number c  is a real solution to 

the equation 5 22 11 0x x x    .  

2.7 Precise Definitions of ‘'  


 lim
x

f x  ‘' and ‘'  


lim ''
x

f x L  

In the definitions of the limits considered in Secs. 2.1 and 2.2 appear such phrases as “ x  
approaches a '', ‘' ( )f x  approaches a specific number,'' ‘'as x  gets large,'' and ‘' ( )f x  be-

comes and remains arbitrarily large''. Such phrases, although appealing to the intuition, seem 
to suggest moving objects and call to mind the motion of a pencil point as it traces out the 
graph of a function. 

In this section we examine how Weierstrass would define the concepts: 

 


 lim
x

f x  and  lim
x

f x L


  

Throughout, ‘' f '' refers to a numerical function. Use the next section we consider 

‘'  lim
x a

f x L


 ” 

Recall the definition of ‘'  


 lim
x

f x ” given in the table in Sec. 2.2. 

Informal definition of  


 lim
x

f x , ( )f x  is defined for all x  beyond some number and, 

as x  gets large through positive values, ( )f x  becomes and remains arbitrarily large and posi-

tive.  
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To take us part way to the precise definition, let us reword the informal definition, para-
phrasing it in the following definition, which is still informal. 

Reworded informal definition of  


 lim
x

f x [ assume that ( )f x  is defined for all x  

greater than some number c ]. 
If x  is sufficiently large and positive, then ( )f x  is necessarily large and positive. 
For each number E  there is a number D  such that for all x D  it is true that 

( )f x E . 
Think of the number E  as a challenge and D  as the reply. The larger E  is, the larger D  

must usually be. Only if a number D  (which depends on E ) can be found for every number 

E can we make the claim that ‘'  


 lim
x

f x ”.  

Example 1 Using the precise definition, show that lim 2
x

x


  .  

Solution. Let E be any number. We must show that there is a number D  such that when-
ever x D , it follows that 2x E . For example, if 50E  , then 25D   would do. It is 
indeed on E . 

Now, the inequality2x E  is equivalent to 

2

E
x  . 

In other words, if 
2

E
x   then 2x E . So 

2

E
D   suffices. That is, for 

2x D x E   . We conclude immediately that 
lim 2
x

x


  . 

Informal definition of  lim
x

f x L


  [ assume that ( )f x  is defined for all x  beyond some 

number c ]. As x  gets large through positive values, ( )f x  approaches L . 
Again we reword this definition before offering the precise definition. 

Reworded informal definition of  lim
x

f x L


  [assume that there is a number c  such that 

( )f x  is defined for all x c ]  

If x  is sufficiently large and positive, then ( )f x  is necessarily near L . 
Again, the precise definition parallels the reworded informal definition. In order to make the 

phrase " ( )f x  is necessarily near L '' precise, we shall use the absolute value of ( )f x L  to 

measure the distance from ( )f x  to L . The following definition says that ‘'if x is large enough, 

then ( )f x L  is as small as we please.'' 

Precise definition of  lim
x

f x L


  [assume that ( )f x  is defined for all x  beyond some 

number c ]. 
For each positive number   there is a number D  such that for all x D  it is true that 

( )f x L   . 
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The positive number   is the challenge, and D  is a response. The smaller   is, the larger 

D  usually must be chosen. The geometric meaning of the precise definition of  lim
x

f x L


  

is shown in Fig. 2.17. 

 
Fig. 2.17 

Example 2 Use the precise definition of ‘’  


lim
x

f x L ” to show that 
1

lim 1 1.
x x

 
  

 
 

Solution. Here   1 1/ ,f x x   which is defined for all 0x  . The numberL  is 1. We 

must show that for each positive number   however small, there is a numberD  such that, for 
all x D , 

1
1 1 .

x


 
   

 
 

Inequality reduces to 
1

.
x

   

Since we shall consider only 0x  , this inequality is equivalent to 
1

x
 . 

Multiplying inequality by the positive number x  gets the equivalent inequality 
1 .x  

Division of inequality by the positive number  gets 
1

x

  or 




1
x . 

These steps are reversible. This shows that 1/D   is a suitable reply to the challenge . 
If 1/ ,x   then 

1
1 1 .

x


 
   

 
 

According to the precise definition of ‘’  


lim ''
x

f x L  ,we may conclude that  

1
lim 1 1.
x x

 
  

 
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2.8 Precise Definition of ‘'  


lim ''
x a

f x L  

Recall the informal definition given in Sec. 2.2. 

Informal definition of  lim
x a

f x L


   

Let f  be a function and a is some fixed number. Assume that the domain of f  contains 
open intervals ( , )c a  and ( , )a b  for some number c a  and some number b a . 

If, as x  approaches a , either from the left or from the right, ( )f x  approaches a specific 

numberL , then L  is called the limit of ( )f x  as x  approaches a . This is written 

 lim
x a

f x L


 . 

Keep in mind that a need not be in the domain of f . Even if a happens to be in the domain 

of f , the value ( )f a  plays no role in determining whether  lim
x a

f x L


 .  

Reworded informal definition of  lim
x a

f x L


  [assume that ( )f x  is defined for all x  in 

some intervals ( , )c a  and ( , )a b ].  

If x  is sufficiently close to a but not equal to a , then ( )f x  is necessarily nearL . 

The precise definition parallels the reworded informal definition. The letter   that appears in 
it is lower case Greek ‘'delta,'' equivalent to the English letter d. 

Precise definition of  lim
x a

f x L


  [assume that ( )f x  is defined in some intervals ( , )c a  

and ( , )a b ]: 

For each positive number   there is a positive number   such that for all x  that satisfy the 
inequality  

0 x a     

it is true that  

( )f x L   . 

Example 1 Use the precise definition of ‘’  


lim ''
x a

f x L  to show that 


2

0
lim 0.
x

x  

Solution. In this case 0a   and 0L  . Let   be a positive number. We wish to find a 

positive number   such that for 0 0x     it follows that 2 0x     

Since 2 2 ,x x  we are asking, "for which x  is x "? This inequality is satisfied 

when 

.x   

In other words, when ,x   it follows that 2 0 .x    Thus    suffices. (For in-

stance, when    1, 1 1 is a suitable response. When   0.01, 0.1 suffices.) 
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Example 2 Use the precise definition of "  


lim ''
x a

f x L  to show that 

 


 
2

lim 3 5 11.
x

x  

Solution. Here 2a   and 11L  . Let   be a positive number. We wish to find a number 

0   such that for 0 2x     it follows that  3 5 11 .x      

So let us find out for which x  it is true that  3 5 11 .x     This inequality is equiva-

lent to  

3 6x    

or  

3 2x    

or  


 2 .
3

x  

Thus   / 3  is an adequate response. If 0 2 / 3,x     then  3 5 11 .x     

2.9 The Number e 
Definition (The number e ). 

 1
lim 1 1 2.718281828

n

n
e

n




 
    

 
 

Observe that for large n  the expression 
1

1
n

n

 
 

 
 is of the form  

  _
1 _

big number
small number . 

So we may consider  

 11
x

x  

When x  is near 0, even if x  is not of the form 1 n , that is, not the reciprocal of an integer. 

It can be shown, that  1
0

lim 1
x

x
x


  exists and equals e : 

 1
0

lim 1 .
x

x
x e


 

      
( )  

Often ( )  is taken as the definition of e . It is this expression for e  that will be used in the 

next section, where we will find derivatives of the logarithm functions.  

From the fact that  
0

lim 1 1
x

x x e


  , we can obtain order of closely related limits. For in-

stance,  1 2

0
lim 1 2 .

h

h
h e


   (Note that 2 0h  and the exponent is the reciprocal of 2h ). 

Example 1 Find  1
0

lim 1 2 .
h

h
h


   

Solution. The expression  11 2
h

h  is not of the form 11
h

h . 
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Since 1 h  is not the reciprocal of 2h . A little algebra gets around this obstacle: 

         
22

1 2 2 1 2 1 2 2

0 0 0 0
lim 1 2 lim 1 2 lim 1 2 lim 1 2

h h h h

h h h h
h h h h e

   
         

Example 2 Find 
2 3

3 1
lim

3 5





 
 

 

x

x

x

x
. 

Solution. 

   
2 32 3 2 3

4
(2 3)3 5 3 52 3 8 12 8 12 8

4 lim
3 5 3 5 3

3 1 3 53 1 3 1
lim 1 lim 1 1 lim 1

3 5 3 5 3 5

4 4
lim 1 lim 1 lim

3 5 3 5


 



  

    

 

  

       
          

       

 
                  

 

x

xx x

x x x

xx xx x x

x x

x x x

x xx x

x x x

e e e
x x

 

Exercise Set 8 
Examine the following limits: 

(a)  2

1
lim 5
x

x x


  (b) 
4

4

3 100 3
lim

5 7 1x

x x

x x

 

 
 (c) 

4

40

3 100 3
lim

5 7 1x

x x

x x

 

 
 

(d) 
3 2

4

500 5
lim
x

x x

x x

 


 (e) 

0

sin3
lim

6x

t

t
 (f) 

56 4
lim

5x

x x

x x

 

 
 

(g) lim 2 x

x




 (h) 

3

0

8
lim

2x

x

x




 (i) 

3

2

8
lim

2x

x

x




 

(j) 
0

1
lim sin
x x

 (k) lim sin
x

x


 (l) 
2

1 3cos
lim
x

x

x


 

(m) 
16

4
lim

16x

x

x




 (n)  2 2lim 4 5 4

x
x x x x


    

In Exercises 1 to 52 examine the limits. Evaluate those which exist. Determine those which 
do not exist and, among these, the ones that are infinite. 

1. 
3

21

1
lim

1x

x

x




 2. 

3

21

1
lim

1x

x

x




 3. 

4

32

16
lim

8x

x

x




 

4.
4

30

16
lim

8x

x

x




 5.

7 2

7 3

1
lim

2 300x

x x

x x

 

 
 6.

9

10

6 3
lim

1x

x x

x x

 

 
 

7. 
3

2

1
lim

1x

x

x




 8.

4 2

2

1
lim

3 4x

x x

x

 


 9. 

4

2
lim

4x

x

x




 

10. 
81

81
lim

9x

x

x




 11. 

1

1
lim

1x x 
 12.

1

1
lim

1x x 
 

13.  2 2lim 2 2 6
x

x x x


   14. 1/

0
lim 2 x

x 
 15. 1/

0
lim 2 x

x 
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16. 1/lim 2 x

x
 17. 

   
   

1 2
lim

3 4x

x x

x x

 

 
 18.

 

 

100

100

1
lim

2 50x

x

x




 

19.
/2

cos
lim

1 sinx

x

x 
 20. 

/2

cos
lim

1 sinx

x

x 
 21. 

0

sin
lim

3x

x

x
 

22.
sin

lim
3x

x

x
 23. 

/2
lim cos

x
x

 
 24. 

 


2

lim sec

x

x  

25. 
0

lim sin
x

x


 26. 
0

lim csc
x

x


 27.
1

lim sin
x x

 

28. 
1

lim sin
x

x
x

 29. 2lim cos
x

x x


 30. 2

/ 4
lim cos

x
x x


 

31. 
3

2 20

sin 2
lim

arcsin 3x

x

x
 32. 

2

20

sin 3
lim

9x

x

tg x
 33. 

0

arcsin
lim

5x

x

arctg x
 

34. 
40

ln(1 2 )
lim

1xx

x

e




 35. 

3

0

ln(1 4 )
lim

1xx

x

e




 36. 2

2

70

3
lim

1xx

tg x

e 
 

37. 
20

1 1
lim
x

x

arctg x

 
 38.

4

2 20

1 8 1
lim

2x

x

tg x

 
 39.

2

20

5
lim

2x

x

arctg x
 

40. 
3 2

20

1 4 1
lim
x

x

tg x

 
 41. 

3

30

1 7 1
lim

ln(1 6 )x

x

x

 


 42. 

20

cos 2 cos5
lim

5


x

x x

x
 

43.
2 2

20

sin 3 sin 5
lim

9


x

x x

tg x
 44. 

20

1 cos6
lim

5


x

x

arctg x
 45.

0.5 1
1

lim
1

x

x

x

x





 
 

 
 

46. 
4

1 2 3

2lim
x

x

x


 


 47. 

4 0.5
2 1

lim
2 3

x

x

x

x





 
 

 
 48. 

3
8

1 3

2lim
x

x

x


 


 

49. 
5 9

3 2
lim

3 1

x

x

x

x





 
 

 
 50. 

3 2
1

1

1
lim
x

x

x




 51. 

4 3
4 1

lim
4 5

x

x

x

x





 
 

 
 

52-69. Find the numbers at which f  is discontinuous. At which of these numbers is f  con-
tinuous from the right, from the left, or neither? Sketch the graph of f . 

52. 2

4, 1

( ) 2, 1 1

2 , 1

x x

f x x x

x x

  


    
 

 53. 2

1, 0

( ) ( 1) ,0 2

4, 2

x x

f x x x

x x

 


   
  

 

54. 2

2, 1

( ) 1, 1 1

3, 1

x x

f x x x

x x

  


    
  

 55. 

1 , 0

( ) 0,0 2

2, 2

x x

f x x

x x

  


  
  

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56. 

sin , 0

( ) ,0 2

0, 2

x x

f x x x

x




  
 

 57. 

1, 0

( ) 2 ,0 2

3, 2

x

x

f x x

x x




  
  

 

58. 2

3 4, 1

( ) 2, 1 2

, 2

x x

f x x x

x x

  


    
 

 59. 

3, 1

( ) 1, 1 3

5, 3

x x

f x x x

x x

  


    
  

 

60. 

1, 0

( ) cos ,0

1 ,

x

f x x x

x x





 


  
  

 61. 

2, 1

( ) 1 , 1 1

ln , 1

x

f x x x

x x

 


    
 

 

62. 

; 0

( ) sin ; 0

2;

x x

f x x x

x x





 


  


 

 63. 2

3 ; 2

( ) 5; 2 3

7 2 ; 3

x x

f x x x

x x

   


    


 

 

64. 

2; 0

( ) ; 0 / 4

2; / 4

x x

f x tgx x

x





 


  




 65. 

2 ; 0

( ) ; 0 4

1; 4

x x

f x x x

x

 


  




 

66. 
4

2( ) 4  xf x  67. 
3

3( ) 7  xf x  

68. 
1

2 2( ) 25  xf x  69. 
2

1( ) 2


 xf x  

3 DERIVATIVES 

3.1 The Derivative 
Definition (The derivative of a function at the number x ) Let f  be a function that is defined 

at least in some open interval that contains the number x . If 

0

( ) ( )
lim
h

f x h f x

h

 
 

exists, it is called the derivative of f  at x  and is denoted ( )f x . The function is said to be dif-

ferentiable at x . 
If the function f  is defined only to the right of x , in an interval of the form[ , )x b  then in the 

definition of the derivative “ 0h ” would be replaced by “ 0h  ”.The function is then said 
to be ‘'differentiable on the right.'' A similar stipulation is made if f  is defined only in an interval 
of the from ( , ]a x  and the function is said to be ‘'differentiable on the left.'' 

The numerator, ( ) ( )f x h f x   is the change, or difference, in the outputs; the denomina-

tor, h , is the change in the inputs. Keep in mind that x h  can be either to the right or left of 
x . Similarly, ( )f x h  can be either larger or smaller than ( )f x .  

A few examples will illustrate the concept of the derivative. 
Example 1 Find the derivative of the squaring function at the number 2. 
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Solution. In this case, 2( )f x x  for any input x . By definition, the derivative of this func-

tion at 2 is  
2 2 2 2 2

0 0 0

(2 ) 2 2 4 2
lim lim lim(4 ) 4
h h h

h h h
h

h h  

    
    . 

We say that ‘'the derivative of the function 2( )f x x  at 2 is 4.'' 

The next example determines the derivative of the squaring function at any input, not just 
at 2. 

Example 2 Find the derivative of the function 2( )f x x  at any number x . 

Solution By definition, the derivative at x  is 
2 2 2 2 2

0 0 0

( ) 2
lim lim lim(2 ) 2
h h h

x h x x xh h x
x h x

h h  

    
    . 

The derivative of the squaring function at x  is 2x .That the derivative of the function 
2( )f x x  is the function 2x  is denoted 

2( ) 2x x  . 

This notation is convenient when dealing with a specific function. [Warning: don't replace x  

by a specific number in this notation. For instance, do not write that 2(3 )  equals 2 3 . This is 

not correct]. 
The result in Example 2 can be interpreted in terms of each of the four problems in Sec. 3.1. 

For example, we know from Example 2 that the slope of the tangent line to the parabola 
2y x  at the point 2( , )x x  is 2x . In particular, the slope of the tangent line at 2(1,1 )  is 

2 1 2   a result found in Sec 3.1. Also, according to the formula for the derivative, 
2( ) 2x x   the slope of the tangent line to 2y x  at 2( 1,( 1) )   is 2 ( 1) 2     and at 

(0,0)  is 2 0 0   A glance at Fig. 3.1 shows that these are reasonable results. The deriva-

tive of 2( )f x x  is a function. It assigns to the number x  the slope of the tangent line to the 

parabola 2y x  at the point 2( , )x x .  

 
Fig. 3.1 

The next two examples illustrate the idea of the derivative with functions other than 
2.x   

Example 3 Find ( )f x  if 3( )f x x .  

Solution. In this case, 3( ) ( )f x h x h    and 3( )f x x . The derivative of the function 

at x  is therefore 
3 3 3 2 2 3 3

2 2 2

0 0 0

( ) 3 3
lim lim lim(3 3 ) 3
h h h

x h x x x h xh h x
x xh h x

h h  

     
     . 
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The derivative of 3x  at x  is 23x . 
Theorem 1 For each positive integer n , 

  1n nx nx 
 . 

Direct application of this theorem yields, for instance: 

the derivative of  4x  is 4 1 34 4x x  ; 

the derivative of 3x  is 3 1 23 3x x  ; 

the derivative of 2x  is 2 12 2x x  ; 

the derivative of 1x  is 1 11 1x   . 

(in agreement with the fact that the line given by the formula y x  has slope 1). 

The next theorem generalizes the fact that   1

2
x

x


  which can be written 

1 1
1

2 2
1

2
x x


 

  
 
 

. 

Theorem 2 For each positive integer n , 

1 1
11

n nx x
n


 

  
 
 

 

(for those x  at which both 
1

nx  and 
1

1
nx


 are defined). 
Now that we have the concept of the derivative, we are in a position to define tangent line, 

speed, magnification, and density, terms used only intuitively until now. These definitions are 
suggested by the similarity of the computations made in the four problems in sec. 3.1. 

The slope of a nonvertical line equals the quotient 
 
 

2 1

2 1

y y

x x




 where  1 1 1,P x y  and 

 2 2 2,P x y  are any two distinct points on the line. Now it is possible to define the slope of a 

curve at a point on the curve.(In all five definitions it is assumed that the derivative exists.) 

Definition (Slope of a curve). The slope of the graph of the function f  at  , ( )x f x  is the 

derivative of f  at x . 
Definition (Tangent line to a curve). The tangent line to the graph of the function f  at the 

point ( , )P x y  is the line through P  that has a slope equal to the derivative of f  at x . 
Definition (Velocity and speed of a particle moving on a line). The velocity at time t  of an 

object whose position on a line at time t  is given by ( )f t  is the derivative of f  at time t . The 
speed of the particle is the absolute value of the velocity. 

Note the distinction between velocity and speed. Velocity can be negative; speed is either 
positive or 0. 

Definition (Magnification of a linear projector). The magnification at x  of a lens that pro-
jects the point x  of one line onto the point ( )f x  of another line is the derivative of f  at x . 

Definition (Density of material). The density at x  of material distributed along a line in such 
a way that the left-hand x  centimeters have a mass of ( )f x grams is equal to the derivative of 
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f  at x . 
Exercise Set 9 

In Exercises 1 to 16 use the definition of the derivative to find the derivatives of the given 
functions. 

1. 4x   2. 5x   3. 3x   4. 7x   

5. 2 3x    6. 24 5x    7. 25 3x x    8. 3 22 3x x    

9. 7 x   10. 2 3x x   11. 
1

x
 12. 

1

2x 
 

13. 
2

1

x
  14. 

4
x

x
   15. 

1
3

x
   16. 

3

1

x
  

In Exercises 17 to 20, use Theorems 1 and 2 to find the derivatives of the given functions at 
the given numbers. 

17. 4x at 1x     18. 4x at
1

2
x    19. 5x at x a   20. 5x at 2x    

3.2 Differentiation Rules 
After presenting another ( )f x  this section shows the relation between ‘'having a derivative'' 

and ‘'being continuous.'' It concludes by introducing the notion of an ‘'antiderivative.'' 
It is also common to give the difference or change h  the name x  ''delta x ''). The differ-

ence quotient then takes the form 
( ) ( )f x x f x

x

  

  
and the derivative is defined as  

0

( ) ( )
( ) lim

x

f x x f x
f x

x 

  
 


. 

Furthermore, the difference in the outputs is often named f  or y :  

( ) ( )f x x f x f      

and so ( ) ( )f x x f x f      . 

The latter equation says that ‘'the value of the function at x x   is equal to the value of 
the function at x  plus the change in the function''. With x  denoting the change in the inputs 
and f  denoting the change in the outputs, we have 

0
( ) lim

x

f
f x

x 


 


. 

Fig. 3.2 illustrate the   notation for the difference quotient. 
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Fig. 3.2 

Example 1 Find  2x

 using the   notation. 

Solution. By the definition of the derivative, the derivative of the squaring function at x  is 
2 2 2 2 2

0 0 0

( ) 2 ( )
lim lim lim (2 ) 2
x x x

x x x x x x x x
x x x

x x     

       
    

 
. 

So the derivative of 2x  is 2x , in agreement with the result in Example 2 of the preceding 
section. 

This section develops methods for finding derivatives of functions, or what is called differen-
tiating functions. With these methods it will be a routine matter to find, for instance, the deriva-

tive of 
    



3
2 2

5

6 1
( )

120

x x
f x

x
 without going back to the definition of the derivative and (at 

great effort) finding the limit of a difference quotient. 
Before developing the methods, it will be useful to find the derivative of any constant func-

tion. 
Theorem 1 The derivative of a constant function is 0; in symbols,  

  0c      or   0
dc

dx
   or 0dc  . 

Theorem 2 If f  and g  are differentiable functions, then so is f g . Its derivative is given 

by the formula 

 f g f g     . 

Similarly,  f g f g     .  

Proof. Give the function f g  the name u . That is, 

( ) ( ) ( )u x f x g x   

Then ( ) ( ) ( )u x x f x x g x x         so,  

   

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

u u x x u x f x x g x x f x g x f x x f x

g x x g x f g

                 

       
 

Thus 
0 0 0 0

( ) lim lim lim lim
x x x x

u f g f g
u x f g

x x x x       

     
       

   
.  

Hence f g  is differentiable, and 

 f g f g     . 

A similar argument applies to f g .  

Example 2. Using Theorem 2, differentiate 2 3x x .  

Solution.    2 3 2 3 2( ) 2 3x x x x x x
      .  

Example 3. Differentiate 4 6x x  .  
Solution. 
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     4 4 3 31 1
( 6) 6 4 0 4

2 2
x x x x x x

x x

           . 

Theorem 3. If f  and g  are differentiable functions, then so is f g . Its derivative is given 

by the formula 

 f g f g g f       . 

Proof. Call the function f g  simply u . That is, 

( ) ( ) ( )u x f x g x   

Then ( ) ( ) ( )u x x f x x g x x        .  

Rather than subtract directly, first write 
( ) ( )f x x f x f       and ( ) ( )g x x g x g     . 

Then    ( ) ( ) ( )u x x f x f g x g f g f g g f f g                      

Hence  
( )u u x x u f g f g g f f g f g f g g f f g                               

and  

u g f g
f g f

x x x x

   
      

   
 . 

As 0x  ,
g

g
x





,
f

f
x





 and, becausef  is differentiable (hence continuous), 

0f  . It follows that 

0
( ) lim 0

x

u
u x f g g f g f g g f

x 


               


 

Therefore, u  is differentiable and  

 u f g g f      . 

Example 4. Find     2 3 4 6x x x x


    .  

Solution. (Note that in Example 2 and 3 the derivatives of both factors, 2 3x x  and 
4 6x x   were found.) 
By theorem 3,  

            

     

2 3 4 2 3 4 4 2 3

2 4 3 2 3

6 6 6

1
2 3 6 4

2

x x x x x x x x x x x x

x x x x x x x
x

 
              

 
         

 

 

A special case of the formula  f g f g g f        occurs so frequently, that it is singled 

out in Theorem 4. 
Theorem 4. If c  is a constant function and f  is a differentiable function then c f  is differ-

entiable and its derivative is given by formula 

 c f c f    . 
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Any polynomial can be differentiated by the methods already developed, as Example 5 illus-
trates. 

Example 5 Differentiate 7 2 3
3

1
5 3 8x x

x
      

Solution. 

       

       

7 2 3 7 2 3
3 3

7 2 3 6 4 6 4

1 1
5 3 8 5 3 8

5 3 7 3 2 3 7 6 3

x x x x
x x

x x x x x x x x x

 

  

                  
   

  
           

  

It will next be shown that if the functionsf  and g are differentiable at a number x , and if 

( ) 0g x   then 
f

g
 is differentiable at x .  

Theorem 5. If f  and g  are differentiable functions, then so is 
f

g
 and  

2

f f g g f

g g

      
 

 
    (where ( ) 0g x  ). 

Example 6. Compute 
3

2

4

3

x

x

 
 

 
. 

Solution. 

       
 

   
 

   

3 2 3 2 2 2 33

2 2 2
2 2

4 2 4 4 2

2 2
2 2

4 3 4 3 3 3 2 44

3 3 3

3 9 2 8 9 8

3 3

x x x x x x x xx

x x x

x x x x x x x

x x

             
   

   

    
 

 

 

Corollary 1  

2

1 g

g g

  
  

 
 (where ( ) 0g x  ). 

The differentiation techniques obtained so far do not enable us to differentiate such func-

tions as 100
1 2x , 21 x , 3sin x . 

We could differentiate  100
1 2x , but only with great effort, by first expanding 

 100
1 2x  to form a polynomial of degree 100 and then differentiating that polynomial. This 

section develops a shortcut for differentiating composite functions, such as  100
1 2x , 

21 x  and 3sin x  which are built up from simpler functions by composition. 
If f  and g  are differentiable functions, is the composite function ( ( ))f g f g x  also dif-

ferentiable? If so, what is its derivative? More concretely: If ( )y f u  and ( )u g x  then y  
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is a function of x . How can we find 
dy

y
dx

  ?  

Take the simple case, 3y u  and 2u x . Hence 6y x . In this case, 

3
dy

du
 ,  2

du

dx
     and   6

dy

dx
 . 

So 
dy

dx
 is the product of the derivatives 

dy

du
 and 

du

dx
. This observation suggests the all-

important chain rule, which will be proved at the end of this section after several examples 
showing how it is used. 

The Chain Rule (Informal Statement) 
If y  is a differentiable function of u  and u  is a differentiable function of x , then y  is a dif-

ferentiable function of x  and 

dy dy du

dx du dx
   or    x u xy y u . 

The equation 
dy dy du

dx du dx
    is read as ‘'derivative of y  with respect to x  equals deriva-

tive of y  with respect to u  times derivative of u  with respect to x ''. 

Example 7.Differentiate 21 x   

Solution. 21y x   is a composite function y u  where 21u x  . 

By the chain rule,    x u xy y u  

     2 2

2

1
1 1 2

2 1xu

x
x u x x

u x

  
      


. 

Example 8.Differentiate 3sin x .  

Solution. 3siny x  can be expressed as siny u  where 3u x . 

By the chain rule, 

     3 3 2 3 2sin sin cos 3 cos 3
u x

x u x u x x x
        

Example 9. Differentiate  100
1 2x .  

Solution.  100
1 2y x   is the composition of 100y u  and 1 2u x  .  

By the chain rule, 

        100 100100 991 2 1 2 100 2 200 1 2
xu

x u x u x
           . 

We summarize the differentiation formulas we have learned so far as follows. 

Table of Differentiation Formulas 

1.   0c    5.    c f c f  
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2.  f g f g      6. 
2

f f g g f

g g

      
 

 
 

3.  f g f g      7. 
2

1 g

g g

  
  

 
 

4.  f g f g g f        8.  ( ( )) g xf g x f g     

Using the definition of derivative, limit and rules of differentiation, we can get the table of de-
rivatives of elementary functions.  

1.   1n nx nx 
  8.  cos sinx x    

2.

1 1
11

n nx x
n


 

  
 
 

 9.   2

1

cos
tgx

x
   

3.  x xe e

  10.   2

1

sin
ctgx

x
    

4.   ln , 0x xa a a a

    11.  

2

1
sin

1
arc x

x

 


 

5.  
1

lnx
x

   12.  
2

1
arccos

1
x

x

  


 

6.  
1

log
ln

a x
x a

 


 13.   2

1

1
arctgx

x
 


 

7.  sin cosx x   14.   2

1

1
arcctgx

x
  


 

Example 10. Differentiate 

2 3 9

3sin

x xe

x

 

. 

Solution. 

   

 

 

 

2 2
2

2 2

3 9 3 3 9 3
3 9

3 2
3

3 9 3 3 9 3 2

2

2
3

sin sin

sin sin

1
2 3 sin cos 3

2 3 9

sin

x x x x
x x

x x x x

e x e x
e

x x

e x x e x x
x x

x

   
 

   

            
      

 
 

      
 

 

Exercise Set 10 
In Exercises 1 to 48 differentiate with the aid of formulas, not by using the definition of the 

derivative. 
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1. 3 23 4 2y x x x     2. ln2 xy x e    3. sin 3 3cos6y x  ; 

4. 
3

2

tgx ctgx
y


 ; 5. 

1
ln7

4 5
y x ; 6. 4 3y arctg x   ; 

7. 
2

3

(2 1)

3

x
y

x


 ; 8. 2 sinxy e x  ; 9. 

2cos 3

3sin6

x
y

x
 ; 

10. 5 cosy x x  ; 11.  
21

23 6 8y x x   ; 12. siny x ; 

13. 
4 2

2

8

2( 4)

x x
y

x





 14. 22 1

2
4

x
y x x


     15. 

2sin 4

4cos8

x
y

x
 ; 

16. 
1

2 2

xe
y arctg ; 17. 2 2arcsin( )x xy e e  ; 18. 6sin 7y x  

19. 
22 1

3 2 4

x x
y

x

 



; 20.  ln 1 2xy    21. 

2cos 4

sin8

x
y

x
 ; 

22. 
21 x

y arctg
x


 ; 23.  2ln 3 7 8y x x   ; 24. arcsin xy e  

25. 
 8

12

1

12

x
y

x


 ; 26. 2 1xy e   27. 

2sin 2

2cos4

x
y

x
 ; 

28. 
2

4

4

16

x
y

x





; 29. 31

cos4
2

y tg x x  ; 30. 2ln(6 )y x x   

31. 
2

42 1 3

x
y

x



; 32.  2

3
xy tg e  33. 

2cos 2

4sin4

x
y

x
 ; 

34.  
2

3 1
3

y arctg x  ; 35. 
1

ln
2 2

x
y tg  ; 36. arcsin7y x x   

37. 
 

3
2

5

1

120

x
y

x


 ; 

38. 21
ln( 1)

2
xy e   39. 5 2ln(3 7 )y x x  ; 

40. 
2sin 7

7cos14

x
y

x
 ; 41. 

1
ln

1

x
y arctg x

x


 


 42. ( 3 ) 2 xy ctg x e   

43. 
2

3

8

6

x
y

x


 ; 44. 

2

3 1

3 2 1

x
y

x x




 
 45. 

2cos 8

16sin16

x
y

x
  

46. 
2

1 1
ln

12

x
y

x





 47. 

  24 8 7

2

x x x
y

  
  48. tg xy x e   

In each of Exercises 49 to 51 find the slope of the given curve at the point with the given x 
coordinate. 
49. 3 23 4 2y x x x     at 2x   

50. 
1

2 1
y

x



 at 3x   

51.  2y x x    at  4x . 

3.3 Implicit Differentiation. Logarithmic Differentiation. Calculus With Parametric Curves 
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The functions that we have met so far can be described by expressing one variable explicit-
ly in terms of another variable — for example, 

2 3y x   or sin5y x  

or, in general, ( )y f x . Some functions, however, are defined implicitly by a relation between 

x  and y such as 
2 2 4x y    or  3 2 4x y xy  . 

We don’t need to solve an equation for y  in terms of x  in order to find the derivative of y . 

Instead we can use the method of implicit differentiation. This consists of differentiating both 
sides of the equation with respect to x  and then solving the resulting equation for y . In the 

examples and exercises of this section it is always assumed that the given equation deter-
mines y  implicitly as a differentiable function of x  so that the method of implicit differentiation 

can be applied. 
Example 1 

(a) If 2 2 4x y  , find y . 

(b) Find an equation of the tangent to the circle 2 2 4x y   at the point (3,4) . 

Solution. 

(a) Differentiate both sides of the equation 2 2 4x y  : 

   2 2 4
xx

x y
    

   2 2 0
x x

x y
 
   

Remembering that y  is a function of x  and using the Chain Rule, we have 

2 2 0x y y    

Now we solve this equation for y : 

2

2

x x
y

y y
     . 

(b) At the point (3,4)  we have 3x   and 4y  , so
3

4
y    

An equation of the tangent to the circle at (3,4)  is therefore 

 
3

4 3
4

y x     or 3 4 4x y  . 

Example 2 If 3 2 4x y xy  , find y . 

Solution. Differentiating both sides 3 2 4x y xy   with respect to x , regarding y  as a 

function of x , and using the Chain Rule on the term 2y  and the Product Rule on the term 

4xy , we get 
23 2 4 4x yy y xy    . 

We now solve for y : 
22 4 4 3yy xy y x     
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  22 4 4 3y y x y x      

 

24 3

2 4

y x
y

y x


 


. 

The calculation of derivatives of complicated functions involving products, quotients, or 
powers can often be simplified by taking logarithms. The method used in the following example 
is called logarithmic differentiation. 

Example 3. Differentiate 
2 2

3

(2 1) 1

3

x x
y

x

 
 . 

Solution. We take logarithms of both sides of the equation and use the Laws of Logarithms 
to simplify: 

     2 2 31
ln ln 2 1 ln 1 ln 3

2
y x x x      

Differentiating implicitly with respect to x  gives 

2
2 2 3

1 1 1 1 1
4 2 9

22 1 1 3
y x x x

y x x x
       

 
 

Solving for y , we get 

2 2

4 3

2 1 1

x x
y y

xx x

      
  

. 

Because we have an explicit expression for y , we can substitute and write 

2 2

3 2 2

(2 1) 1 4 3

3 2 1 1

x x x x
y

xx x x

        
  

. 

Example 4. Differentiate 5(sin )
xey x . 

Solution. We take logarithms of both sides of the equation and use the Laws of Logarithms 
to simplify: 

 ln 5 ln sinxy e x   

Differentiating implicitly with respect to x  gives 

 
1 1

5 ln sin 5 cos
sin

x xy e x e x
y x

       

Solving for y , we get 

  5 ln sinxy y e x ctgx     . 

Because we have an explicit expression for y , we can substitute and write 

  5(sin ) 5 ln sin
xe xy x e x ctgx     . 

Some curves defined by parametric equations ( )x x t  and ( )y y t  can also be ex-

pressed, by eliminating the parameter, in the form ( )y F x . 

If we substitute ( )x x t  and ( )y y t  in the equation ( )y F x , we get 

( ) ( ( ))y t F x t  
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and so, if ( )x x t , ( )y y t , and ( )y F x  are differentiable, the Chain Rule gives 

( ) ( ) ( )t x ty t F x x t     

If ( ) 0x t  , we can solve for ( )F x : 

( )
( )

( )
t

t

y t
F x

x t


 


 

Using Leibniz notation, we can rewrite last equation in an easily remembered form: 
( )

( )
t

x
t

y t
y

x t


 


(1). 

Example 5 Differentiate 

21 ,

1
.

x t

y
t

  






. 

Solution. Using formula(1), we get 

   2

2

1
1 2

2 1
tx t t

t


     


 

2

1 1
t

t

y
t t

     
 

 

 

22

3

2

1
( ) 1

1( ) 2
2 1

t
x

t

y t tty
x t tt

t


 

   


 


. 

Exercise Set 11 
In Exercises 1 to 24 differentiate with the aid of formulas. 

1. 
 32(3 2) 2 7

15 1

x x
y

x

  



 2. ( 5 ) arctg xy arctg x  3. 

3 2

3

(2 9) 1 3x x
y

x

 
  

4. ln(sin ) xy x  5. 
3 2

3

( 1) 5

4

x x
y

x

 
  6. (arcsin )

xey x  

7. 
 8 8

12

1 1

12

x x
y

x

 
  8. 3(ln ) xy x  9. 

2(2 1)
sin5

3 2 4

x x
y x

x

 
 


 

10. 3 24 5x y xy   11. 5 6x ye x y    12.   3sin 3arc x y x y    

13.   sin 2 3costg xy x y   14. 2 22
x

x y
y

   15. 4 2x ye x y    

16. 
21 ,

(1 ) .

x t

y tg t

  


 

 17. 

2

23

2 ,

1
.

( 1)

x t t

y
t

  






 18. 
sin ,

2 cos .

x t t

y t

 


 
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19. 
22 ,

arcsin( 1).

x t t

y t

  


 
 20. 

,

1.

t

t

x arctge

y e

 


 

 21. 
,

1
.

1

x t

y
t

 






 

22. 

2

1
,

1
.

1

x
t

y
t





 
 

 23. 

,

1
.

sin 2

x tgt

y
t







 24. 
1,

.
1

x t

t
y

t

  






 

3.4 Linear Approximations And Differentials 
We have seen that a curve lies very close to its tangent line near the point of tangency. In 

fact, by zooming in toward a point on the graph of a differentiable function, we noticed that the 
graph looks more and more like its tangent line. This observation is the basis for a method of 
finding approximate values of functions. 

The idea is that it might be easy to calculate a value ( )f a  of a function, but difficult (or even 

impossible) to compute nearby values of f . So we settle for the easily computed values of the 

linear function L  whose graph is the tangent line of f  at ( , ( ))a f a . 

In other words, we use the tangent line at ( , ( ))a f a  as an approximation to the curve 

( )y f x  when x is near a . An equation of this tangent line is 

( ) ( )( )y f a f a x a    

and the approximation 
( ) ( ) ( )( )f x f a f a x a    

is called the linear approximation or tangent line approximation of f  at a . The linear 

function whose graph is this tangent line, that is, 
( ) ( ) ( )( )L x f a f a x a    

is called the linearization of f  at a . 

The ideas behind linear approximations are sometimes formulated in the terminology and 
notation of differentials. 

If ( )y f x , where f  is a differentiable function, then the differential dx  is an independ-

ent variable; that is, dx  can be given the value of any real number. The differential dy  is 

then defined in terms of dx  by the equation 
( )dy f x dx  

Sody  is a dependent variable; it depends on the values of x  and dx . Ifdx  is given a spe-

cific value and is taken to be some specific number in the domain of f , then the numerical 

value of dy  is determined. Ре
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Fig.3.3 

The geometric meaning of differentials is shown in Figure 3.3. Let ( , ( ))P x f x  and 

( , ( ))Q x x f x x     be points on the graph of f  and let dx x  . The corresponding 

change in y  is 

( ) ( )y f x x f x      

The slopeRP  of the tangent line is the derivative ( )f x . Thus the directed distance from S 

to R is ( )dy f x dx . Therefore dy  represents the amount that the tangent line rises or falls 

(the change in the linearization), whereas y  represents the amount that the curve ( )y f x  

rises or falls when x  changes by an amount dx . 
Notice that the approximation y dy   becomes better as x  becomes smaller. Notice 

also that dy  was easier to compute than y . For more complicated functions it may be im-

possible to compute y  exactly. In such cases the approximation by differentials is especially 

useful. 
In the notation of differentials, the linear approximation can be written as 

( ) ( )f x x f x dy      or   ( ) ( ) ( )f a x f a f a x     . 

Example 1. Use a differential to estimate 67 .  

Solution. The object is to estimate the value of the square root function ( )f x x  at the 

input 67x  . In this case, (64)f  is know. We have  

(64) 8f   and 
1

( )
2

f x
x

  ,
1 1

(64)
162 64

f    . 

Since 67 64 3  , ( ) ( )f x x f x dy    , 3x  . Therefore, 

1
67 (64) (64) (64) 3 8 3 8.1875

16
f dy f f          . 

A calculator shows that to four decimal places, 67 8.1854 . So the estimate obtained 
by the differential is not far off. 

Exercise Set 12 
In Exercises 1 to 12 use a differential to estimate  

1. 37  2. 3 10  3. 101026  4. 3 25  

5. sin 31  6. cos61  7. 47tg   8. 31 30ctg   

9. ln( 46 )tg   10. sin131  11. 0.95arcctg  12. 1.02arctg  
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3.5 Higher Derivatives 
Velocity is the rate at which distance changes. The rate at which velocity changes is called 

acceleration. Thus if ( )y f t  denotes position on a line at time t , then the derivative 

( )
dy

y v t
dt

   equals the velocity, and the derivative of the derivative, that is 

d dy

dt dt

 
 
 

 

equals the acceleration. 
Definition The derivative of the derivative of a function ( )y f x  is called the second de-

rivative of the function. It is denoted 

 y y    
2

2

d y

dx
, y , ( )f x ,  2

y ,  2
( )f x . 

If ( )y f t  where t  denotes time, the second derivative 
2

2

d y

dt
 is also denoted y . 

For instance, if 3y x ,  3 23y x x
   and  23 6y x x

   . 

Definition The derivative of the second derivative 
2

2

d d y
y

dx dx

 
 

 
 

is called the third derivative and is denoted many ways, such as 
3

3

d y

dx
, y , ( )f x ,  3

y ,  3
( )f x . 

The fourth derivative  4
( )f x  is defined as the derivative of the third derivative and is repre-

sented by similar notations. Similarly,  ( )
n

f x  is defined for 5,6,...n   

Definition The derivatives  ( )
n

f x  for 2n   are called the higher derivatives of ( )y f x . 

(The first derivative is also denoted  1
( )f x  ) 

Example 1. Compute  ny  if 3 25 9 7y x x x     if n  is a positive integer.  

Solution.  
23 10 9y x x     

 23 10 9 6 10y x x x
       

(6 10) 6y x     

Since  4
y  is constant, its derivative,  5

y  is equal to 0 for all x . Similarly, 
 6

0y  ,  7
0y   and so on. 

As Example 1 may suggest, for any polynomial ( )P x  of degree at most 3,   0
n
y   for all 
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integers 4n  . The next example is quite different. 

Example 2. Compute  ny  if siny x .  

Solution.  

 sin cos sin
2

y x x x
      

 
 

 cos sin sin( 2 )
2

y x x x
        

 sin cos sin( 3 )
2

y x x x
         

   4
cos sin sin( 4 )

2
y x x x

       

   5
sin cos sin( 5 )

2
y x x x

     . 

Note that  4
y y ,  5

y y  and so on. The higher derivatives repeat every four steps. 

    
sin sin( )

2

nn
y x x n


    . 

The following example shows how to find the second derivative of a function that is defined 
implicitly. 

Example 3 Find y , if 4 4 16x y  . 

Solution. Differentiating the equation implicitly with respect to x , we get 
3 34 4 0x y y    

Solving for y  gives 
3

3

x
y

y
   . 

To find y  we differentiate this expression for y  using the Quotient Rule and remembering 

that y  is a function of x : 

   
 

3 3 3 33 2 3 2 3

3 2 6
3

3 3

x

x y y xx x y y y x
y

y yy

         
       

 
. 

If we now substitute last equation into this expression, we get 

 
3

2 3 2 3
2 4 43 2 4 6

6 7 7

3 3
33 3

x
x y y x

x y xy x y x
y

y y y

 
                 . 

But the values of x  and y  must satisfy the original equation 4 4 16x y  . So the answer 

simplifies to 
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2 2

7 7

3 16
48

x x
y

y y


      . 

Note 1 If some curves defined by parametric equations ( )x x t , ( )y y t  and 

( )

( )
t

x
t

y t
y

x t


 


, the second derivative of the function y  is differentiated by formula: 

 xt t

t tx

yy
y

x x

  
     

. 

Example 4 Find y ,if   

21 ,

1
.

x t

y
t

  






 

Solution. Using formula 
( )

( )
t

x
t

y t
y

x t


 


, we get 

   2

2

1
1 2

2 1
tx t t

t


     


 

2

1 1
t

t

y
t t

     
 

 

 

22

3

2

1
( ) 1

1( ) 2
2 1

t
x

t

y t tty
x t tt

t


 

   


 


. 

Using formula 
 xt t

t tx

yy
y

x x

  
     

, we get 

 
   

 

 

3 2 2
2 3 2 3

2 2

3 2 6
3

2
2 2

2

4 4

2
1 31 11 2 1

3 1 3 2

x t

t

t
t t tt t t tt ty

t tt

t t t

t t

                 
 
 

  
   

 

 

 

 
2

2 2
4

5

2

3 2
3 2 1

1
2

2 1

x t

t

t
t ty ty

x tt
t


   

   


 


. 

Exercise Set 13 
In Exercises 1 to 18 find y  
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1.    3 23 4 2y x x x  2. ln2 xy x e    3. sin 3 3cos6y x   

4. 
3

2

tgx ctgx
y


  5. 

2

3

(2 1)

3

x
y

x


  6. 2 sinxy e x   

7. 5 cosy x x   8.  
21

23 6 8y x x    9. 6sin 7y x  

10. 2 1xy e   11. 3 24 5x y xy   12. 5 6x ye x y    

13. 2 22
x

x y
y

   14. 4 2x ye x y    15. 
sin ,

2 cos .

x t t

y t

 


 
 

16. 

2

1
,

1
.

1

x
t

y
t





 
 

 17. 
,

1
.

1

x t

y
t

 






 18. 

,

1
.

sin 2

x tgt

y
t







 

In Exercises 19 to 24 find  ny  

19. xy e  20. cosy x  21. sin3y x  

22. 
1

y
x

  23. ln3y x  24. 2siny x  

3.6 L’Hopital’s Rule 
The problem of finding a limit has arisen in graphing a curve and will appear often in later 

chapters. Fortunately, there are some general techniques for computing a wide variety of lim-
its. This section discusses one of the most important of these methods - l’Hopital’s rule, which 
concerns the limit of a quotient of two functions. 

Theorem 1 describes a general technique for dealing with the troublesome quotient 

 
 
f x

g x
 

when   0f x   and    0g x  (it is known as the zero-over-zero case of I’Hopital’s rule). 

Theorem 1 (L’Hopital’s rule). Let a  be a number and let ( )f x  and ( )g x  be differentiable 

over some open interval ( , )a b . Assume also that  'g x  is not 0 for any x  in that interval. If 

 


lim 0
x a

f x  ,  


lim 0
x a

g x  and 
 
 


'

lim
'x a

f x
L

g x
, 

Then 

 
 

lim
x a

f x
L

g x
  . 

Example 1 Find 
5

3
1

1
lim .

1x

x

x




  

Solution. In this case,  

1,a       5 1,f x x      and    3

1
lim 1 0
x

x


   
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According to I’Hopital’s rule, 

 
 

55

3 31 1

1 '1
lim lim

1 1 'x x

xx

x x  




 
 

if the latter limit exists. Now 

 
 

5 4

231 1

1 ' 5
lim lim

31 'x x

x x

xx  





 2

1

5
lim

3x
x




5

3
 . 

Thus 
5

3
1

1 5
lim .

31x

x

x





  

Example 2 Find 
30

sin
lim
x

x x

x


  

Solution. As 0,x  both numerator and denominator approach 0. By I’Hopital’s rule, 

3 20 0

sin cos 1
lim lim

3x x

x x x

x x 

 
  

But as 0,x  both  cos 1 0x . So use I’Hopital’s rule again: 

20 0

cos 1 sin
lim lim .

63x x

x x

xx 

 
  

Both sin x  and 6x  approach 0 as 0.x   Use I’Hopital’s rule yet another time: 

0 0

sin cos
lim lim

6 6x x

x x

x 

 
  

1

6
   . 

The next theorem presents a form of I’Hopital’s rule that covers the case in which 

 f x   and  g x  . It is called the infinity-over-infinity case of I’Hopital’s rule. 

Theorem 2 L’Hopital’s rule (infinity-over-infinity case). Let ( )f x  and ( )g x  be defined and 

differentiable for all x  larger than some fixed number. Then, if  

 lim
x

f x


  ,  


 lim
x

g x  and 
 
 

'
lim

'x

f x
L

g x
  

It follows that  

 
 

lim
x

f x
L

g x
. 

Example 3 Use I’Hopital’s rule to find lim .
xx

x

e
  

Solution. By Theorem 2, 

 
'

lim lim
'

x xx x

x x

e e 


1
lim 0.

xx e
    

Example 4 Find 
3

lim
2xx

x


  

Solution. Since both numerator and denominator approach   as ,x  I’Hopital’s rule 
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may be applied. It asserts that 
3 23

lim lim
2 2 ln2x xx x

x x

 


 2
6

lim
2 ln2xx

x




 3
6

lim
2 ln2xx

 . 

Thus as ,2xx  grows much faster than 3x . 
Transforming some limits so that l’Hopital’s rule applies to many limit problems can be 

transformed to limits to which I’Hopital’s rule applies. For instance, the problem of finding 

0
lim ln
x

x x


 

does not seen to be related to I’Hopital’s rule, since it does not involve the quotient of two func-

tions. As 0 ,x   one factor, x , approaches 0 and the other factor, ln x , approaches  . It 

is not obvious how their product, lnx x , behaves as 0x  . But a little algebraic manipula-
tion transforms it into a problem to which I’Hopital’s rule applies, as the next example shows. 

Example 5 Find 
0

lim ln
x

x x
 

  

Solution .Rewrite lnx x  as a quotient 
ln
1
x

x

. Let ( ) lnf x x  and 
1

( )g x
x

 . Note that 

0
lim ln
x

x


   and 
0

1
lim .
x x

   

A case of Theorem 2, with 0 ,x   asserts that 

2
0 0

ln 1/
lim lim

1/ 1/x x

x x

x x  



 


  

0
lim 0
x

x . 

Thus 
0

ln
lim 0.

1/x

x

x
   

From which it follows that 
0

lim ln 0.
x

x x


  (The factor x , which approaches 0, dominates 

the factor ln x , which gets arbitrarily large in absolute value). 

Exercise Set 14 
In Exercises 1 to 46 check that I’Hopital’s rule applies and use it to find the limits. 

1. 
3

22

8
lim

4x

x

x




  2. 

7

31

1
lim

1x

x

x




  3. 

0

sin3
lim

sin2x

x

x
  

4. 
 

2

20

sin
lim

sinx

x

x
  5. 

3

lim
xx

x

e
  6. 

5

lim
3xx

x


  

7. 
20

1 cos
lim
x

x

x


  8. 

 30

sin
lim

sinx

x x

x


  9. 

 0

tan3
lim

ln 1x

x

x 
  

10. 
 

1

cos / 2
lim

lnx x




  11. 

 2ln
lim
x

x

x
  12. 

1

20

sin
lim

1xx

x

e



 
  

13.  1/

0
lim 1 2

x

x
x


   14.  




0
lim 1 sin2

ctgx

x
x   15.   1

0
lim sin

xe

x
x






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16. 2

0
lim ln
x

x x


  17.  


2

0
lim

tg x

x
tgx   18.  

0
lim 1 lnx

x
e x


   

19. 
2

lim
3

x

xx
  20. 

2
lim

3

x

xx

x




  21. 2

3

log
lim

logx

x

x
  

22. 2

1
3

log
lim

logx

x

x
  23. 

1 1
lim

sinx x x

 
 

 
  

24. 

 2 2lim 3 4
x

x x x


   . 

25. 
2

2

3cos5
lim

2sin4x

x x

x x




  26. 

1/
lim

1/

x

xx

e x

e x




  27. 

2 2

3 20

3
lim

5x

x x x

x x x

 

 
  

28. 
3 2

3 2

3
lim

5x

x x x

x x x

 

 
  29. 

sin
lim

4 sinx

x

x 
  

30. lim 5sin3
x

x


  

31.    
1

lim 1 ln 1
x

x x


    32. 
   /2

lim
/ 2x

tgx

x
  33.  1/

0
lim cos

x

x
x


  

34. 1/

0
lim x

x
x


  35. 

sin2
lim

sin3x

x

x
  36. 

2

31

1
lim

1x

x

x




  

37. 
 3

0

1
lim

1

x

xx

xe x

e




  38. 

2

20

cos 6
lim

1

x

xx

xe x

e 
  39. 



 
 

 0

1
lim

sinx
ctgx

x
  

40. 




0

sin7 sin3
lim

sinx

x x

x
  41. 

0

5 3
lim

sin

x x

x x


  42. 







5 3

0
lim

1 cosx

tg x tg x

x
  

43. 
3

22

8
lim

5x

x

x




  44. 

/2

sin5
lim

sin3x

x

x
  45. 

20

1 2
lim

1 cosx x x

 
  

  

46. 
1

10

sin
lim

tan 2x

x

x




  

  

3.7 The Hyperbolic Functions And Their Inverses 

Certain combinations of the exponential functions xe  and xe  occur often enough in dif-
ferential equations and engineering – for instance, in the study of electric transmission and 
suspension cables – to be given names. This section defines these so-called hyperbolic func-
tions and obtains their basic properties. Since the letter x  will be needed later for another pur-

pose, we will use the letter t  when writing the two preceding exponentials, namely, te  and 
te . 
Definition (The hyperbolic cosine). Let t  be a real number. The hyperbolic cosine of t , de-

noted cht , is given by the formula 


ch
2

t te e
t  

Definition (The hyperbolic sine). Let t  be a real number. The hyperbolic sine of t , denoted 
sht , is given by the formula 


sh

2

t te e
t  
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The four other hyperbolic functions, namely, the hyperbolic tangent, the hyperbolic secant, 
the hyperbolic cotangent, and the hyperbolic cosecant, are defined as follows: 


sh

th
ch

t
t

t
   

1
sec

ch
ht

t
    

ch 1
cth ,csc

sh sht

t
t ht

t
 

Each can be expressed in terms of exponentials. For instance,  

 
 

 



 
 



1

1

/ 2
th

/ 2

t t t

t tt

e e e e
t

e ee e
 

As , tt e   and 0te  . Thus 


lim th 1.
t

t  Similarly, 


 lim th 1.
t

t  

The derivatives of the four hyperbolic functions can be computed directly. 

 
       

 
ch

2 2

t t t te e e e
t sht  

 
       

 
h

2 2

t t t te e e e
s t cht  

 
    

  2

sh 1
th

ch

t
t

t ch t
 

 
     

  2

1cht
ctht

sht sh t
. 

4 USING THE DERIVATIVE AND LIMITS WHEN GRAPHING A FUNCTION 

4.1 Using The First Derivative When Graphing a Function 

The primitive and inefficient way to graph a function is to make a table of values, plot many 
points, and draw a curve through the points (hoping that the chosen points adequately repre-
sent the function). Chapter 2 refined the technique somewhat. The x andy  intercepts are of 

aid in graphing, for they tell where the graph meets the x  and y  axes. Furthermore, horizon-

tal and vertical asymptotes were discussed; they can be of use in sketching the graph for large 
x  and also near a number where the function becomes infinite (usually because a denomina-

tor is 0). For instance, the line  1x  is a vertical asymptote of 
1

1
y

x



, the line  0y  is a 

horizontal asymptote of the same curve. The line 



2

x  is a vertical asymptote of the 

curve y tgx .  

This section shows how to use the derivative and limits to help graph a function. 
Definition (Critical number and critical point). A number c , at which ( ) 0f c   is called a 

critical number for the function f . The corresponding point  , ( )c f c  on the graph of f  is a 

critical point on that graph. 
Definition (Relative maximum (local maximum)). The function f  has a relative maximum 
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(or local maximum) at the number c  if there is an open interval ( , )a b  around c  such that 

( ) ( )f c f x  for all x  in ( , )a b  that lie in the domain of f . A local or relative minimum is de-

fined analogously. 
Definition (Global maximum). The function f  has a global maximum (or absolute maxi-

mum) at the number c  if ( ) ( )f c f x  for all x  in the domain of f . A global minimum is de-

fined analogously. 
Note that a global maximum is necessarily a local maximum as well. A local maximum is 

like the summit of a single mountain; a global maximum corresponds to Mount Everest. 
Fig. 4.1 illustrates the notions of critical points , , ,b c d e , local maximum ( )f b , global max-

imum ( )f d , local minimum ( )f c , and global minimum ( )f a  in the graph of a hypothetical 

function. Any given function may have none of these, or some, or all. 

 
Fig. 4.1 

The following test for local maximum or local minimum is an immediate consequence of the 
fact that when the derivative is positive the function increases and when it is negative it de-
creases. 

First-Derivative Test For Local Maximum (Minimum) 
Let f  be a function and let c  be a number in its domain. Assume that numbers a  and b  

exist such that  a c b  and 
1. f  is continuous on the open interval ( , )a b . 

2. f  is differentiable on the open interval ( , )a b , except possibly at c . 

3. ( )f x  is positive for all x c  in the interval and is negative for all x c  in the interval. 

Then f  has a local maximum at c . 
A similar test, with ‘'positive" and "negative" interchanged, holds for a local minimum (see 

Fig.4.2) 
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.  
Fig.4.2 

Informally, the derivative test says, "if the derivative changes sign at c , then the function 
has either a local minimum or a local maximum”. 

To decide which it is, just make a crude sketch of the graph near  , ( )c f c  to show on 

which side of c  the function is increasing and on which side it is decreasing. 
Example 1 The graph of the function 4 3 2( ) 3 16 18f x x x x   ; 1 4x    is shown in 

Fig. 4.3. You can see that (1) 5f   is a local maximum, whereas the absolute maximum is 

( 1) 37f   . (This absolute maximum is not a local maximum because it occurs at an endpoint.) 

Also, (0) 0f  is a local minimum and (3) 27f   is both a local and an absolute minimum. 

Note that ( )f x  has neither a local nor an absolute maximum at 4x  . 

 
Fig. 4.3 

Example 2 Graph  4 3( ) 3 4f x x x . Discuss relative maxima and minima. 

Solution. To find the intercepts note that (0) 0f  and  4 33 4 0x x  when 

   3 3 4 0x x  that is, when  0x  or 
4

3
x . The derivative is  

      3 2 2( ) 12 12 12 1f x x x x x . 

The critical numbers are the solutions of the equation 

   212 1 0x x . 

Namely,  0x  and  1x . 
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How does the sign of       3 2 2( ) 12 12 12 1f x x x x x  behave when x  is near 0?  

        2( ) 0 12 1 0 1f x x x x  

        2( ) 0 12 1 0 1f x x x x . 

Thus the sign of ( )f x  does not change as x  passes through 0. In fact, since ( )f x  re-

mains negative (except at 0), the function f  is decreasing for  1x . Thus there is no relative 
maximum or minimum at  0x .  

How does the sign of     2( ) 12 1f x x x  behave when x  is near 1? 

The factor 212x  remains positive, but  1x  changes sign from negative to positive. 

Hence at  1x  the function has a local minimum. 

Writing 
 

     
 

4 3 4 4
( ) 3 4 3f x x x x

x
 shows that when x  is large, ( )f x  behaves like 

43x , since 
4

x
 is near 0. Since 43x  becomes arbitrarily large when x  is large, the function 

has no global maximum. The graph in Fig. 4.4 shows the x  intercepts and the critical points. 
Note that when  1x  a global minimum occurs. 

In many applied problems we are interested in the behavior of a differentiable function just 
over some closed interval [ , ]a b . Such a function will have a global maximum for that interval 

by the maximum-value theorem of Sec.2.6. That maximum can occur either at an endpoint -a  
orb -or else at some number c  in the open interval ( , )a b . In the latter case,c  must be a crit-

ical number, for  ( ) 0f c  by the interior-maximum theorem of Sec. 4.1. 

 
Fig. 4.4 

Fig. 4.5 shows some of the ways in which a relative or global maximum or minimum can oc-
cur for a function considered only on a closed interval [ , ]a b .  

 
Fig. 4.5 

The major point to keep in mind is that the maximum value of a functionf  that is differentia-
ble on a closed interval occurs 

1. At an endpoint of the interval, or 
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2. At a critical number [ where  ( ) 0f x ].  

Example 3 Find the maximum value of   3 2( ) 3 3f x x x x  for x  in [0,2] . 

Solution. First compute f  at the ends of the interval, 0 and 2: 
(0) 0f   and (2) 2f  . 

Next, compute ( )f x  , which is    2( ) 3 6 3f x x x . When is  ( ) 0f x ? When 

  23 6 3 0x x  

  23( 2 1) 0x x  

  
2

3 1 0x  

Thus 1 is the only critical number, and it lies in the interval [0,2] .  

The maximum of f  must therefore occur either at an endpoint of the interval (at 0 or 2) or at 
the only critical number, 1. It is necessary to calculate (1)f  to determine where the maximum 

occurs: 

     3 2(1) 1 3 1 3 1 1f  

Since (0) 0f , (2) 2f  and (1) 1f , the maximum value is 2, occurring at the end-

point 2. 

Exercise Set 15 
In each of Exercises 1 to 9 find all critical numbers of the given function and use the first-

derivative test to determine whether a local maximum, a local minimum, or neither occurs 
there. 

1. 5x   2. 6x   3.  
3

1x   

4.  
4

1x   5. 4 33x x   6. 3 22 3x x   

7. sin cosx x x   8. cos sinx x x   9. 5 35x x  

In Exercises 10 to 27 graph the given functions, showing any intercepts, asymptotes, critical 
points, or local or global extrema. 

10. 4 33 4x x   11. 3 22 3x x   12.  3 23 9x x x   

13.  3 26 15x x x   14.  4 3 24 20x x x   15.  3 2 5x x x   

16. 4 34x x   17. 4 33 8x x  18. 




3 1

3 1

x

x
  

19. 
1

x

x
  20. 

2 1

x

x
  21. 

2 1

x

x
  

22. 
2

1

2x x
  23. 

 2

1

3 2x x
  24. 





2

2

3

1

x

x
  

25. 
2 1x

x
  26. 

 2

1

4 4x x
 27. 



 2

2

3 2

x

x x
 

Exercises 28 to 33 concern functions whose domains are restricted to closed intervals. In 
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each case find the maximum and the minimum value for the given function over the given in-
terval. 

28. 2 4x x , [0,1]  29. 2 34 5x x ,[0,4]   30.  24x x ,[0,2]   

31. 22 5x x , [ 1,1]   32.  3 23 9x x x ,[0,2]   33. 
2 1

x

x
,[0,3]   

4.2 Concavity And The Second Derivative 
Whether the first derivative is positive, negative, or zero tells a good deal about a function 

and its graph. This section will explore the geometric significance of the second derivative be-
ing positive, negative, or zero. The following section will show how the second derivative is 
used in the study of motion.  

Concave Upward and Concave Downward 
Assume that ( )f x  is positive for all x  in the open interval ( , )a b . Since ( )f x  is the de-

rivative of ( )f x , it follows that ( )f x  is an increasing function throughout the interval ( , )a b . 

In other words, as x  increases, the slope of the graph of  ( )y f x  increases as we move 

from left to right on that part of the graph corresponding to the interval( , )a b . 

Definition (Concave upward). A function f  whose first derivative is increasing throughout 
the open interval ( , )a b  is called concave upward in that interval. 

Note that when a function is concave upward, it is shaped like part of a cup. It can be 
proved that where a curve is concave upward it lies above its tangent lines and below its 
chords, as shown in Fig. 4.6(a). 

As was observed, in an interval where ( )f x  is positive, the functionf  is increasing, and so 

the function f  is concave upward. However, if a function is concave upward, ( )f x  is not nec-

essarily positive. For instance,  4y x  is concave upward over any interval, since the deriva-

tive 34x  is increasing. The second derivative 212x  is not always positive; at  0x  it is 0. 
If, on the other hand, ( )f x  is negative throughout ( , )a b  then ( )f x  is a decreasing func-

tion and the graph of f  looks like part of the curve in Fig. 4.6(b). 

 
Fig. 4.6 

Definition (Concave downward). A functionf  whose first derivative is decreasing through-
out an open interval ( , )a b  is called concave downward in that interval. 

Example 1. Where is the graph of  3( )f x x  concave upward? Concave downward? 

Solution. First compute the second derivative. Since   2( ) 3f x x ,  ( ) 6f x x .  

Clearly 6x  is positive for all positive x  and negative for all negative x . The graph, shown 
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in Fig. 4.7, is concave upward if  0x  and concave downward if  0x . Note that the sense 
of concavity changes at  0x . When you drive along this curve from left to right, your car 
turns to the right until you pass through (0,0) . Then it starts turning to the left. 

 
Fig. 4.7 

Example 2. Consider the function ( ) sinf x x  for x  in [0,2 ] . Where is the graph con-

cave upward? Concave downward? 
Solution. 

 sin cosy x x    

 cos siny x x     

The second derivative, sin x , is negative for  0 x . It is positive for    2x  
Therefore, the graph is concave downward for x  in (0, )  and concave upward for x  in 

 ( ,2 ) . 

The sense of concavity is a useful tool in sketching the graph of a function. Of special inter-
est in Examples 1 and 2 is the presence of a point on the graph where the sense of concavity 
changes. Such a point is called an inflection point. 

Definition (Inflection point and inflection number). Let f  be a function and let a  be a num-
ber. Assume that there are numbersb  and c  such that  b a c  and 

1. f  is continuous on the open interval ( , )b c   

2. f  is concave upward in the interval ( , )b a  and concave downward in the interval ( , )a c  or 

vice versa. 
Then the point  , ( )a f a  is called an inflection point or point inflection. The number a  

is called an inflection number. 
Observe that if the second derivative changes sign at the number a , then a  is an inflection 

number. 
If the second derivative exists at an inflection point, it must be 0. But there can be an inflec-

tion point even if ( )f x  is not defined there, as shown by the next example, which is closely 

related to Example 1. 
The Second Derivative and Local Extrema 

The second derivative is also useful in testing whether at a critical number there is a relative 
maximum or relative minimum. For instance, let a  be a critical number for the function f  and 
assume that ( )f a  happens to be negative. If ( )f x  is continuous in some open interval that 

contains a , then ( )f a  remains negative for a suitably small open interval that contains a . 

This means that the graph of f  is concave downward near  , ( )a f a  hence lies below its 
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tangent lines. In particular, it lies below the horizontal tangent line at the critical point 

 , ( )a f a . Thus the function has a relative maximum at the critical number a . This observa-

tion suggests the following test for a relative maximum or minimum. 

The Second Derivative Test 
Suppose ( )f x  is continuous near a . 

(a) If  ( ) 0f a  and  ( ) 0f a , then f has a local minimum at a . 

(b) If  ( ) 0f a  and  ( ) 0f a , thenf  has a local maximum at a . 

Example 3.Discuss the curve  4 3( ) 4f x x x  with respect to concavity, points of inflec-

tion, and local maxima and minima. Use this information to sketch the curve. 
Solution Sincef  is differentiable throughout its domain, any local extremum can occur only 

at a critical number. So begin by finding the critical numbers, as follows: 

         4 3 3 2 2( ) 4 4 12 4 3f x x x x x x x . 

Setting  ( ) 0f x  gives 2 0x  or  3 0x . The critical numbers are therefore  

 0x  and  3x . 
Now use the second derivative to determine whether either of these corresponds to a local 

extremum. 
The second derivative is 

         3 2 2( ) 4 12 12 24 12 2f x x x x x x x  

At  3x  we have 

     2(3) 12 3 24 3 36f  

Since  (3) 0f  and  (3) 0f , f  has a local minimum at  3x .  

How about the other critical number,  0x ? In this case, 
 (0) 0f . 

Since  (0) 0f , the second-derivative test tells us nothing about the critical number 0. In-

stead, we must resort to the first-derivative test and examine the sign of 

         4 3 3 2 2( ) 4 4 12 4 3f x x x x x x x  for x  near 0. For x  sufficiently near 0, 

whether to the right of 0 or to the left, 2x  is positive and  3x  is negative. Thus ( )f x  is 

negative for x  near 0. Since f  is a decreasing function near 0, it has neither a local maximum 
nor a local minimum at 0. 

Since  ( ) 0f x  when  0x  or  2x , we divide the real line into intervals with these 

numbers as endpoints and complete the following chart. 
Interval    ( ) 12 2f x x x  

Concavity 

( ,0)  + upward 

(0,2)  - downward 

(2, )  + upward 

The point (0,0)  is an inflection point since the curve changes from concave upward to con-

cave downward there. Also, (2, 16)  is an inflection point since the curve changes from con-
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cave downward to concave upward there. 
Using the local minimum, the intervals of concavity, and the inflection points, we sketch the 

curve in Fig. 4.8. 

 
Fig. 4.8 

Exercise Set 16 
In Exercises 1 to 18 graph the functions, showing any relative maxima, relative minima, and 

inflection points. 

1. 4 32 5x x   2. 3 27 4x x   3.  3 23 9x x x   

4.  3 26 15x x x   5.  4 3 24 20x x x   6.  3 2 5x x x   

7. 4 32 7x x   8. 4 35 8x x    9. 




2 1

2 1

x

x
  

10. 
2 1

x

x
  11. 

2 1

x

x
  12. 

2 1

x

x
  

13. 
2

1

2 3x
  14. 

 2

1

5 4x x
  15. 





2

2

3

1

x

x
  

16. 
2 1x

x
  17. 

 2

1

6 9x x
 18. 



 2

1

3 2

x

x x
 

 

4.3 Guidelines For Sketching a Curve 
The following checklist is intended as a guide to sketching a curve  ( )y f x  by hand. Not 

every item is relevant to every function. (For instance, a given curve might not have an asymp-
tote or possess symmetry.) But the guidelines provide all the information you need to make a 
sketch that displays the most important aspects of the function. 

A. Domain It’s often useful to start by determining the domainD  of f , that is, the set of 
values of x  for which  ( )y f x  is defined. 

B. Intercepts The y -intercept is (0)f  and this tells us where the curve intersects the y -

axis.To find the x -intercepts, we set  0y  and solve for x . (You can omit this step if the 

equation is difficult to solve.) 
C. Symmetry 
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(i) If ( ) ( )f x f x   for all x  in D , that is, the equation of the curve is unchanged when x  is 

replaced by x , then f  is an even function and the curve is symmetric about the y -axis. 

This means that our work is cut in half. If we know what the curve looks like for  0x , then we 
need only reflect it about the y -axis to obtain the complete curve. 

(ii) If ( ) ( )f x f x    for all x  in D , then it is an odd function and the curve is symmetric 

about the origin. Again we can obtain the complete curve if we know what it looks like 
for  0x . [Rotate 180° about the origin.] 

(iii) If  ( ) ( )f x p f x  for all x  inD , where p  is a positive constant, then f  is called a 

periodic function and the smallest such number p  is called the period. If we know what the 

graph looks like in an interval of length p , then we can use translation to sketch the entire 

graph. 
D. Asymptotes 

(i) Horizontal Asymptotes. Recall from Section 2.3 that if either  


lim
x

f x L  or 

 


lim
x

f x L , then the line y L  is a horizontal asymptote of the curve  ( )y f x . If it 

turns out that  


 lim
x

f x  (or  ), then we do not have an asymptote to the right, but that 

is still useful information for sketching the curve. 
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(ii) Vertical Asymptotes. Recall from Section 2.3 that the line x a  is a vertical asymptote 
if at least one of the following statements is true: 

 
 lim

x a
f x , 

 lim
x a

f x
  , 

 


 lim ,
x a

f x  

 


 lim
x a

f x .     (1) 

(For rational functions you can locate the vertical asymptotes by equating the denominator 
to 0 after canceling any common factors. But for other functions this method does not apply.) 
Furthermore, in sketching the curve it is very useful to know exactly which of the statements in 
(1) is true. 

(iii) Slant Asymptotes. Some curves have asymptotes that are oblique, that is, neither hori-
zontal nor vertical. If 

   


    lim 0
x

f x kx b  

then the line  y kx b  is called a slant asymptote, because the vertical distance between 

the curve  ( )y f x  and the line  y kx b  approaches 0. For rational functions, slant as-

ymptotes occur when the degree of the numerator is more than the degree of the denominator. 
In such a case the equation of the slant asymptote can be found by long division. 

For finding  y kx b  we use next formulas: 




( )
lim
x

f x
k

x
 

 


 lim ( )
x

b f x kx . 

E. Intervals of Increase or Decrease Use the I /D Test. Compute ( )f x  and find the inter-

vals on which it is positive ( f  is increasing) and the intervals on which ( )f x  is negative( f  is 

decreasing). 
F. Local Maximum and Minimum Values Find the critical numbers of f  [the numbers c  

where  ( ) 0f c  or ( )f c d oes not exist]. Then use the First Derivative Test. If ( )f x  changes 

from positive to negative at a critical numberc , then ( )f c  is a local maximum. If ( )f x  changes 

from negative to positive at c , then ( )f c  is a local minimum. Although it is usually preferable 

to use the First Derivative Test, you can use the Second Derivative Test if  ( ) 0f c  and 
 ( ) 0f c . Then  ( ) 0f c  implies that ( )f c  is a local minimum, whereas  ( ) 0f c  implies 

that ( )f c  is a local maximum. 

G. Concavity and Points of Inflection Compute ( )f x  and use the Concavity Test. The 

curve is concave upward where  ( ) 0f x  and concave downward where  ( ) 0f x . Inflection 

points occur where the direction of concavity changes. 
H. Sketch the Curve Using the information in items A–G, draw the graph. Sketch the as-

ymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and inflection 
points. Then make the curve pass through these points, rising and falling according to E, with 
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concavity according to G, and approaching the asymptotes. If additional accuracy is desired 
near any point, you can compute the value of the derivative there. The tangent indicates the 
direction in which the curve proceeds. 

Example 1 Use the guidelines to sketch the curve 


2

2

2

1

x
y

x
. 

Solution 
A. The domain is 

                2| 1 0 , 1 1,1 1,D x x . 

B. The x - and y -intercepts are both 0. 

C. Since ( ) ( )f x f x  , the function is even. The curve is symmetric about the y -axis. 

D. 

 
 



2 2

2 2

2 2
lim lim 2

1x x

x x

x x
. 

Therefore the line  2y  is a horizontal asymptote. 

Since the denominator is 0 when  1x , we compute the following limits: 


 



2

2
1

2
lim

1x

x

x
,


 



2

2
1

2
lim

1x

x

x
,


 



2

2
1

2
lim

1x

x

x
,


 



2

2
1

2
lim

1x

x

x
. 

Therefore the lines  1x  and  1x  are vertical asymptotes. 

    
      

 

2 2 2

2 3 3

( ) 2 2 2 2
lim lim lim lim lim 0

1x x x x x

f x x x x
k x

x xx x x x
. 

It’s means that  ( )y f x hasn’t a slant asymptote. 

E. 

   

    
     

   

2 2 2

2 2 2
2 2

2 4 ( 1) 2 2 4
( )

1 1 1

x x x x x x
f x

x x x
. 

Since  ( ) 0f x  when  0x  and  ( ) 0f x  when  0x ,f  is increasing on  ( , 1) and 

( 1,0)  and decreasing on (0,1)  and (1, ). 

F. The only critical number is  0x . Since ( )f x  changes from positive to negative at 0, 

(0) 0f  is a local maximum by the First Derivative Test. 

G. 

 
   

   

 

 
                  

   
 


 



2
2 2 2 2

2 4 3
2 2 2

2

3
2

1 2 1 24 1 16
( ) 4 4

1 1 1

3 1
4

1

x x x xx x x
f x

x x x

x

x

 

Since  23 1 0x  for all x , we have 

      2( ) 0 1 0 1f x x x  
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and 

      2( ) 0 1 0 1f x x x . 

Thus the curve is concave upward on the intervals  ( , 1) and (1, ) and concave 

downward on ( 1,1) . It has no point of inflection since 1 and -1 are not in the domain of f . 

H. Using the information in E–G, we finish the sketch in Figure 4.9. 

        
Fig. 4.9. 

Exercise Set 17 
Use the guidelines of this section to sketch the curve. 

1. 
1

1
4 


x

y  2. 
2

2











x

x
y  3. 

2

3 32

x

x
y


  

4. 
42

)1(4
2

2






xx

x
y   5. 

3

23

x

x
y


  6. 

2

2

)1(

96






x

xx
y  

7. 
3

3 5427

x

xx
y


  8. 

32

4
2 


xx

y  9. 
223

4

xx
y


  

10. 
32

72
2

2






xx

xx
y  11. 

12

312
2

2





x

x
y  12. 

4

8
2 



x

x
y  

13. 
3

4 13

x

x
y


  14. 

2)1(

4



x

x
y  15. 

2)1(

)1(8





x

x
y  

16. 
2

321

x

x
y


  17. 

2

3 4

x

x
y


  18. 

29

12

x

x
y


  
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