MMUHUCTEPCTBO OBPA3OBAHUA PECIYBJIMKW BENAPYCb

) YUYPEXOEHWE OBPA3OBAHVA
«BPECTCKWUM TOCYOAPCTBEHHbIW TEXHUWMECKUW YHUBEPCUTET»

KA®E[LPA BbICLIEN MATEMATUKM

Integrals and Differential
Equations

mMemoouyecKue yKa3aHusi Ha aH21uliCKOM fi3blKe
no gucumnnuHe «Maremarukay»

Bpect 2019



VIIK [517.3+517.91](076)=111

JlaHHBIE METOIMYECKHE YKa3aHWs aApECOBaHbl NPENOAABATENSAM M CTYIECHTaM
TexHuyeckux BY30B 18 mnpoBeneHHs ayAMTOPHBIX 3aHATHM M OpraHu3aluu
CaMOCTOSATENIbHOM  pabOThl ~ CTYAEHTOB  MpPU  MU3YYEHUM  MaTepuaja  u3
paccMaTpMBaeMbIX pas3AesoB. MeToaudyeckue yKasaHHWs HAa AHIJIMHMCKOM  SI3BIKE
«Integrals and Differential EquationseaepxaTt He0OX0UMbBIN MaTepHal M0 TeMaM
«HTerpanbHOEe HCYUCICHHE (QYHKIMU OJHON mMepeMeHHON», «OBIKHOBEHHBIE
auddepeHnranbHble  ypaBHEHHMsT M CHUCTeMbl», <«KpaTHble  HHTErpajibl»,
«KpHUBONMHENHBIE HHTErpaibl», u3lydaemble cryjaeHTaMu bpl'TY TexHuueckux
CIIEIMAIBHOCTEN B Kypce AUCLUILIMHBI «Martemarnka». TeopeTudeckuii MaTepuan
CONIPOBOKJIAETCS PACCMOTPEHUEM TOCTATOYHOIO KOJIMYECTBA PUMEPOB U 3a]1ad, IIPU
HEOOXOIMMOCTH TMPUBOAATCS COOTBETCTBYIOIIME wLTocTpanuu. g ynoOctea
IIOJIb30BaHUsl KaXKIasi TeMa paselieHa Ha TPU 4YacTU. KPAaTKUE TEOPETHUYECKHUE
cBeeHus (omnpeaeneHusi, OCHOBHBIE T€OPEeMbI, (POPMYJIbI JJIsl PACUETOB); 3aJaHUs IS
ayJIMTOPHOU pabOThI U 3aJaHUS 1JI1 MHIUBUYAIbHOU PabOTHI.

JlaHHBIE ~ METOAMYECKHE  yKa3aHus  SBIIIOTCA  NPOJOJDKEHHUEM  CEPUM
METOJMYECKUX pa3pabOTOK Ha AaHTJIUHCKOM S3bIKE KOJUIEKTHBa aBTOpoB [1]-[5].
[IpakTika MCONIB30BaHUS pa3pabOTOK JAaHHOW CepUM TMoKazana 1eraecooOpa3HOCTb
e MpUMEHEHHUs B Mpolecce OOy4YeHHs CTYACHTOB HE TOJBKO TEXHHYECKUX, HO U
HKOHOMHUYECKHUX ClelHaibHOCTEN. Takke ObLIN MOJYyUYEHBI MOJIO0KUTEIbHBIE OT3bIBBI
00 yIOMSIHYTOM Cepuu OT HMHOCTPAHHBIX CTYICHTOB.

Cocrasurenu: JIBopauueHKO A.B., M.3.H., cTapiIMii IpenoaaBaTeb
Jle6enpr C.D., K.¢p.-M.H., TOLEHT
banp O.B., crapmmii npenogaBaTens KaQeapbl HHOCTPAHHBIX SI3bIKOB

Penienzent: Mupckas E.W., nouent kadenpsl anreOpsl, reoMeTpuu U
MaTeMaTH4ecKoro MoaenupoBanus YO «bpecTCKuid rocyapCTBEHHBIM
yauBepcuteT uM. A.C. [lymkuna», K.(p.-M.H., TOIEHT.

Yupexaenrne 00pa3oBaHus
© «bpecTckuil TOCyaapCTBEHHBIM TeXHUYECKUN yHUBEepcuteT», 2019



CONTENT

1.2 INdefiNite INTEGIAlS ...t e e et e e e e e e e e e e e e e aaans 6...
EXEICISE SEE 1.1 .ottt ettt ettt e e e e e e e e e s e m R e e et e e e e e e e e e e et e e e e e e e e aananne 9
INAIVIAUAT TASKS L. 1 ...ttt ettt ettt e e e e e e e e e s e ammene e e e e e e e e e e e e sanbbbbbseeeeeaaaaaeeeaaaanns 10
1.2 Replacement of Variable in the INdefinite Ig............oooeeiiiiiiiiiiie e 11
EXEICISE SOE 1.2 ittt oottt ettt e e e e e e e e e e e amneee e e e e e e e e e e e e na bbb ta et e aeaaaaaaaeaaann 12
INAIVIAUAI TASKS 1.2 ...ttt ettt e e et e e e e s emmmmee e e e e e e e e e e e bbb e e r e e e e e e e eeeeeeanannns 12
1.3 INtegration DY PArTS .......ooo oottt et e e e e e e e e e eaaaaaas 13
EXEICISE SOE 1.3 ittt ettt e et e e e e e e e —— e et e e e e e e e e e e e e e e e e e a e 14
INAIVIAUAI TASKS 1.3 ...ttt et et e e e e e e e e e e s s ammmmee e e e e e e e e e e e e bbb e e n e e e e e e aeeeeenanannns 14
1.4 Integration of Rational FUNCLIONS ... e e e e e e e e e 15
EXEICISE SEE L4 ...t ettt et e e e e e e e s e e R e e et e e e e e e e et e e e e e e e e e e 18
INAIVIAUAT TASKS 1.4 ...ttt ettt ettt e e e e e e e e e e s ammene e e e e e e e e e s e e nanbbbbbsseeeeeaaaeeeeaaaanns 19
1.5 Integration of Nonrational FUNCHONS ..........oooiiiiiiiiiiiee e 19
EXEICISE SOE L. ittt ettt ettt e e e oo e e e e s e mmne e e e e e e e e e e e e e abbbbaa e e e e eaaaaeaaaaaaan 23
INAIVIAUAI TASKS 1.5 ...ttt ettt e e e e e e e s s rmm e e e e e e e e e e e e s e s b e e e e e e e e e e e e e e e aanannns 23
1.6 TrigONOMELIIC INTEYIAIS .....eeeeiiiiii ittt e e e e e e e e e e e et n e e eaaeas 23
EXEICISE SEE 1.6 ..cociiiiiiiiiit et ettt et e e e e e e e e e e R e e et e e e e e e e e e r e e e e e e e e e e e 25
INAIVIAUAI TASKS 1.6 ...ttt ettt et e e e e e e e e e e rmmnne e e e e e e e e e e e s anbbbbeseeeeeaaaaaeeeeaaannns 26
AAIIONAT TASKS L ... cmmmme ettt e e e e s e e e et e e e e e e e e e e e e e e eeeeas 6.2
[l DEFINITE INTEGRAL ...ttt ettt s e e e e e e et s e e e e ettt tems e e e e e e e eannn e e e e e eeasnnnaeeeeas 27
2.1 The Definite INTEGIAl .......cooo it bbb e e e e e e e eas 27
EXEICISE SOE 2.0 ittt ettt ettt e e e e e e e e e s e mmeee e e e e e e e e e e e e aa bbb e b et e e eaaaaaaaaaaaan 32
INAIVIAUAI TASKS 2.1 ...ttt ettt ettt e e e e e e e e e s s ammene e e e e e e e e e e e e anbbbbbseeeeeaaaaeeeeanaanns 32
A A ] o 0e] o1=T gl [ o] (=T [ = 1 TP 33
EXEICISE SOE 2.2 it ettt ettt et e e e oo e e e e e e mmeee e e e e e e e e e e e e bbb b e ra e e e eaaaaaaeaaaaan 37
INAIVIAUAI TASKS 2.2 ... ettt e e e e e e e s e e e et e e e e e e e s e e bbb nnr e e e e e e e e e e e e asnann 37
2.3 Geometrical Applications Of INtEQIratioN ... ...ooi e 38
EXBICISE SOt 2.3 ittt ettt e e e e e —— et e e e e e e e e e e e e e e e e e a e 44
INAIVIAUAT TASKS 2.3 ...ttt ettt et e e e e e e e e e s s ammeee e e e e e e e e e s e e anbbbbbn s e e e eaaaaaeeeaeaanns 44
2.4 Applications to PhySiCS and ENQINEEIING ummuan o iiieeieiiiiiiiiiieeeeeeiiiiiiitiv e 45
EXEICISE SOE 2.4 .. ettt ettt e e e oo e oo e e emmnee e e e e e e e e e e e e ab bbbt et e e e e e aaaaaaaaaaan 48

3



INAIVIAUAT TASKS 2.4 ..o e e oottt e e e e et e et e e e e e e e e e e e e e e e e e e e e e e e eneeanae 49

AAIIONAI TASKS 2. eemree et e e et e e e e e e e e e e e e e e e eeas 9.4
Il DIFFERENTIAL EQUATIONS ... .ot eeee ettt e e e e e et e s e e e e e e e s a e e e e e eennnnns 49
3.1 General Differential Equations. Separable EQuE...............uuuiiiiiiiiiiiiee e 50
EXEICISE SOE 3.0 ittt ettt ettt ettt e e e e e e e e e e e mnnne e e e e e e e e e e e e nbbb b e aatraaaaaaeaaaaaann 53
INAIVIAUAT TASKS 3.1 ..ottt ettt e e e e e e e e e s s smmmmee e e e e e e e e e e e e br e e n e e e e e e e eeeeenanannns 54
3.2 LiN@AYI EQUALIONS ....ceiiiiiiiiiiiiiie e ettt e e e oo e ettt ettt ettt e e e e e e sa s e et e e e e e e e e e e e ae e nnbbbbbbnneeeeaaaaaeens 55
EXBICISE SO 3.2 it ettt e e e e e et e e e e e e e r e e e e e e e e e e a e 57
INAIVIAUAT TASKS 3.2 ..ottt ettt ettt e e e e e e oo e e s s rmmnee e e e e e e e e e e e e nbbbbeb s e e e e e aaaeeeeeaaannn 57
3.3 Higher Order Differential Equations AdmittingReduction of the Order ...........cccceevvvvvivvvvinnnns 57
EX I CISE SOt 3.3 ittt ettt et e e e oo e e e e n—ne et e e e e e e e e e e abhb b et et e aeaaaaaaaaaaaan 60
INAIVIAUAT TASKS 3.3 ...ttt ettt e e e e e e e e s s smm e e e et e e e e e e e s s e bbb r e e e e e e e e aeeeeenaaannns 60
3.4 Linear Homogeneous Differential EQUAatIONS . ... uuvreiiiiiiiiee et e e e 61
EXEICISE SEE 3.4 .. ettt e e e e e e — et e e e e e e et e e e e e e e e e 63
INAIVIAUAI TASKS 3.4 ... ettt ettt e e e e e e e s s e e e e e e e e e e e e e e e bbb e e e e e e e e e e e e e eaaanns 63
3.5 Nonhomogeneous Linear EQUALIONS ........cooiiiiiiiiiiiiiiiiiie e e e 64
EXBICISE SOt 3.5 it ettt e e et et e e e e e e e et e e e e e e e e a e 67
INAIVIAUAT TASKS 3.5 ..ttt et e e e e e e e e s e s rmmmne e e e e e e e e e s e e nnbbbbeb e e e e eaaaaeeeeeaaannns 68
3.6 Systems of differential @qUALIONS .......ccouveiiiii s 68
EXEICISE SOE 3.6 .ottt oottt ettt e e e oo e e e e e e mnnne e e e e e e e e e e e e na bbb aaaeeaeaaaaeaaaaaaan 70
INAIVIAUBI TASKS 3.6 ...t ettt e e e e e e e e s s s e e e e e e e e e e e e s e e bbb n s e e e e e e e e e e e e eananes 71
IV MULTIPLE INTEGRALS ... it sttt e ettt e e e e e e e et een s e e e e e eetann e e e e e e eennnnneees 71
4.1 Double Integrals OVer RECIANGIES .......ucciiieiiiiiiiiiiiiiiiiiiire e a e e e e e e e e e e eees 71
EXEICISE SEE AL .t ettt ettt et e e e e et oo e s ammnee e e e e e e e e e e e e e bbb b ar et e e e e aaaeaaaaaaan 78
INAIVIAUAI TASKS 4.1 ...ttt ettt ettt e e et e e e s e s smmm e e e e e e e e e e e e s e e bbb e r e e e e e e e eeeeenananns 78
4.2 Double Integrals in Polar COOrQINALES ... cuuuceeaeiiiaiiiiiiiieeiee e ea s 79
EXEICISE SEE 4.2 ..o ettt et e e e e e e oo e E e e e e e e e e e e e e e e e e e e e a e 81
INAIVIAUAT TASKS 4.2 ...ttt et e e e e oo e e e e s rmmene e e e e e e e e e s e e anbbbbbs s e e e eaaaaeeeeasaanns 81
4.3 Applications of DOUDIE INTEGIAIS ... eeeieiiiiieaa e 81
EXEICISE SEE 4.3 ..ttt ettt e e e e e e ——r et e e e e e e e e e e e e e e e e e a e 84
INAIVIAUAI TASKS 4.3 ...ttt ettt ettt e e e e e e e e e e s ammeee e e e e e e e e e s e e anbbbbesseeeeaaaaaeeeaaaanns 85
A4 THIPIE INTEGIAIS ... a e e e e e e e e e 85.

4



Y (I SRS 1<) A N SRR a1l

INAIVIAUAI TASKS 4.4 ... ettt e e e et e e s s e e ee e e e e e e e e e e e s bbb e e e r e e e e e e e e e e e e nanes 92
4.5 Applications of Triple INTEIalS .........cooariiiii e 93
EXEICISE SEE 4.5 ..t ettt e e e e e et e et e e e e e e e e e e e e e e e e a e a5
INAIVIAUAT TASKS 4.5 ...ttt ettt e e e e oo e e e e s rmmene e e e e e e e e e e e e anbbbbbsseeeeaaaaaeeeaaaannns 95
4.6 LINE INTEOIAIS ....coiiiiieiiiieee et ereree e bbb n e e e e e e e e e e e e e e aaees Q6.
EXEICISE SEE .G ..ot ettt et et e e e oo e e e e s emnnee e e e e e e e e e e e e n bbb b e a et e e e aaaaeaaeaaans an
INAIVIAUBI TASKS 4.6 ...t ettt et e e e e e e s e e e e e e e e e e e e s e e e e e e e e e e eeeeenanans 102
A.7 GreeN'S TREOIEIM .. ...ttt e s ettt et e e e e e e e e s samme e e e e e e e e e e e e e s e nnbbbbbnneeeeeaaaaaeeas 103
EXEICISE SEE 4.7 ..ot ettt et e e e e e e e e emn e e e e e e e e e e e e e e e e e e e e e a 03
INAIVIAUAI TASKS 4.7 ...ttt ettt ettt e e e e oo e e e e s rmmnee e e e e e e e e e e e s nnbbbbbbeeeaeaaaaaaaeaaanns 104
REFEIEINCES ...ttt et e oo et e e e e e s e e e e et e e e e e e e e e s e e e 105



| INDEFINITE INTEGRAL
1.1 Indefinite Integrals

Definition A functionF(x) is called arantiderivativeof f(x) on an interval if
F'(x)= f(x) forallxinl .

For instance, lef(x)=x. If F(x)=1/30¢, thenF'(x)=x = f(X. But the
functionG(X) =1/30¢ + 77 also satisfie§'(X) = ¥. Therefore, botliF(x) andG(x)
are antiderivatives of (x). Indeed, any function of the fork(x)=1/30¢ + C,
whereC is a constant, is an antiderivative fafx) .

Theorem If F(X) is an antiderivative of (X) on an interval , then the most
general antiderivative of (x) onl is F(x) + C, whereC is an arbitrary constant.

Definition The set of antiderivatives df(x) on an interval is called an

indefinite integraland is denoted bf/f(x)dx: F(X+ G C= cons.

Finding an indefinite integral of a function is lea integratinga given function.
This operation is the inverse of differentiation.\#e can regard an indefinite integral
as representing an entii@mily of functions (one antiderivative for each valuelod
constantC).

Basic integration rules
1. d(jf(x)dx)z f(>9d>or(jf(x)dx) - (3.
2. [dF(=F(x+C.

3. 'ch(x)dx:c{ (3 .
a. [(Fxg()dx= Kz G x+ C

5. If If(x)dx: F(X + Candu=¢(x) is a differentiable function, then

jf(u)du: F(y + C.

6. jf(ax+ Ddx=2 F ax B+ C
a

Every differentiation formula, when read from rigtat left, gives rise to an
antidifferentiation formula. We therefore determthe Table of Indefinite Integrals.

Any formula can be verified by differentiating the ftioa on the right side and
obtaining thantegrand.



Table of Indefinite Integrals

. XM * dx
1. | xdx=2—+C nz-1 2. =2Jx+C
J n+1 G v f
3. [adx=2-+cC 4. [edx=e+ C
J Ina *
5. cosxdx= sinx+ C 6. sinxdx=-cosx+ C
7. [_dx =tgx+ C 8. . _d>2< =-—ctgx+ C
J cog x J sin®x
9. [P=inq+c 10, [P =LipX j+c
J x JXx —a° 2a |x+
11. .iziarctgl(+ C 12. .Lzarcsini(+c
Jx*+a® a a JJa?-x? a
* dx * dx
13. —=In‘x+ X — 2|+ C|14. —=In‘x+ X+ 2|+ C
J Xt -a® S+ @
15. |chxdx= sh¥ C 16. shx dx= chx C(
17. [_dx =thx+ C 18. iz—cthx+ C xz0
J ch?x J s x

Note 1All integral formulas of the table of integrals raim valid if we substitute
some differentiable functiog(x) for the variablex in them.

The Simplest Methods of Integration

The simplest integration methods include findingefinite integrals using the
basic integration rules and a table of integralegrating by introducing a derivative
under the sign of differential.

All integral formulas remain valid, if we substéutthe variablec a certain

differentiated function fronx in them. The case of reducing the integral to labu
integral in question sometimes it sufficient toresgentdx with one of the following
formulas:

1. dx=d(x+ 3 2. dx=" d( ay 3. dx=L d(ax+ b.
a a
Example 1Find

a)j(4x3—2\3/?+%+1)dx b) jﬁ c) (2>:j—i(1)5dx

f) j(4x3 +1) cos( x*+ x) dx

5o 9 [raera
sin® 6x NG +2x+3
Solution



a) '.-(4x3 - 2\3/? +£3 + 1] dx=(we will use the table of indefinite integrals)=
X

2 4 5 -2
=4[jx3dx—2tjx3dx+ 2[j >z3d>erj dx:4%—2§5x3+25%+x+0:

=x* - gx3 —1+ x+ C.
X

V '[\/16x +9 JA\/(4x)2+§_4 \/m

dx 3 av5 e L 3
c) I(zx_1)5dx—j(2x 15 dx= 2I(zx 1° d2x 1=

:i(2x—1)'4+C:——1 +C
-8 8(2x - 1f
+ dx d6x) _ 1
d _GJ. ct 6x+ C.
) J sin? 6x sirf 6 J

d( x+1)
e) J X2 +2x+3 j(x+1f+2 J2 arctg \/_
f) (4x +1) cog x* +x)dx:J' cop X+ 3 d #+ X= sift &+ e+ ¢

In the following examples the method of introduntiaf derivative under the sign
of differential will be used. It is based on theeus the formulag(x)dx= d(¢( %),

from which, in particular, it follows that

1 ' 1
xdxzi(%) dxzz ({ ﬁ); x*dx= ( ) dx== o( ﬁ)
2(=(In x)'dx=d(In %; cosxdx= (sinx)dx= d(sinx;
sinxdx= —(cosx)dx= - d(cosx; exdx:( é) dve (( é);
dx dx__ —(ctgX)' dx=- d ctgx

= (tgx)'dx= d tgy; sin® x
cos X

13—)(2 = (arctgX)’ dx= d arctgk.
X

Example 2Find

dx
a)jx Va+xdx b) .[(x+l)|n(x+1) C)jarcsinx v

Solution

a) IXZ\/4+ xsdx:%j(4+ x”);(4+ x°’) dx;éj(4+ ﬁ); da+ %)=

X — arctgx
)j gx
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b)

d)

=§(4+ x3)z + C:Z\/(4+ )} + C,

d(arcsmx)_ In|arcsinx C

y dx (In(x+1)) dx din( » 1)) _
J (x+1)In(x+ 1) In(x+ 1) In(x+ 1)
( dx (arcsinx)dx_
J arcsinxy/ I 2 ) arcsinx _.[ arcsirx
* X — arctgx xdx arctgx, g X+ 1)
J 1+x 1+x J 1+ X .[
_1 (. 1 2
—Eln(x +1)—Earctg x+ C.

In exercises 1 to 12 evaluate the integral.

In exercises 13 to 24 evaluate the integral.

.(5x7 ~ 3¢ +%) dx

21.

23.

dx

dx

J8-x

dx
J2x+3

COS X

L.

dx

(2+ 4x)6

6

\/— 10
NOS

J cos x[sirf x

4x*

N

Exercise Set 1.1

dx
X2 -9

* dx

X+5
dx
X +7
dx
\V5X—2

[ (2sin(1- 6+ &%) d

-5(3x+ 7)7jdx

jx

£+£de
NN

14.

16.

18.

20.

22.

=In|In(x+1)|+C .

arctgxd arctgk=

* dXx

J{3-3%*
JX+15dx

* dx

NCED'S

5X

(3[R - 2[B
———dx

9 5

N

3sinx— 213"+

e

Xz
3

1
2X
S
3

:((1— 2x)2 + 2 Eex) dx

[(Vx +1)( -Vx+1)d

\/5x +4 3¢ -4 j

3

)



In exercises 25 to 38 evaluate the integral.

25.

27.

29.

31.

33.

35.

37.

v/sinx [tosx dx
4
X dx
Va+x°
e*sine dx

*v1+InX

v X
+ 2X-3
o X2_3X+8

[ X dx
Jx+9

dx

dx

.X4

-1—X

dx

26.

28.

30.

32.

34.

36.

38.

Individual Tasks

1-10.Evaluate the integral.

[ 2%/ + 8 dx

(arctg X)°
J 1+%°

dx

sin® x

e
F3x—-1
Jx?+9
r3x—1
J x-2
(14 %)
J x¥*+1
* xdx

Vi+x?

1.1

sin 2xdx

dx

dx

dx

10.

Il.
¥ 2dx 1
I X +7
. 3 - 21 dx 2.
J(Vax2+4 3 +4
[(2sin(1- 6y %) dy 3
.ﬁdx 4,
Jx-3
k. 5
J X°+4x+13
r 2x-1
——————dx
Jx*-3x+4 6.
f X+3 dx ;
I -4 '
. _ 2
2X 5arc2:tg X dx 8
J 1+x
.\/arcsinzkgdix 9.
. 1-4x?
. X2
dx
J 150 10.

* dXx
J x*-10
2 1

. (\/4—x2 EE

de
1

‘4x—3dx
J Xx-2
y dx
J x*-2x+10

22x+5 dx
J X°—2x-8
* xdx
J2x*+3
carctg®4x
J 1+16x2

dx

.arcsir? XE—
. 1- 4%

10

[ (2sin(1- 8 )+ &) dx




1.2 Replacement of Variable in the Indefinite Intecal
The method of integration by the replacement o&gable is based on the use of
the formula

[10aax=[ gp(NP(y o [ g a
Note 1The above considered operation of introducingdievativeg’(x) under
the sign of the differential in the integrﬁg(;b(x))qﬁ’(x) dx is equivalent to replacing

the variablep(x) =t.
Example 1Find

1 dx+1+2
jx\/x—ldx .[(1+ sinx)3 cosxdx j
VX+1
Solution

a) ijx_—ldxz 2j(€ +1)E dE 2j (t+ €)dt= zj ¢ dt- 4 fdt% f’+§ f+

=ét3(3t2+5)+C:1—25\/(x—1)3 (3x+ 2 C
wherex —1=t*; dx= d(f +1) = 2tdl.
1 1 34 3 4
b) I(1+ sinx )? cos<dxz_[t3 dt:Z t+ C:Z (H sinxj+ C

wheret =1+ sinx.

o) I\/x+1+2 x+1=t*, dx=4fdt_
Jx+1 x=t"-1.

3
3dt=4J‘(t2+ Z)dt=g't3+ 4%+ C:g(x+ 1+ 4/ x+ &+ C

Consider the usage of the replacement of a variadlen some functions
containing a square trinomial must be integratéd. find the integrals of the

formj Ax+ B j
ax’ + bx+ C \/ax2+bx+ c
the integrand can be written in the following form:

ax + bx+ c= a{ X+2 x£+—2J+ C-E= é x—bj + eE

2a 4a’ da 2a 4a

dx the square trinomial in the denominator of

Then the replacement of the variabderz£ =t, x= t—2£, dx= dtcan be made.
a a

Example 2Find

a)J‘ xadx b)j 3x-1 dx
2x> + 2x+ 5 VX2 —4x+8

Solution

11



X+ X+

)Im J—s:‘lzf( fjjf 9

dx=dt

We divide the obtained mtegral by the algebraim saf two integrals. The first
integral is found by introducing a derivative undlee sign of the differential, and the
second integral is a tabular one.

1 2, 9
- te+
ljt_zdt:}jtd_t__lj dt _1 jd( 4j—f dt |_
2 t2+g 2 t2+9 4 t2+9 2, 9 2, 9
4 4 4

12+ t2+
4

1 9\ 2 a 1 5\ 1 X+ 1
=—|In|t?+= |-Zarctg— |+ C==In x2+x+—)——arctg—+ C.
4( ( 4j 3 93] 4 E 2) 6 3

3x-1 X—2=t, x:t+2}_

b) | dx= [ 22 dx:{
X —4x+8 J(x= 2)2+4 dx= dt

=[ 225 =g L5 O f (€ +4) re[ -
VtZ +4 Je+a Jrea 2 +4 Vt?+ 4
=3WVt? +4+5Inft+\t?+ 4pC= 3Ix°— &+ 8 5Ink- 2V X- 4 8{C

Exercise Set 1.2
In exercises 1 to 15 evaluate the integral.

 dX [ Jamx OX x +2
1. | —F— 2. |e*™ X
J1+/x+3 : J4-3x > Jx o
4 xdx c ~\/1+|nxdx 6. [ dx
Jx-1 - J XInx J xy/2x+1
F X [ dx ( dx
J J4-x JXT+2x+3 J4X"+4X+5
- (X+2)dx * dx ¥ dx
10. [\X*F<)ax 11. 12, | ——
J 2x° +6x+ 4 Y 1= (2x+ 9 J Jax-3-x
13 (2x+1) dx w [ (3x - 5) dx 15 [ xdx
2 + 4x+ 6 JJ2x¢-8x+ 6 7 Jx?+8x+5

Individual Tasks 1.2
1-8. Evaluate the integral.

12



.
1 .emEldix 1 .cos\/S— ':'x[—ldix
. 5+ X . A/3—5X
2. .x\/1—2xdx 2. ‘x\/6—7xdx
3. * dx 3 * dx
o eX+l hd eX _1
o 1 . 1
4. | ——=—=0dx 4. | — = dx
I Ix+4x ) e ddx
* dx - dx
5. 2_8 _9 5- -
‘.X X J X2 +4x+6
A _oxdx ¢ (x-1)dx
X vexes 6. ) e oxr a
L r dx
7. ] ‘/Xz +4x+ 20 7. ] \/—x2+8x+5
F (2x-1)dx * (4x+ dx
8. J ¢ +8x+6 8. ) [ie—ox+4a

1.3 Integration by Parts
Every differentiation rule has a corresponding gnétion rule. For instance, the
Substitution Rule for integration corresponds te @hain Rule for differentiation.
The rule that corresponds to the Product Rule ifteréntiation is called the rule for
integration byparts.
The method of integration by parts is based oruigeof the formula

Juay= 3 e x-[ exdux o[ uv wf v

whereu = u(X), v= | ¥ are continuously differentiated functions.

The application of a formula is expedient, whenearmithe integral sign there is a
function work of different classes. In certain Gages necessary to use the formula
of integration by parts several times.

Example 1Find

d) j(2x+1) cos Xdx e) szsin xdx
f) J In xdx s)] J 2x arctgx dx
Solution
=X+ =
a) I(2x+ 1) cos Xdx= d\tjz ci);fﬁ(l(;lx, VClU% SZI:X = 2X3+ 1sin3><—;32'[ sin Xdx=
_2X+1 .

S|n3x+—§c033<+ C.

13



u=x, du= 2 xd
dv=sinxdx, v=-co0Ss

u=x, du=d ) 2( _ _
= . |==x"cosx+ 4 x smx—J- Sinx d>) =
dv=cosxdx, V= sin

= -x%>cosx+ 2x sinx+ 2cox+ C.

b) szsinxdx: I: — X cosx+ 4 X cosx dx

=In du—OIX
% x=X|ﬂX-J‘)H >tn>eJ‘dx=

dv=dx v= X
=XInx—x+ C= XIn x-1)+ C.

c) j Inxdx=|"

u = arct du=
d) '[Zxarctgxdxz g% 1+ x%|= X arctgx X dX
dv=2xdx v= X
= x*arctgx— I¢ dx= x arctgx—j dx+ j »
= x’arctgx— x+ arctgx@ C.
Exercise Set 1.3
In exercises 1 to 15 evaluate the integral.
1. | xe ™ dx 2. (x2 - 2X+ 5) e*dx 3. |xcos3dx
4, .xcos( X+ Jdx 5. .(1—x2)sinxd>< 6. .(xz — 4x) cosxdx
7. [arccoscdx 8. .(1—3x)ln(4x)d>< 9. .In(x—3) dx
10. .xarct92xd>< 11. .cos(lnx)dx 12. .x3e‘X2 dx
13, [Bresimxdx 14. [e” dx 15, [ X595 g
J X J J sin“x
Individual Tasks 1.3
1-7. Evaluate the integral.
Il.

1. [(3-x)sin 4xdx 1. [(x-2)cos5dx

2. [ +3)e?dx 2. [ - a6 ax

3. [ xin@2x)dx 3. [(x-3)In(5x)dx

4. .arcsin Xdx 4. .arccos&dx

5. [x%e™ dx 5. {In(1+x?) dx

14




j xdx x2arctgx i
6. Jsin?x 6. ] 1+

7. IVXZ+169dX 7. Jexsinxdx

1.4 Integration of Rational Functions
The relation of two polynomials is callethe rational function (rational

B.(X)

fraction), i.e., the fraction of the form™~— whereP,(x) is the polynomial of the

degreen, Q. (x) is the polynomial of the degree. If n=m, then that rational
fraction is calledncorrect if n< m, then that rational fraction is calledrrect

TheoremAny incorrect rational fraction can be uniquely negented in the form
of the sum of a polynomial and correct rationatfian

P.(¥) _ () + RO
Q¥ Mo-m Qu(R
X°—3x'+5x -1

Example 1The rational fraction of the form IS incorrect.

3

X —2X
Solution Since the degree of numerafar=5) is more than the degree of

denominato{m=3), then the given rational fraction is incorrect. Wwide the

polynomial of the numerator “by long division” intbhe polynomial of denominator.
Then in the quotient we obtain a polynomi&(x), and in the remainder-a

polynomialR(X) .
X =3x"+5x-1 , 6x° —14x+ 1
- =X =3X+1——— .
X’ —2X X —2X

The rational fractions of the following forms aralled the simplest rational
fractions

. A - —, m>1, mO N.
X—a (x—a)

3. —ZAX+B , D=p°-4g<0. 4. 2Ax+B —,D<0, m>1,md N.
X"+ pxX+q (X° + px+ 0

The integration of such functions:

1. [—2 dx= An| x- a]+ C.
J X— a

2 dx= Aj(x— ™ d % a_—( x ™+
J(x— a)

3 [AX*tB
Jax’ +bx+ c

It is necessary to isolate the complete squaréandenominator of integrand in a
square trinomial

15



ax + bx+ c={>€+2 x£+—2J+ ebz— é x—bj + eE

2a 4a’ da 2a 4a

The replacement variabie+% =t, X= t—z—t;, dx= dtcan be made (see chapter 1.2).

Ax+ B
(¢ + px+ QT
using the recurrent formula.

D <0, m>1,mJ N. This rational fraction can be evaluated by

P.(X)
Theoremlt is possible to uniquely represent each comatmbnal function——

Qn(X)
in the form of the sums of the simplest rationaldtions.
We factor the denominator & X) =(x— 8“(x- B( X+ px ¥ %+ px 9.
Then the rational function can be representederfahm
P(X): A + A2 +..-+ Ak\+ B+ Cl'\X|-|?+ QX-Q
Q¥ (x—a° (x93 xa x b X+ px q( % px)g
Cm—1X+ Dm—l CmX+ Dm
+ 2 m—l+”'+ m’
(X" + px+ g (x2 + px+ q)
where A A, A, BCDGC, D;--, ¢, D are real numbers, which must be

determined.
In the obtained decomposition we reduce both gartse common denominator.
We make level the numerators. The obtained equ&iaorrect for anyk. We find

unknown coefficients either byhe method of particular valuesr equalizing
coefficients with the identical degreesor combining these two methods.

Example 2Find

22 -x+3 . b) | :jﬂd 232 — 3x+1
l.=—— 2 3 2 | :j—
a) I .[x3+x2—2xdx X(x+1)" 0 g X2 +1 ax

Solution
a) We factor the denominator as

QX=X+ X-2x= XX+ x2)= X x1)( * 2).
The partial fraction decomposition of the integréwad the form:

2x* = x+3 _ 2X - x+3 _A B, C
XX+ X -2x XNx=D(x+2) x x1 x2
_A(X=D(x+2)+ B x+ 2)+ CX x 1)
- X(X=1)(x+ 2)
We make level the numerators
2X7 — X+ 3= A(x—1)(x+ 2)+ B ¥ 2+ CX x 1.
The polynomials in the last equation are identisaltheir coefficients must be
equal. Let's choose values wthat simplify the equation.

16



x=0: 3=A(12, A=—A

1: 2-1+3= B, B=44

X

3
x=-2: 8+ 2+3=C2)3), c=1%
The expansion of the rational function into parfrattions was obtained

I:J‘ZXZ—X+3dX:J‘__3+ 4 L 13 )
L+ xe-2x 2x I x1 {x+ 2

3 4 13
=_§|n\x\+§|n\x—y+—6ln\x+2l+ C.

b) The partial fraction decomposition of the integrdmas the form:
x+4 A B C, D, E _(A Bx CX( #1P°+( B E x1) %

R+ X R X (#D)? il X( % 1Y

We make level the numerators
x> +4=(A+ Bx+ CX)(X+2 % 1)+ (Dr Ex B3,
X*+4=(C+E)X+(B+2C+ D+ BX+(A2B QX+ (B2 Ax
The polynomials in the last equation are identisaltheir coefficients must be

equal. The coefficients of polynomials are equal #me constant terms are equal.
This gives the following system of equations farB andC.

x*: C+ E=0, E=-C=-13.
x> B+2C+ D+ E=0, D=-B-2C- E=8- 26+ 13- ¢
x?: A+2B+ C=1, C=1- A2B1 4 16 13.
x': B+2A=0, B=—-2A=-8
X’ 1 A=4. A= 4.

The expansion of the rational function into parfiactions was obtained:
X° +4 _4 8 13 5 13

X(x+1)? X 2 X (x+1)2_ x 1

2 8 5
|, =——+—+13In|x +——-13Ink+ 14C.
2 X2 X | | X+1 k "-

c) The partial fraction decomposition of the integrahnas the form

2x°-3x+1_ 2% -3X+1 _ A L Bx C
X+l (x+D(R-x+1) x+1 X- w1
The polynomials in the last equation are identisaltheir coefficients must be
equal. The coefficients of polynomials are equal #me constant terms are equal.
This gives the following system of equations farB andC.

17



A+B=2 B=2-A B=2- A A2
-A+B+C=-3 = C=1- A =3¢ C=1- A= B=0
A+C=1 -A+2- A+1- A=-3 |-3A=-6 C-:
The expansion of the rational function into thetiphfractions was obtained:

1
d x—-=

2x% = 3x+1 2dx dx ( 2)

| :j—dx:j - =2In x+1—j =
3 X +1 (x+1 x2—x+1j | | x—1)2+3

2 4

2x-1

J3
Exercise Set 1.4
In exercises 1 to 12 present rational fractionthassum of the simplest fractions,
without calculating the coefficients.

+ C.

2
=2In|x+1|-—=arctg
V3

4x° - 2xX° + 6x—1 5 2x° -7
(X% —1)? - (3 +16x)(x- 3)
6X*—3x+ 7 4 7+ X*—4x+5
(x+2)( + 4 ' (X? - 4)?
3x* —5x+ 7 5 2x° - 4
(x+2)(xX* +1) (x+1)(x+3)’
4% - x> +5x-1 8 X +9
(x* —4x+ 37 (x-5) - x®-5x*+6X
3x-11 10 2x> — 4x+ 6
(¥ +4x)( X +8x+18 (x+2)*(¥-1)
11, 343 10 M+l
X' =X (x=3)°(x"+ 2x+ 5)
In exercises 13 to 24 evaluate the integral.
13. .2)(;4(1)( 14. .mdx
c G +1 ( X? —2x+3
A 16. X
15 ) o9 J(x-1)(x-4x +3%
- 2 o A _
17 :( i 18 [X 4x3+52><2+10x 1%)(
Jx*-1 . X =3x*+ x+5
* 2X * dx
19. dx 20.
. (x+1)(x2+1)2 J (x=1)(x+2)(x+3

18



2 - 3x-— * 4dx
21..[ 2X°—3x—-3 dx oo [ 20X __
(x=1)(x¢ - 2x+ 5) Jx(% +4)
X2 —3x+2 c 41
23. j dx X
x2+2x+1 24. J x3—9xdx
Individual Tasks 1.4
1-6. Evaluate the integral.
Il.
C X+ X— * 2X° + 6X+
1. X3—X8dx 1. 2)(3—6)(7dx
J X°—=4x J X' -1
f 2x-3 £ 6X° —
2. > dx 2, [&X 12X3+ 6dx
J ¢ -p(x+2) J (x-2)
* 2X° +X+3 r x-1
3. dx
3. J X3+2X2—3de R X3+2X2—8X
o 2 — r 3P —-6x+7
4. X" —2X+ 63dx A i dx
J (x+1)(x-2) J(x+1)"(x-2)
( 3x+31 . 44
> (x3+3x2+3x+1)xOIX 5 | P
* J X _X2+X_1
* x-1 dx +  2Xx+1 «
6. Jx*-13¢+36 6. Jxi-5x2+4

1.5 Integration of Nonrational Functions
Let us examine such nonrational functions, whosegmation is reduced with the
aid of the specific replacement of the variableirdégration to the integration of
some rational functions.
Ax+ B

DIf j dx.
Jaxt + bx+ ¢
It is necessary to isolate the complete squar@endenominator of integrand in
the square trinomial

ax + bx+ c= a{ X+2 %— b +b—2j+ eﬁz é x—bj + eE

2a 4a° 4a 2a 4a
The replacement variabbe+%=t, x=t—2—ba, dx= di can be made (see

chapter 1.2).

Note 1If [ R()
Jax + bx+ ¢

the following formula can be used:

CORPO)
J Q. (NG ak+ be cmj

dx, whereP, (x) is the polynomial of the degree then

dx
Jak+ b ¢
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whereQ,_,(x) is the polynomial of the degree-1 with unknown coefficients
andAis some unknown coefficient whose must be deterthiog the method of
particular values or equalizing coefficients witthet identical degrees

Differentiating both sides of the equality, the ntdy from which the unknown
coefficients are found will be obtained:

R :(Qn_l(x)m%’+\/ A

Jaxt + bx+ ¢ at+ b

[ dx , the substitutionL =t can be used.
(x-a)'Jaxk + bx+ ¢ X—a

If .R(><,¥/_x,(’/_x,---,\7’_x) dx whereR is the rational function of its arguments,

2) If

the substitutiork =t" can be usedr{- all least common multiple indicédsm,---, s).

4 If .R(x,\”/ ax+ b d, the substitutiormx+ b= t' can be used.

5)If .R(\/xz—az,&dxj‘ RV X+ & )<d>{ R & % )x, whereR is the

rational function of its arguments, we must usgamometric substitution.
In the following table we list trigonometric sulistions that are effective for the
given radical expressions because of the spedifigahometric identities.

Table of trigonometric substitutions

Expression Substitution Identity
JaZ - x? X:aSiHH,—gSHS]—ZT 1-sinf@= cosd
T Vi 2 1
Ja2 + x? X=atgd, ——< @<= 1+tg@=
aTx ¥ 2 2 J cos @
a T 1
[o2 _ .2 X = ,0<f<— 1+tg%0 =
X -a cos @ 2 J cos @

In each case the restriction 8nis imposed to ensure that the function that
defines the substitution is one-to-one.

6) If J.xm(a+ bx”)p dx, wherem,n, p0 Q g kil F, then the integrand is called

differential binomial. The integral of it is reduced to the integrals rational
functions in the following three cases:

a)lf pOZ, then the substitutior=t" can be used N is the common
denominator ofn andn).

— N
b)If pOZ, mT+1D Z, then the substitutioR* PX =¥ can be used Il is the

denominator ofp).
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olf p0z, —=02Z
n n

be used N is the denominator op).
it poz, ™oz (m”
n n

expressed by a finite combination of elementargfioms.
Example 1Find

—_ N
m+1 ( +1+ p)l] Z, then the substitutioﬂ"'bxq_ X't can

+ ij Z, then the integrals of this type cannot be

+ 3x-1 .
a) |————dx b) V/xdx
J X -4x+8 J x=3 ¥
* xdx o 3
c) : _ ) X~ dx
R (e e (O N P
. 2 3
e) X dx ) —Wﬂdx
JJ1-2x— ¥ J Jx
Solution
a)J‘ 3x-1 dx:J- 3x-1 dx= X-2=t, dx=d _[ 3+5 dt=
JX*-4x+8 «/(X—2)2+4 X=1+2. JE+ 4

_ _3rd(t'+4) dt _ ,/3 2 _
SjJt2+4 jJt > \/t2+4+5-[\/t2+4_3/t + 4+ 5Int+t?+ 44C=

=3VX* - 4x+ 8+ 5In|x— 2+ ¥ — 4x+ 8} C.

x=1%, dx=6fd 4
b) Jxdx =j1366t5?t=6j. : f dt:GI 2t dt =
x=e Wx=t, Yx=¢| Jt-t* It (2=
4_ —
:Gj(tz—l)ﬂdt%j t°+ 1+ 21 jdt: 22+ @&+ 3Ir’t—il+ C=
t°-1 t2-1 t+
6 —
—ox+ 6%+ 3 X 4 ¢
x+1
J' xdx _ x+1=t°, dx= 6t5dt_J‘(I6—l)6t5dt_
Jox+1 =g (x+17  |x+1=t, Ix+1=¢ t®—t°

-6 (t_—l)tsdt_esj(t 1)dt—6(—+t] c_—$/(x+1 69 x+ 1+ C.

t5(t°
d) We must use trigonometric substitutigm J2sint.
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x=+/2sint,
x3dx (x/z)gsin:*t R/2cos

I =|dx=~/2 costdt, :I dt= Z/_Zj' siftdt=
[5_\2 J2 cog
27X | o =3 cost .
:_Zﬁj(l_ codt J (cos ¥ - Q(_% cas Cojtj+C:
=—2\/2—x2+—\'(2;X2)3+C.
X2 e— dx

| = | ———=dXx=(AX 1-2x- X+ ——.

) I\/1—2x—x2 XA Blm 2 X I\/1-2x->e

Differentiating both sides of the equality, theldaling identity will be obtained

NG -2-2X A .

— = AV1-2x—- ¥+ (Ax+ + ,i.e.

J1-2x- % ( Ig2J1— x-X NI % R
XZEA(l—ZX— x2)+(Ax+ B(-1- y+4;
X>=A-2Ax—- AX- Ax B- A%X- BxA.

Compare coefficients with the same degrees

x?: — A- A=1 A=—1.

x': —2A- A- B=0, ==,

x* : A-B+A=0. A=2.

Thereforel

X2 1.3 dx
= | ———dx=| = x+= |V1-2x=- X + 2 =
I\/1—2x—x2 ( 2 Zj -“\/2—(x+1)2

=(—%x+§j\/1— 2x— X + 2arcsin)ll+ C.

J2
1
34 1 13
f) Since | =J‘@:J‘xztﬁl+x4] dx,
X
1 1 m+1l

thenmz—é, n=—, p=—,
2 4

w

n
—{+3 _1\* - _ 2 —3/a
W’“l:tS.Thereforex'(t 1), dx=4( £ - 1) 3dt, t \/_x+1and

lzjmdxzj( t 2El2tz(t3—])3dt=14(t6—t3)dt=

t*-1)

= 2. The following substitution must be used:



Exercise Set 1.5
In exercises 1 to 15 evaluate the integral.

Y ~ Py 2_

1. 22X+7 dx 2. §X+7 dx 3, X —2 dx
-\/x +5x—4 -\/—x +4x+8 -\/x2+2x—3
X = X+T [ dx FJx

4, dx 5. 6. dx
JJ-2 +2x+3 I Ix+4x '\3/;—4/;(
. _ * 2 - _ V2

O EEE e e e,
. J X
o dx . 2 * X3

10. | ——— X +4 12. dx
) e -1 11. | dx S +a
. 3 . .

13. [ ax 14. | x*V9- x* dx 15. 1+\/_
JJUx-1 ; . 1+\/_

Individual Tasks 1.5
1-7.Evaluate the integral.

f /x-1 [ 2x+7

1. dx 1. | ——=dx
JN2-3x- ¥ JNX+x-6
. 2 _ . 2

2. X1 dx 2. XX gx
JJ2-3x- ¥ JUx2+2x-3
( dx f x+1+2

3. 3. > dx
I Ix+2+3x+2 J(x+1)" -Vx+1
Sy :

4 4 dx
i ECEREE
e\ X +9dx . dx
X > X*N9 - X
.\/;(1"'3’/;()2 dx * 2
6. x*3/(1+ x®) dx
t 6. | *§(1+x) d

_ T
7. ) e e -1 , 9-% 4

- X4

1.6 Trigonometric Integrals
Trigonometric identities can be used to integratrtain combinations of
trigonometric functions. We start with powers ofesand cosine.

1)If Jsinzmxco§” xdx, m> 0,r> (, element of integration must be converted

with the aid of the formulas of reduction in theycke
_1+cosX : + cos®
cos x="——""= sif x=———=-.
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2)If Isinmxcosnxdx,j sinmxsin nxdxj cosmxcosnx, the multiplication of

trigonometric functions should be replaced withshen
sinmxcosnx=%( sinfmt n)x sin(m n)k

sinmxsinnxz%(cos(m— n)x cos(m n)k
COSMX COSNX= %( cosf- n )¢ cosfr n X

If IR(sin X,cosx )dx, whereR is the rational function of its arguments, the

universal trigonometric substltutldnztgi can be used to obtain the integral of the

rational function variable.

X )
th:t, sinx= 0
R(sin X, cosx Ydx= :I df
I ( M _1-t? _ 2t R
COSX = , =
1+t? 1+t?

4)If R(—sinx,cosx F — R(sinx,cosx, the substitutiort = cosx can be used.
5)If R(sin x,— cosx F — R(sinx,cosx, the substitutiort =sinx can be used.
6) If R(—sin x,—cosx = R(sinx,cosx, the substitutiort =tgx can be used.
Example 1Find

6
a) J‘Ctg 3X dx b)J‘sin3 2x cod Xdx c) jsinzxco§ xdx
sin® &

d) jtgsdx e) Isinxsin& sinxdx ) J- _ dx
2sinXx+ 3cox+ ¢
Solution
3dx
6 t:Ctg3X, dt= T o

a) .[C_tgzsxdx: sin” X :—EJ'tGdt:

sin® 3 dx _ _dt 3

sin® 3x 3
7

:—it7+cz—Ctg 3X+C.

21 21

b) Isin32xco§ 2<dx:I Sif X cds 2 singlx
t=cosX, dt=— 2sin Xdx

. : 1
=|sin® 2x= 1-t*, sinXdx= —% di= —Ej(l—tz)t“dt =
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7 5
=;J‘( t)dt—t—t—C=C0572(—C0§2+C_

14 10 14 10
c) jsinzxco§ xdx= Zj (2sinx cox®)dx= %J sth xdx _1J' 1~ cos4

dx

= 1j(l—cos4< px= —1( x——1 sin4<j+ C= 1 x——1 sind¢ C
8 8 4 8 32

t=tgx, Xx= arctg

t>dt t* 1 t*
d J-t >dx= = :J‘ tdtz_I =
) J1 dx = dtz. 1+t* J1+t? 2J 1+t° )
1+t
2 —
‘t —Z‘ Z_dzzi w’dzz_ij‘( Z_1+—1J dz
2 1+z 2 z+1 z+
1

7’ 1
==| = =z+In|z+1||+ C==(td x 2td ¥ 2In(+ t + C
o G-zemiza)s c=i(d x 29 0 200 19 )

e) Isinxsin& sinldxz%j (cosZ- cosA )singlx

:%jcos%sinzdx—%j cos& sinde:—H sinﬂdx—zlJ (sing sin2 gx

cos4d cos& COSX

=- + - +C.
16 24 8
X 2dt
tg= =t, dx=
f)j dx |93 | 20t _
; - 42 - 42 -
2sinx+ 3cox+ 5 cosle t  sinx= 2 (1+t2) 4t2+31 t2+5
1+t? 1+t2 1+t 1+t
20t _ j dat N R e
4t +3- 3% + 5+ §° t2+2+4 J(+ 1§+ 3 3 J3
1+tg X
= iarctg g/2+C.
V3 J3
Example 2F|ndj
S|n2x
Solutionj _ :j , :j dx d ctgx _
1+sirfx J 2sirf x+ coéx sifix (2 ctgzx) cd x 2
1 ctgx
=——=arctg—=+ C.
2 J2

Exercise Set 1.6
In exercises 1 to 16 evaluate the integral.
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* sinxdx * Sin 4x dx
1= 2,
J (1- cosx) J cosx
3. .sinzxco§ xdx 4. .cos“ X dx
5 [ dx 6. [sin3xcos5dx
J \/C_Bcosx+ SinX *
7 r | 4dx g, r | dx
J sin*x cog x J 3sinx+ cosx+
* dx * sSin8x
9. 10. | ————dx
J 16sirf x+ cos x J16- cog &
11. [¥cod x sin xdx 12. .C(ﬁ Xdx
J J sin’x
13. |sin®* 2x cog Xdx 14. |cog Xdx
15. [tg?5xdx 16. 'sing cos%xdx
Individual Tasks 1.6
1-6. Evaluate the integral.
Il.
1. [sin” x cog xdx .\7/co§x sirt x dx
2. [sin? 2x cog xdx [sin 3x dx
* sinxdx * dx
3. | ——
J 4+ cog x . {‘/tg32xco§ P
A * dx . . dx
7 3COX+ SIX J 5—4sinx + 6cox
5 * dx o dx
- J'sin® x - 2sinx cosx— 3cdsx ) Zsi?x+ cog x+ ¢
6. sinX cos X dx .cos6< cos&dx

Evaluate the integral.

Additional Tasks 1

1. [_dx 2. [_dx 3. [tg3xdx
J sin? 5x J5-2x J

4. [ tgxdx 5 .ctg(ex) & ds 6. [ cosxdx
J cos x J J sin®x

7. [_cosxax 8. [_dx 9. 2x(x2 +1)6 dx
o (S'n 2)(+ :3)3 o Xln X e
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10. [ e*dx 11.( e*dx 12.  X?dx

J2+e” J1+e” J16-x°
13. [ xdx 14, [ Xdx 15 [ dx
J x*+a* J U2 - a2 .m
16. [ (arcsinx - x) dx 17, '(62x)3 dx 18.  3tg?xdx
’ V1-%° ) J cog x
19. [ dx 20. [ (x+2) dx | 21. | xcos3dx
J arcsin/ X ’ .
22. | xarctgx dx 23. | ¢lIn xdx 24, [ Xarcsinxdx

25. .In(x+x/1+ ><2)d>< 26. .(5x—4) cos&dx | 27. (6x—7)dx

’ ’ J 3x* —12x+ 15
28. [ (3x—2)dx o9 dx 30. [ (x +3)dx
. X2+8X+ 20 R \/3—4)(—)(2 o \/4X2+4X+3
o O 4 o d . 3 _7
31 [X+X -8y 32 i 33. [__3«
J X -4X J (x=1)"(x+2) I+ X +4Ax+ 4
34, [xdx 35 [__9x 36. [_Xdx
J 4y +1 I +1 JJ2-x3
37. ‘\/X2+1dx 38, [_X dx 39. | sin®xcog xdx
J x J 1= X3 *
40. | cos xdx 41. | tg*xdx 42. [_dx
J . J sin*x
43. | sinx sin 3 dx 44.(__dx 45, [ sin’ xdx
J J 4-5sinx J1+cogx
46. [1+1gx, 47.( dx 48. | sin® xdx
J 1-tgx J 8—4sinx+ 7cox ¢

[ DEFINITE INTEGRAL

There is a connection between integral calculus diffdrential calculus. The
Fundamental Theorem of Calculuslates the integral to the derivative, and wé wil
see in this chapter that it greatly simplifies #@ution of many problems. In this
chapter we discover that in trying to find the aveder a curve, the arc length or the
volume of the solid.

2.1 The Definite Integral
We start with the solving tharea problem:find the area of the region that lies
under the curvey= f(X) froma tob. This means that the region, illustrated in
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Figure 1, is bounded by the graph of a continuaustion f (x) (wheref (x) =0),
the vertical linex=a andx=b, and thex axis.

Y Y Ax

0 a X X, X X1 X b X

Figure 1 Figure 2

We all have an intuitive idea of what the area od@ion is. But a part of the area
problem is to make this intuitive idea precise byirgy an exact definition of the
area. We first approximate the region by rectangtes then we take the limit of the
areas of these rectangles as we increase the nwintsstangles (Figure 2).

The width of the intervdla,b] isb-a, so the width of each of the strips

iSAX = Ta . These strips divide  the intenal, bl into n

subintervalga, x|, [%, %], [ %. %] ....[ %_..§. Let's approximate the-th strip byA
a rectangle with the widthx and the heightt = f(x), which is the value of (x) at
the right endpoint (see Figure 2). Then the areahefrectangle i§ = f(x)AX.

What we think of intuitively as the area of theioggis approximated by the sum of
the areas of these rectangles, which is

R = f(x)Ax+ f(x)Ax+..+ f( X)A X.
Definition Thearea S of the regionA that lies under the graph of the continuous
function f (x) is the limit of the sum of the areas of approxin@trectangles:

S=lim R =lm > { YA x
— 00 Nn- oo =
It can be proved that the limit in definition alvgagxists, since we assume

that f (X) is continuous.

The same type of limit occurs in a wide variety siuations even when the
function is not necessarily positive. We therefonee a special name and notation to
this type of a limit.

Definition (Definite Integral) If f(x) is a function defined foa< x<b, we

b_
divide the intervala,b] inton subintervals of equal WidthX=Ta. We
leta=x,, X, %,..., X = k be the endpoints of these subintervals and we'let)..., X/
be anysample pointsn these subintervals, s¢ lies in thei -th subinterva[x_l,x].
Then thedefinite integral of f (x) from a to bis
28



jf(x)dx:LiToi fOOAX

provided that this limit exists. If it does exigte say thaf (x) is integrableon[a, b] :

b
Note 1In the notationj f(x)dx f(x) is called thantegrand a andb are called

thelimits of integration a is thelower limitandb is theupper limit Thedx simply
is calledintegration
b

indicates that the independent variable.i3he procedure of calculating an integral

a

Note 2The definite integral f (x)dx is a number; it does not depend>anin
fact, we could use any letter in placexoWithout changing the value of the integral
b b b
jf(x)dx:jf(t)dt:jf(u)du.
Note 3 The sume(xD)Ax that occurs in the last Definition is called a
i=1

Riemann sunafter the German mathematician Bernhard Rieman26EB366).

Theoremlf f(x) is continuous o{ua, b], or if f(x) has only a finite number of

jump discontinuities, them(x) is integrable or[1a,b]; that is, the definite
b
integralj f (x)dx exists.

Properties of the Integral
b

[  (x)dx= —j £(3) .

a
a
.

1)

2) | f(x)dx=0.

2T 2 ¢

3)

20 2 ¢

f(x)dx:ji f( dx+f f( ¥ d-
4)

2T ¢

(0% f,00) ax=] {3 et [ (¥

cf (x)dx=

b
5) c{ f(y dx & cons
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a

6) If f(x)20 (f(x)<0) on[a,b],thenjf(x)dxzo[j f(x)dst].
7) If £(x)=@(x), a< x< k, then J’ f(x)dxzj¢(x) d>.

8) If ms f(x< M, then m(b—a)sj f(%) dx M b- 2.

The Fundamental Theorem of Calculus (Newton and haiz Theorem)
Supposef (x) is continuous ofia, b] .

1.1f F(x):j £(t)dt, thenF'(x) = ().

b
2. j f (X)dx= F(b - K g9, whereF(Xx) is any antiderivative of (X).

The Fundamental Theorem of Calculus says thatrdiffeation and integration
are inverse processes. The Fundamental TheoremalofilGs is the most important
theorem in calculus.

Rules of the Calculation of the Definite Integral
1.The formula of Newton — Leibniz If f(x) is continuous ofa,b],

thenjf(x)dx: F(y- F(3.

2. The replacement of a variable in the definite intad). If f(x) is continuous
on[a,b], the functionx=g¢(t) is differentiated in the sectigo, 5] andtO[a, ],

g(t)Ula b], g(a)=a, ¢(B) =b, thenif(x)dﬁ_f f(@(9)g'(1) dt.
3. Evaluate definite integrals by part;u(x) (3= U 3¢ XS —j ¢ X d@ ).
4. ja'f(x)dxzo, if f(-x)=-f(X);
J' f(x)dxzzja' f(Rdx, if f-R= f(3.

Example 1Find
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8 7 [ 2
J‘(ﬁ/;—l)dx J‘ L 2X dx
1 Q X
2
len xdx J.L
A 2+, /3x+1

e

Solution
a) Using the formula of Newton — Leibniz for this igtal, however, we have

oonocflon (34 )14

=12-8-0.75+ F 4.25.

> X = sint, dx= costdt| % 5
) Jz‘\/l—xz dx = 7 Ne _ j"cosztdt: j‘l— sir’ftdt:
X2 X:—Z,t:Z_T’ X:_B,t:_ sin’t sir’t
V2 2 4 2 3 7 .
z T T 1 T
= (—ctgt-1)|3 Clg-+— |+| Clg—+— |= —| =+—|+|1+— |=
(9)2(933)(9714j (Jésj(zlj
m 1
=1-—-—=0.161
12 /3
c) Using the formula for integration by parts we get
u=Ilnx, du= % &€ & e
_ ’ X X2 Txdx_ € é 2\ . é
| = =|—Inx| - =— R-—-|— || =€'—-—-
X° 2 2x 2 2 4 2
dv= xdx v:E e e e

4
&L €L @)=30.10
4 4
Xx+1l=t, x=0=>t=1
5 . 2y
dx o1, B _Jd_1 3 B
d)j—_ X==(?-1), x=5= t_4_j—dt_
2+./3x+1 3 12+t
dngtdt
3
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10.

13.

wl o

_Z+ﬂ-|n6—_4|n3: 2+—4|n 2= 2.92¢,
3 3 3 3

Exercise Set 2.1

In exercises 1 to 15 calculate

2
(ZXZ + %)dx
~l X
¥ dx
Xv1+Inx
772
I Jcosx— codx dx
-11/2
3

¥ dx
Xy 3@ +5x+1

o

e

N )

N
X311+ %2 dx

o
0

1-8. Calculate

1
2. J'\/1+ X dx
0

5. [
X“+4x+5

8. XCOSX dx

r R o'—.% o

X2 = X+2

11. | ——dx
X' =5x*+ 4

.3
6
F\X? -9
J X

3

Individual Tasks 2.1

14. dx

16

dx
OVX+9—J§
4

6 J‘ dx
' ) 1+4/2x+1
e-1

9. [In(x+1)dx
.0
£ xdx
J cog x
776

28
c xXCdx

VA

12.

15.

1
X
1._[ 2 dX
0(x +1)
5 j‘ dx
' lx+\/2x—1
3

4. | xe * dx
s
72
5 dx
. 2+ CcoSX
¢ 3X—-2 q
6 s X°—4x+5
V3
7 X1+ X dx

dx

6. Xy X2 +5x+1
7 XCAJ1+ X dx
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_]T'Mcos”xdx f sinX__ .
8. 5, VSINX 8 4 (1-cosx)’

2.2 Improper Integrals

b
In defining a definite integr* f (x)dx we dealt with the functiorfi (x) defined

on a finite interva[a, b], and we assumed it does not have an infinite diswaoty. In

this section we extend the concept of a definitegral to the case where the interval is
infinite and also to the case whdréx) has an infinite discontinuity ifa, b] . In either

case the integral is called mmproperintegral.

Type 1: Infinite Intervals
Definition (Improper Integral of Type 1)
t

(@) If j f (xX)dx exists for every numbér> a, then
a . .
J'f(x)dx:tlimj' () dx (1)

provided this limit exists (as a finite number) asdalled anmproper integral on an
infinite interval[a, + ).

b
(b) If I f (x)dx exists for every numbér<b, then
t b b
j f (x)dx= lim I (%) dx )
—00 t

provided this limit exists (as a finite number) asdalled anmproper integral on an
infinite interval(-co,b] .

+00 b
Definition The improper integral§ f (x)dx andj f (x)dx are callecconvergent

if the corresponding limit exists amavergentif the limit does not exist.

+00 b
If both I f (x)dx andj f (x)dx are convergent, then we define

Tf(x)dx: j f(X dx++f f( ¥ dx tlirpmj‘ t X dxtllnjmj‘ (f)x c (3)

In the formula (3) any real number can be used.
Any of the improper integrals in Definition 1 care linterpreted as an area
provided thatf (x) is a positive function. For instance, in caseif(1f)(x) =0 and the
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integralj'f(x)dx is convergent, then we define the area of

region A={(x y)| x= a O< y< f(»} in Figure 3 to besm:J' £( %) db.

Yy

Figure 3

Example 1Evaluate I xe ™™ dx.

0
Solution

[re e & 4 p=-tim [ & & 3=-dim( -

111 o1
=—=lim — + =’ ==
Qb 2 2

[ee]

Example 2Eva|uatej dx.
P x[ﬂ9+|n2 x)
1
Solution
00 b b
| 2 dx= lim | 2 dx=lim [ 29UNX)_
x[@9+|n x) b x[ﬁ9+ln x) b +oo 1 9+ In“ X

b

= lim 2G13arctg(ln\ x\)

b+

_ 2T _
—§D|Im (arctdIn B - arctcglnl))—aag—

Type 2: Discontinuous Integrands
Definition (Improper Integral of Type 2)
(@) If f(x) is continuous oha, b) and is discontinuous &t then

j f (x)dx= ET,T f( X dx

7_7
5

the

provided this limit exists (as a finite humber) asdcalled anmproper integral of
discontinuous ak=b function f(x).
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(b) If f(x) is continuous o(na, b] and is discontinuous at, then



jf(x)dx_nmj' £( %) d (5)

ato

provided this limit eX|sts (as a finite number) asdcalled anmproper integral of
discontinuous ak = a function f(x).

y y

Figure 4

If f(x) has a discontinuity at=c, wherea<c<b, and bothjf(x)dx

andj f (x)dx are convergent, then we define

jj‘f(x)dx:ji f(><)dx+"tz f())dX:Igi[rcl)T ()(d)(-l(iSrpOJEJ f)xd (6)

Parts of Definition are illustrated in Figure 4 the case wheré(x) >0 and has
vertical asymptotes at, bandc respectively.

2
dx
Example 3Evaluat% )
P OVZ—X
Solution

2f——2||m\/2+2f2 2/ 2

dx
—I|m 2-X 2d2 x——I|m2 X
PRI ( ) 2d(2- %) V2-
4
Example 4Eva|uatej ZL :
' X -6Xx+9

Solution
4 4

Ix —dGXx+9 (x 3) I(x— 3y .[(x— )i

. 1 %7 . 1 1
I|m >=—lim — =—lim - =
a-+0 ] (X—3) a-+0 X—31 a-+0|l 3—ag-3 1- 3
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: 1 1
=—lim - =
p-+ol 4-3 3ZH[- 3

=~ fim [1—ij =1+ fim [ij =140 =+,
B +0 +,8 B—+0 Ig
Since limits are equal to infinity, then impropetegral diverges.

Comparison Test for Improper Integrals
Sometimes it is impossible to find the exact valtian improper integral and yet

it is important to know whether it is convergent divergent. In such cases the
following theorem is useful. Although we state ar fType 1 integrals, a similar
theorem is true for Type 2 integrals.

Theorem (Comparison Theorem)Supposef (xX) andg(x) are continuous

functions withf (x) = g(X) =0 for x=a..

a)lf I f (x)dx is convergent, the{F g(x) dx is convergent.

b) If Ig(x)dx is divergent, therj' f (x)dx is divergent.

Geometrical Interpretationf the area under the top curye= f(X) is finite, then
so is the area under the bottom cupeg(X. And, if the area under=g(X is
infinite, then so is the area under f(Xx) (see Figure 5).

YA

)
N
=Y

Figure 5

Example 5Evaluate 2+ SINX x.
Jx

1
Solution Let us estimate the integrand for alfrom the space of integration, we

will obtain the inequality

1 2+ sinx 3
<

NN N
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= lim =2lim /x|y =2mvb-2= .

baooj.\/;( b- o

It means that the given integral is divergent.

Exercise Set 2.2
In exercises 1 to 15 calculate improper integralsstablish their divergence.

1 [ 2. [sin2xdx I
J X J J X°+4
2 0 0
4 T dx 5 ¢ xdx 6 r dx
———— ) )
JXT+2x+2 .01/1_)(2 J xIn x
¢ xdx “ dx ¢ dx
1. 8. - 9. |=
9 Vx-1 J X? —5x+6 J X
0 ) 0
10. [2rC19%y 11. [ 12, [ 9
’ X°+1 ’ xIn< x J x +8x+17
A 1
13. Slrlxdx 14 J‘ dx 15J‘ x> dx
o X ’ X _
%r ) €" —COSX ,5/()(5 + 3)(4)7

Individual Tasks 2.2
1-7. Calculate improper integrals or establish theredjence.

Il.
( dx ( dx
L [ e
J X" +8x+17 J X" +2x+10
+00 dX +00 dX
2, j— 2, j
X2 —4x? X2 +1
3 0
¢ dx ¢ dx
3 | eria 3 | avis
'1X -6Xx+8 .Ox -8xX+7
0 1
4. |xe™ dx 4. | xIn xdx
.0 .0
5 ¢ 5 ¢ dx
Y (2- x)\/ < (B=XW1- ¥
1/2 2
* dX * Xdx
6. J XIn* x 6. JIx-1




N dx [ dx
£ -[(4+ xz)\/arctgo,Sx 7. .[xlnzx

2.3 Geometrical Applications of Integration
In this chapter we explore some of the applicatiohshe definite integral by
using it to compute areas between curves, volumesolals, and arc length. The
common theme is the following general method, whsckimilar to the one we used
to find areas under curves: we break up a qua@tiinto a large number of small

parts. Next we approximate each small part by atifyeof the formf (x)Ax and
thus approximat€® by a Riemann sum. Then we take the limit and esgfpeas an

integral. Finally, we evaluate the integral usinge tFundamental Theorem of
Calculus.

Areas between Curves
Integrals can be used to find areas of regionslthdtetween the graphs of two
functions. Consider the regioh that lies between two curves= f(X), y=g(X and

between the vertical lines=a, x=b, wherey= f(x) andy=g(X are continuous
functions andf (x) = g(X) for all xO[a,b| (See Figure 6).

VA YA

y=fx) y=d

d____
} Ay
S x=g(y) x=f(y)
3> S y=c

0l b X

y=gx) 0 X

Figure 6 Figure 7

The are&S of the region bounded by the curwes f(X), y=9(X, and the
linesx=a, x=b, wherey= f(x) andy=g(X are continuous anfl(x)= g(x for
all xO[a, b] can be calculated by the formula

s:j(f(»—g(g) dx (1)

b
Note 1If y=g(x) =0, thens:j £(%) dv.

Note 2 Some regions are best treated by regardiras a function of/. If a
region is bounded by curves with the equatwesf(y), x=9g(y),y=c,y=d,
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wherex= f(y) andx=g(y) are continuous anfi(y)=g(y) for yO[cd| (see
Figure 7), then its area is

s=[(1(y-d ) dy (2)

Note 3If we are asked to find the area between the swywvef(x) andy = g(X
where f (X) = g(X for some values of, but f (x) < g(X) for other values ok, then
we split the given region into several regiggsA,, A,,... with areasS, S, S,... as
shown in Figure 8. We then define the area of dggon A to be the sum of the areas
of the smaller regions,, A, A,,..., thatisS= S+ S+....

The area between the curves f(x) andy = g(X, betweerx=a andx=Db is

S=[| (3~ o ¥ dx 3)

Note 41f the curve is assigned by the parametric equatia= x(t), y= W1, the
areaA of the region bounded by this curve is

B
s=[ Yy ot where & @), b (6) (4)
Note 5The area of figures in the polar coordinates Bgare 9 and Figure 10) is
B B
S:%Irz(ﬁ)de or s:%_[( 2(6) - ¢(6)) & (5)

0

Figure 8 Figure 9 Figure 10

Example 1 Find the area enclosed by the Ilge)=—-x+1 and the
parabolaf (X) = -x° + 2x+ 5.

Solution By solving the two equations we find that the peiof intersection
are(-12), (4;,-3):

f(X)=g(X = -x+1=-X+2x+ 5= x> -3x-4=0,
x=-1x=4,
Y,=2y,=-3.
Thus
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s:j( f(3- o 3) dx:j(— k+2 #5-(- *x1)) dxi(— 2 x5+ X} ox

-1

4 3 2 4 3 2
:I(—x2+3x+4)dx: AN I B S Lo 1
1 3 T2 )3 T2

—(—(_1)3 vty 4|I(—1)j = 202.

3 2
: X=2cost
Example 2Find the area enclosed by the cuyve .
y=2sin’t

Solution These equations determine an astroid. Since theefigg symmetrical
relative to coordinate axes, then let us 4 of the area, which lies in the first
guadrant.

X(t) = 2[Brostf- sirt)=— 6lcdsD sir.

If x(tl):0:> tlzg; x(t2)=2:>t2=0.

ThusSzj () XD

T

0]
1

O Lm0 | N | Y Sy ©

2 >
23in3t[Q—6co§tDsirt) dt= 1§ siht cég dt= Jfa dnt2 gindt=
0 0

T T

2 2
Sir? 2 "‘;OSZ dtz—zgj sif Zdt—;j SiA 20 costdt=

1
w

0 0
LZT LZT T n m
_3 molt——?’jsinz2to|(sinz)=—3’[ i ——3sin{2——lsiﬁ %2:—3.
272 2 al, 160 1, 4> T, 8

After multiplying the obtained area to 4, we wilbtain the area of the entire of

7T _ 37T _

the astroidS =4[S=4 3 —7 = 4.712.

astroid

Volumes
Trying to find the volume of a solid we face themeatype of problem as in

finding areas. We have an intuitive idea of wha tlolume means, but we must
make this idea precise by using calculus to givexatt definition of the volume.
For a solidS that is not a cylinder we first “cut’'S into pieces and approximate

each piece by a cylinder. We estimate the volum® by adding the volumes of the
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cylinders. We arrive at the exact volumeSthrough a limiting process in which the
number of pieces becomes large.

We start by intersectin§ with a plane and obtaining a plane region thatlked
across-sectiomf S.

y

Figure 11 Figure 12

Let A(X) be the area of the cross-sectionSoin a planeP, perpendicular to
the x— axis and passing through the pomtwherea< x< b (see Figure 11). Think
of slicing S with a knife throughk and computing the area of this slice. The cross-
sectional are#\(x) will vary x as increases fromtob.

Definition LetS be a solid that lies betweerra andx=Db. If the cross-
sectional area d in the planeP,, throughx and perpendicular to theaxis, iSA(X),
whereA(X) is a continuous function, then thielumeof S is

v:jA(x)dx (6)

Note 1 The volume of the solid in Figure 12, obtained rbyating the region
under the curvey = f(X) fromato b about they-axis, is

vxznjfZ(x)dx [vyzznj xl]f())d% (7)

Note 2If a curvilinear sector revolves around the paais, then the volume of
the body of revolution is found by the formula

B
Y, :gn_[ r%(6) ZinAdE 8)

Example 3Find the volume of the solid obtained by rotatihg tegion bounded
by y=x- ¥ andy =0 about the linex=2.

Solution Figure 13 shows the region and a cylindrical slietmed by the
rotation about the ling=2. It has radiug-x, circumferenc&mr[{2-x), and

heighth= x— ¥,
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Figure 13
The volume of the given solid is
1 1 4 1
Y, =J2n[(2—x)(x— %) dx= 2nt_[( R-3%+2) dx 21[{%— et %<j :’—ZT.
0 0

0

Arc Length
Suppose that a cuné@ is defined by the equation= f(x), wheref(x) is

continuous an@ < X< b. We obtain a polygonal approximation@oby dividing the
interval[a,b] inton subintervals with endpoints= x;, X, x,..., X = k and equal
width Ax. If y. = f(x), then the poinB(x;y) lies onC and the polygon with
verticesk, B, B,...llustrated in Figure 14, is an approximationdo

YA

=Y

Figure 14 Figure 15
The lengthL of C is approximately the length of this polygon ance th
approximation gets better as wetkeincrease.
The Arc Length Formulalf y= f(X) is continuous ofia,b|, then the length of

the curvey = f(X), a< x<bis

| :j)'w/1+(f '(x)) dx 9)

Note 1 If a curve has the equaticrF¢(y), c< y< d, and x=¢(y) is a
continuous function, the following formula can ksed:
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= [{1+(¢'0))ay (10)

Note 2 If a curve is assigned by the parametric equations
x=X(t), y= Y9, t[a, L] the following formula can be used:

= j JXO) + ()’ (11)

Note 3If it is known that the polar equation of a8 isr =r(6), 8U[a, 5] the
length of its arc is equal to:

B
| = j Jr(6) +(r'@)de (12)

2 3
Example 4Find the arc length function for the cur X _(X+1) ’
-1<x<0.
3
Solution The given line can be described by the fornwta( x+1)5 and it is

symmetrical relative ta-axis. Therefore we will search for the length bé tine

1
lying at the second quater. Let us calculate thivaléve y :gmxﬂ)z.

0 > 0 0
Then! =j\/1+@(x+1)ij dxz_[ ‘/1+%(x+]) dx=—§[jt/ Ox+ 13dx
-1 -1 -1

0

1# 9x+13 :?17(\/1—33_8):13\/5— g
2

L=20= 2513V2173_ 8_ 26/;17} 16 5 87¢

Example 5Find the arc length function for the cumwe 3(1+ co¥ .

Solution Cardioid is a curve symmetrical relative to polaisalLet us calculate
the length of the arc lying above the polar axse(&igure 15).
For calculating the arc Ilength of this line we wiluse the

|l
Ntw
iR

B
formulal :J \ri+ r’ ’d 6. Let us calculate the derivative= -3 sind. Then

|_I\/9 (1+ cosp)’ + 9siABdO= §«/ 2 2cdo= [p cez}sde— 12594t=

2
0
Consequently, the length of the entlre cardioidgeallL =2 = 2[12= 24
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In exercises 1 to 15 calculate the areas of thadgy bounded by the assigned

Exercise Set 2.3

curves.
1. y=xX+4,y=x+4 |2. y=Inx,x=e,x=¢€,|3. y’=x,y=1,x=5
y=0
4. y*=9x, y=3x 5. y=x-X 6. y*=1-x x=-3
x = a(t-sint) y=x —6X+9, y* +8x=16,
7. .y=018. 9.
y=a(l-cost’ 4x-y=12 y> - 24x= 48
— - — 2
10 {x-Scc_Dst 11 X =3cosSt L x =23t
y =5sint y =3sin’t y=4t-t°
13.r =5(1+ cod | 14. r =3cos® 15.r*=a’sin 2%

In exercises 16 to 24 find the volume of the bddymed by the rotation of the

figure bounded by the assigned curves around theated axis.

16. y=4x- X,y =x,0Y

17. y=x,4x-y=0,
oYy

18. y=x*,x=2, y=0,0Y

19. y=0,5¢ — 2x+ 2,
y=2,0Y

20. y* =16x, x= 4,0Y

21. y=x,y=+/x,0X

22.y=x,x=2, y=0,

OX

23. X*-y*=9, X=6,
OX

24.xy=4, 2x+ y-6=0
OX

In exercises 25 to 36 find the length of the arthefcurve.

25.y=2\(x-1 x =1, | 26 y=V2x-¥-1 27. y=In(1-x),
3 X =0,25, x, =1 x=0,%=0,5
X, =9
28. x=Incosy,y, =0, 29. x=0,25y - 0,5Iny x = 3cost
_ 30. _
y,=m/3 y,=1Ly,=e y = 3sint
O<st<sm/2
31.{x:a(t—smt) 32 X:SCogtOStszr 33, x = € cost
y=a(l-cost’ y =3sin’t y=¢ésint
O<t<2r O<t<Insm
34.r =4(1+ cod 35. r=2cos(6 /3 36.r2=a’sin W

Individual Tasks 2.3

1-3. Calculate the areas of the figures, bounded bwas$lsened curves.
4-5.Find the length of the arc of the curve.

6. Find the volume of the body, formed by the rotatofrine figure bounded by

the assigned curves around the indicated axis
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Il.

1. y=x,y=2-¥% 1. y*=4x, X =4y
2. r=7(1+sin@) 2. r=9(1-sind)

X=5cos X=4cog
3. _ 3. .

y =5sint y =3sint
4. y=1-Incosx,x =0,x,=7/6 4. y=Insinx,x =m/3,x,=7m/2
5. r=4co¥ 5. r =5sind
6. y=x,x=y,0X 6. x* =16y, y=4,0X

2.4 Applications to Physics and Engineering

Work
In physics the termvork has a technical meaning that depends on the idea of

force. Intuitively, you can think of a force as descripia push or pull on an object.
Let the material point move alongaxis under the action of ford&(s). The

work of this force in the section of W{a@(, b] is determined by the formula

A:IF(S) ds (1)

Moments and Centers of Mass

Among many applications of integral calculus to gihg and engineering, we
consider one here: centers of mass. As with owique applications to geometry
(areas, volumes, and lengths) and to work, outegjyais to break up the physical
guantity into a large number of small parts, apprmate each small part, add the
results, take the limit, and then evaluate theltieguintegral.

a1 b o )

Figure 16 Figure 17

Our main objective here is to find the point on etha thin plate of any given
shape balances horizontally as in Figure 16. Thistgs called thecenter of mass
(or center of gravity of the plate.

If we have a system of particles with massgsn,...,m, located at the

pointsx, X,,...,% on thex-axis, it can be shown similarly that the centematss of
the system is located at
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_ imx

x=3 @

>

The sum of the individual momerM:me is called themoment of the
i=1
system about the origifhen Equation 2 could be rewritten m&x= M, which says
that if the total mass was considered to be conatat at the center of magsthen
its moment would be the same as the moment ofyitters.
Now we consider a system of particles with massesy,...,m, located at the
points(x; ¥,), (%; Y,),-.., (X ; ¥ ) in thexy-plane as shown in Figure 17.

By analogy with the one-dimensional case, we defanmoment of the system
about the y-axisas

M, = Zm X (3)
i=1
and themoment of the system about the x-asis
M, =) my (4)
i=1

ThenM  measures the tendency of the system to rotatet #@y-axis andM

measures the tendency to rotate abouktagis.

As in the one-dimensional case, the coordinatéseotenter of mass are given in
terms of the moments by the formulas
v = My v = Mx
X= YEy )
Next we consider a flat plate (calledlaaming with a uniform density that
occupies a regionl of the plane. We wish to locate the center of niddbe plate,
which is called thecentroid of (. In doing so we use the following physical

principles:

The symmetry principlesays that if]1 is symmetric about a line then the
centroid oft] lies onl. (If O is reflected aboudt, then] remains the same, so |ts
centroid remains fixed. But the only fixed points bnl). Thusthe centroid of a
rectangle is its center

Moments should be defined so that if the entirestdsa region is concentrated
at the center of mass, then its moments remainamgsgd. Also, the moment of the
union of two nonoverlapping regions should be then of the moments of the
individual regions.

Suppose that the regianh is of the type shown in Figure 18; that ig, lies

between the linex=a andx=Db, above thex-axis, and beneath the graphfdqk),
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wherey= f(X) is a continuous function. We divide the intefab| into n
subintervals with endpoints= x,, X, %,..., x = t and the equal widthx. We

choose the sample poirt to be the midpoinﬂ of thei-th subinterval, that

isZ:(x + ),(+1)/2. This determines the polygonal approximatioriitoshown in
Figure 19. The centroid of theth approximating rectangle is its

centelC, (X% f(_x)j Its area isf (x )Ax, so its mass ig) = p Of (X)AX.

y
y _ \
y=flx)

< y=\r’-x
4r
) >§<O’ )

Lol LN
— 0 . :
o, L x 0 aR[R x[fj\xf P ! / X
2 R’; X
Figure 18 Figure 19 Figure 20

Adding these moments, we obtain the moment of thiggpnal approximation
tol], and then by taking the limit as— o we obtain the moment af itself about
the y— axis:

My:pjxm(wdx (6)

Again we add these moments and take the limit taiolthe moment dfl about
the x- axis:

1 [,
Mx_Epif(mdx @)

b
The mass of the plate is the product of its derssity its areav = ,oJ‘ f (X)dx.

Note 1 If the plane figure is limited by the lings= f(x), y= f,(X, xXd0[a B
and p=p(x) is the surface density of figure, then

M = [ p0O( 1,09~ 1,(%) dx,
M, = [XEp(O)( (9~ (%) o ®)

M, = j p(( 200~ 12(¥) dx
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Note 2 The static moments of the material arc, assigned the
equationy = f(x), x[I[ g  relative to coordinate axes are found by the fdasu

M = j POOL+( (X)) dx,
M. :I,o(x) OF (x)y L+ ( ()7 dx @)
M, :jp(x) O+ ( F'(%)° dx.

Example 1Find the center of mass of a semicircular platedfusr .

Solution We place the semicircle as in Figure 20 so fHa)=+/r*-x°
anda=-r,b=r,

Here there is no need to use the formula to cateuldecause, by the symmetry

principle, the center of mass must lie on yhaxis, sox=0. The area of the

.. ) 1
semicircle isS = Em2 , SO

m® 3 3w
The center of mass is located at the pém;%j

Exercise Set 2.4
In exercises 1 to 6 find the coordinates of theereof the masses of a flat uniform
figure (®) bounded by the assigned curves.

1 y:X2 5 y2:2x—2 3 X2+4y—16:O

" ly=2-x C o ly=x-1 " |ly=0
2=4-x =X

4. {y 5. y 6. r=1+co¥
y=O y:\/;(

In exercises 7 to 12 find the coordinates of theteeof the masses of a flat
uniform curve(L).
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7. r=2co¥ 8. r=3sind, 9. r=1+cod O<s¢g<rr

O<¢g<ml4 mle<sg<ml4

0 x:50951, 11 x:3co§t’ 1 x:a(t—smt)"
y =5sint y=3sirt y=a(l-cost’

O<t<sml/2 O<t<sm/2 O<t<2mr

Individual Tasks 2.4
1-2. Find the coordinates of the center of the maskadlat uniform figure(CD)

bounded by the assigned curves.
3. Find the coordinates of the center of the massedlat uniform curve(L).

Il
1. {X:yz 1. {y:xz
y=x y=X+2
y=0 y=0,x=0
2. {X=11 2. {x=7l2
y =sinx y =COSX
3. r=2/3co¥ O<¢<ml4 3. r=2sind,0<s¢<rm/4

Additional Tasks 2
1. Calculate the areas of the figures, boundedhéyassigned curves.

, _ : : X=4cost
a) Yy =4x, X =4y b) r =2(1+ sind) C){yzssint

2. Find the arc length function for the curve.

a) y=1-Incosx, x =0,x, =7/6 b) r =5sind

3. Find the volume of the body, formed by the rotabf the figure bounded by
the assigned curves around the indicated axis.

x* =16y, y= 4,0X r =2(1+ cod |, polar axis

4. Calculate the areas of the figures, boundedeyitst and second loops of the
Archimedes spiral =ad .

5. Find the distance traveled by the material ptona stop, if the velocity of
movement is given by = te ",

6. A circular swimming pool has a diameter of 24tlie sides are 5 ft high, and
the depth of the water is 4 ft. How much work iguieed to pump all of the water out

over the side?
Il DIFFERENTIAL EQUATIONS

The one of the most important of all the applicagiof calculus is the differential
equations. When physical scientists or social sisisnuse calculus, they analyze a
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differential equation that has arisen in the preagsmodeling some phenomenon that
they are studying.

3.1 General Differential Equations. Separable Equabns

Definition A differential equationis an equation that contains an unknown
function and one or more of its derivatives. Tnder of a differential equation is the
order of the highest derivative that occurs indhaation.

Thus, equatiory’ = xy is afirst-order equation In this equation the independent

variable is calleck. A differential equation of the first order FEx,y,y)=0

ory =f(xYy).

Definition A function f(x) is called asolution of a differential equation if the
equation is satisfied whep= f(X) and its derivatives are substituted into the
equation.

When we are asked solvea differential equation we are expected to find all
possible solutions of the equation.

Definition A general solution of the first-order differential equation is a
functiony =¢(x C), ( C= cons} such that:

1) y=¢(x C) is a solution of this equation for any value(of

2) for any admissible initial conditiog(x,) = y, there is a valu€ = C; at which
the functiony = ¢(x, G,) satisfies the given initial condition.

Definition A particular solution of a differential equation is the solution obtaine
from the general solution for a specific valueta# tonstant .

When applying differential equations, we are uguadit as interested in finding a
family of solutions the general solutioh as in finding a solution that satisfies some
additional requirement. In many physical problems meed to find the particular
solution that satisfies a condition of the foyfx,) = y,. This is called annitial

condition and the problem of finding a solution of the eliéintial equation that satisfies
the initial condition is called anitial-value problem

Geometrically, when we impose an initial conditiove look at the family of
solution curves and pick the one that passes thrabg pointX,, y,). Physically,

this corresponds to measuring the state of a syateimet, and using the solution of
the initial-value problem to predict the future betor of the system.

Modeling with Differential Equations

In describing the process of modeling, we talkeoualformulating a mathematical
model of a real-world problem either through int@treasoning about the phenomenon
or from a physical law based on evidence from erpts. The mathematical model
often takes the form of a differential equatiomttins, an equation that contains an
unknown function and some of its derivatives.

Models of Population Growth

One model for the growth of a population is basadtitee assumption that the
population grows at a rate proportional to the sifethe population. That is a
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reasonable assumption for a population of bacter@nimals under ideal conditions
(unlimited environment, adequate nutrition, abseoteredators, immunity from
disease).

Let's identify and name the variables in this motleltime (the independent

variable); P =the number of individuals in the population (th@eedent variable).
The rate of growth of the population is the deixatiP/ dt. So our assumption

that the rate of growth of the population is prdjporal to the population size is
written as the equation

dP
—— =kP 1
dt )

wherek is the proportionality constant. Equation 1 is &tst model for population
growth; it is a differential equation because ihtzons an unknown functioR(t) and
its derivativedP/ dt.

Having formulated a model, let's look at its consewnces. If we rule out a
population of 0, thei(t) >0 for all values ot. So, ifk >0, then Equation 1 shows,

thatP'(t) >0 for allt.
This means that the population is always increadimgact, asP(t) increases,
Equation 1 shows thaP/ dt becomes larger. In other words, the growth rate

increases as the population increases.
Equation 1 asks us to find a function whose dewxeais a constant multiple of
itself. We know that exponential functions havettlpgoperty. In fact, if we

let P(t) = Ce"*, thenP'(t) =(C€")' = Ck& = kK C& = kP).

Thus any exponential function of the fofmt £ L€ is a solution of Equation 1.
Allowing C to vary through all the real numbers, we get tfamily of
solutionsP ( )= C€" whose graphs are shown in Figure 21. But populatieave only
positive values and so we are interested onlyensthiutions withC >0. And we are
probably concerned only with the valuest ofjreater than the initial time=0.
Figure 22 shows the physically meaningful solutionButtingt=0, we

getP(0)= Cé* = C, so the constar@ turns out to be the initial populatid®(0).

y
7/

Figure 21 Figure 21

51



Separable Equations
Definition A separable equatioris a first-order differential equation in which the
expression fody/ dx can be factored as a functionxofimes a function of/. In other

words, it can be written in the form:
d
y—fwnwuo 2)

The name;eparablecomes from the fact that the expression on the sgle can
be “separated” into a function &fand a function of/. Equivalently, ifg(y) #0, we

could solve this equation rewriting it in the d'rﬁetial form:

dx
dy= f )
y= f(XP(y) dx ¢() T

Then we integrate both sides of the equation:

3
Foor=I70s ©
Equation 3 implicitly definey as a function ok. In some cases we may be able
to solve fory in terms ofx.
Note 1If M(X)CN(y) dx+ K ¥UQ Yy dy0, then
M () QY)
dx+ j dy= C, P(X)#0, N(y)# 0.
P(x) N(Y)
Definition A functiong(x, y) is called ahomogeneous function of degreavith
respect to the variables andy, if for anytOR the identityg(tx,ty) = t' [#( x, )

holds.
Definition The differential equation of the form
M(x y)dx+ N(x y dy=0 (4)
Is called ahomogeneous differential first order equationf M (x,y), N(x yare
homogeneous functions of the same order.
If functionsM(X,y), N(x y) are the uniform functions of one and the same
measurement, then the equation (4) is possiblesit o the form

dy _
dx ¢( xj )
The substitutiory = X[l ¥ can be used to converting the equations (4) ota(5)

theseparable equation.
Example lintegrate the differential equation of the modelgopulation growth

P ke,

dt
Solution We write the equation in terms of differentials amiggrate both sides:

P ot = J‘E:J‘kdt = In|P| = kt+ C,
P P
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whereC is an arbitrary constant. (We could have usedrstemtC, on the left side
and another consta@ on the right side. But then we could combine thesestants
by writing C = C, — C). Solving forP, we get
P(t)=e"“=e'é= A&, A con.
Example 2Solve the differential equation
(Y +xy) Oy + X - yx=0.
Solution We write the equation in terms of differentials amiggrate both sides:
y*(1+ x)dy= ¥ ( y-1) db.
If x20,y#0,x#-1,y#1, then

2 2
y dy= X dx:>J‘ y+1+i dy:j(x—1+ij dx=
y-1 X+1 y-1 X+1

y2 X2
?+y+ln|y—1|:E— X+ In|x+ 1k C,

whereC is an arbitrary constant.
Example 3Find the solution of the initial-value problem
(x2 —3y2) dx+ 2 xydy= 0, y(2)=1.

Solution Let us write down the equation in the form:
dy_3y-x¥ d_yzl(g_y_}j

dx  2xy dx 2| x vy)
Sinceg (tx,ty) = :—i—%:s{——;(/:gp(x,y), then the replacement of the

unknown function ofy = X[l XY can be introduced and = u(x) + xOu( X .

Substituting these expressions into the initial atigun, we will obtain the

separable equation:
2 _ 2
X' (x) + u:1(3u—éj:> Xlﬁ:—l( u——lj - xleY 1@ x de =
2 u 2 u 2U 2u

1dx:»

. 2udu_dx_, IZZUd“: X e -1F X InC | - @ ECx;
u‘-1 x u -1 X

2
(X) ~1=Cx.
X

Sincey(2) =1, we havdl-4=8C; C =-3/8. Therefore the solution to the initial-
value problem is

2
y_2:1—§x

/ 3
. =+x[1-— X.
X 8 y 8

Exercise Set 3.1
In exercises 1 to 12 solve the differential equatio
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1. xdx+ Zdé:o 2. xyy=1-x 3. (2x+ex)dx—$/:0
y
4. xy =y +1 5. e"¥dy= xd 6. tgx[sin® ydx+ cog xJctgydy (
2 +
7. y=L -2 s y:—xyy 9. yax+(\/xy=v/¥ dy=0
X

10. xy = yIn§ 11. (x+2y)dx— xdy=0 12.xy =,/ y¥* - ¥

In exercises 13 to 18 find the solution of the elidintial equation that satisfies the
given initial condition.

13.(xy2+x) dx+( V- %3) dy=0, §0)=1 14. y'Binx=yliny, {gj: €

15. siny[tosxdy= cosstinxdx,y(O;l—zT 16. xy = y+4 ¥+ V¥, Y1)=0
17. (x+xy) dy+( y= xy dx0, {1)=1 18. xy = y(I+Iny-In ¥, y) = é

19. A tank contains 20 kg of salt dissolved in 5000 fLwater. Brine that
contains 0.03 kg of salt per liter of water entires tank at a rate of 25 L/min. The
solution is kept thoroughly mixed and drains frame tank at the same rate. How
much salt remains in the tank after half an hour?

20. Suppose you have just poured a cup of freshly hieweffee with

temperatur®d5C in a room where the temperature2dC. Newton's Law of

Cooling states that the rate of cooling of an abiggroportional to the temperature
difference between the object and its surroundipgs/ided that this difference is not
too large. Write a differential equation that exgzes Newton’s Law of Cooling for
this particular situation. Solve the differentigjuation to find an expression for the
temperature of the coffee at tirhe

21. One model for the spread of a rumor is that the oétspread is proportional
to the product of the fraction of the populationoMmave heard the rumor and the
fraction who have not heard the rumor. Write aettéhtial equation that is satisfied
by y and solve the differential equation. A small tohas 1000 inhabitants. At 8

AM, 80 people have heard a rumor. By noon halfttven has heard it. At what time
will 90% of the population have heard the rumor?

Individual Tasks 3.1
1-3. Solve the differential equation.
4-6. Find the solution of the differential equation tlsaitisfies the given initial
condition.

I,
1. xy - y=y 1 (x+x)y=2y+1
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2. 4(y¢ + y) dy+4/5+ Y dx 0
2. XJ4+ Yy dx— Wi+ X dy= 0 ( )
2

Yy _
3 3y':L2+gl’+9 3. xycos; yco% X
X X 4. xdy—(y+1)dx=0, y2)=¢&
4. ycosx=ylny, Y m/4=c¢ y
5. (xy - y)arctg== x ¥1)=0

5. xy = xsinY + y, 2)=m X

X 6. (X*—3y*)dx+ 2 xydy= 0, Y2)=
6. (x2+y2)dx:2xydy y4)=0

3.2 Linear Equations

Definition A first-order linear differential equationis the one that can be put
into the form:
y+p(X0y=d3 (or Axy+ Bxy €CH0) 1)
where p(X) andq(x) are continuous functions on a given interval.
It turns out that every first-order linear diffeth equation can be solved in a

similar way by multiplying both sides of Equatiorb§ a suitable function called an
integrating factor

| (x) =&/ PO 2)
Thus a formula for the general solution to Equatias provided by the solution
1
X)=—— | I(X dx+ q
09 = o { [ 100 a3 @

d - : :
Wherel(x):e[p(x) " Instead of memorizing this formula, however, wast|

remember the form of the integrating factor.
Note 1It turns out that every first-order linear diffat@l equation can be solved
by using the substitutiog = u(X) O ¥ , whereu(x), (X are unknown functions. We

reduce this equation to the form:
uv+uv+ g3 ueE § X Uy ('v E)X)& (0).
Since one of the unknown functions can be seleatbdrarily, then v(Xx) is
taken as any particular solution of the equation
vV + p(X)v=0,
function u(x) will be determined from the equation
UMY =o 3.
Thus, the solution of a linear equation is reducethe sequential solution of two
equations with the divided variables relative tolreaf the auxiliary functions.

Note 2 A first-order lineardifferential equation is one that can be put irfte t
form

X+p(y)x=d Y.
This linear differential equation can be solvedhite help of the substitution
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X(y)=u(YIM Y.
Note 3TheBernoulli equationtakes the form
y+p(Xy=d30Y orx+p(y)x= oy X, il F
These equations can be reduced to the appropnata lequations, but then they
are usually solved with the help of the substitutio

y=u(x (¥ orx  yovy.
Example 1Solve the differential equatiogy’ +ﬂ =X.
X

Solution We use the substitutiopn=u, y = d v+ ul. We obtain the following
equation

3uv 3v
Uv+uv+—= ¥ = uv+u v+— |= X.
X X

We solve two equatlomé+& =0 andu'v= ¥.

dv__3v_ dv ﬁx jﬂjx@ nlVE-3In|x > v=—t.
dx X Vv %
u’[—l%:x2 o %:)(5 = du= X dx= uzj )“(dx£+ (.

X dx 6

Multiplying u(x) onv(x), we obtain the general solution of this equation

X3

Example 2Find the solution of the initial-value problem
2ydx+( ¥ —6X dy=0, y(6)=2.
Solution It is easy to see that this equation is not limetative toy. Let us write
it down in the form

1(x° X C
=—|—+C| or y=—+—, C-cons.
Y [6 j =6

2y%+y2—6x:0; 9(—Ex:——y; x=uy Uw > uw -
dy dy vy 2 y 2
u'v+u(v'—§v]=—1; W3 VS sy e .
y 2 dy y v y
Then from the equatioul v= —% we determine the functiam(y):
ury3:—l; u:—iz; du= _ﬂ u= i+ C.
2 2y 2y*’ 2y

Let us extract the general solution of the inidglation
2

X= U\, x:[i+ Cj Y. X C§/+L.
2y 2

Sincey(6) =2, we have5=8C + 2, C=1/ 2. Therefore the solution to the initial-
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value problem ix= 0,5( V+ yZ) .

Exercise Set 3.2
In exercises 1 to 9 solve the differential equation

1.y’—¥=x 2. xy +2y= X 3.xy + y= xyIn »
2y 2y 2y _ 2 2
4.y +=L = 5. y ——L =¢€&‘(x+1 6. y°dx—(2xy+3) dy=0
e Y =g SE(x+]) y“dx—(2xy+3) dy=
7. 2Xde+( y- >€) dy=0 8. xy-3y=x-2x+5x 9.3—§+—;’:—xy2

In exercises 10 to 15 find the solution of the eliintial equation that satisfies the
given initial condition.

10. y’+§y=%, y)=1 11. Xy +2xy=Inx y ¢=1

12.xy +y-€=0, { 4= I 13. y +3y=€*y, }0)=1

14,y + Y - yy=3 15. y' - ytgx=—1—, ¥0)= 2
X cos X

Individual Tasks 3.2
1-3. Solve the differential equation.
4-6. Find the solution of the differential equation tisaitisfies the given initial

condition.

1. y’+ﬂ=i4x+1 1. y,+ﬂ:4x;5

X X X X
> 3xy—2y:§—z > y,=2yln yy+ y— X
3. (1+x¥)y = xy+ R ¥ 3. Xy +2xXy= y(1+2X)
4. y' + ytgxlesx, ym)=5 4. y'—4—Xy:3+2x—x2,y(1):4
5. y-7y=€"y, y0)=2 5. xdy=(€*-y dx y1)=1
6 Y oY

1
: yzdx:{x+ yeyJ dy y0)=-3 6. Y 3" %_3 y(1)=-2

3.3 Higher Order Differential Equations
Admitting a Reduction of the Order
Definition A differential equation is called differential equationordern, if it

can be represented as follows:

F(x, y,y,..,ﬁ”)): 0 (1)
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Definition A functiony = ¢(x) is called asolutionof a differential equationf the
equation is satisfied when=¢(x) and its derivatives are substituted into the
equation.

Definition A functiony=¢(xg,¢,..,¢) is called ageneral solutionof a
differential equatior(1) if the function is satisfied to following coridns:

1.A functiony=¢(x g, c,..,¢) is a solution of a differential equation for any
fixed values of constants,c,,..,c ;

2.There are unique values of constagitsc’, c,= ¢, .., ¢ = ¢ for any initial
conditions

Y(%)= Yo V(%)= oo V(%)= ¥ (2)
such that a functiog=¢(x, ¢, ¢,..,¢) is a solution of a differential equation and it
satisfies initial conditions (2).

Definition A functiony=¢(x¢,d,..,¢) is called apartial solution of a
differential equation (1) if it can be obtainedrfra general solution with any fixed
values of constants=c’, ¢c,= ¢, .., ¢ = ¢.

The problem of finding a solution of the differetequatiorF (x, A ;f”)) =0

that satisfies the initial condition(x,)= vy, Y( %)= ... Y( %)= ¥ is called

aninitial-value problem

The simplest method of solution of a differenti@uation isthe method of
reducing the order of a differential equatiofihe essence of the method is that this
equation can be reduced to an equation of a lowdgrdy means of a change of
variable. Let us consider some types of higher+oedgiations that allow a decrease
in order.

1.y = £(x)
The general solution is found by thetimes integration method.
Example 1Solve the differential equatioyt’ = x+ cosx.

Solution We successively integrate this equation 3 times
2

y' :j(x+ cosx)dx:X?+ sinxt ¢;
2
y :j(%+sinx+ qjdng— COSXt+ C X ;

y:J i—cosx+qx+9 dxzﬁ—sim& p£+ c X 4
6 24 2

2. The equation obviously does not contain a funcfiory” = f(x, y)
With the help of the substitutiogi = p(x), ¥ = g( ¥ the equatiory” = f(x, y) is

converted into afirst order differential equation. The solution dfis equation
depends on its type.
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We write the general solution in the form @k ¢ (x, C, ). We substitute it in for
the unknown functiorp(x) = y( x) and solve the separable equation:

%:mx,q = dy=¢(x G) dx= )F_[¢( xQ dx ¢

Example 2Find the solution of the initial-value problem

xy' = yln%, y1)=¢ y(1)= &

Solution This differential equation is a second-order equmtihat does not
explicitly contain the variable. We reduce the order of the equation by
substitutingy’ = p(x), ¥ = g( ¥.The initial equation is transformed into a
homogeneous differential equation of the first ordéh respect to the unknown
function p(x):

P

xp':pln£:> |d:—pln—.
X X X

Solve it in a known way
@:u(x), p(¥=xTUY p=u xXU= o X& In

ﬁzixx;: In|Inu-1F In|x | In|C [;=| Inu- fi=|CX ;=
Inu-1=+Cx +C=C = Ihu-1=Cx=
u=€e"" = p=x€* = Y= x8&%
We use the initial conditiog'(1) = & or p(1)=€:
e’ =1¥"“; 2=1+ G; G=1
Hence, we obtain the equation
y = x&! = y:j xé™" dx x&' - &+ L
From the initial conditiory(1) = e we find the value of the constat
e=€-€+C;=> GC=«
Thus, a particular solution of the original equatie the function
y=(x-1)&" + e

3. The equation obviously does not contain a variable" = f(y, y)
With the help of the substitutioyi = p(y), ¥ = g the equatiory’ = f(y,y) is

converted into afirst order differential equation. The solution dfis equation
depends on its type.
Example 3Find the solution of the initial-value problem

yy + y*+ yy =0, ¥0)=1, y(0)= 1.
Solution
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This equation is a second-order differential equeatn which the variable is

obviously not present. We reduce the order of thguagon by the
substitutiony’ = p(y), ¥ = p r. We obtain the first-order equation:

p=0,
yp+ P+ ypp=0= {4 yp+ p =0:{ ,
t y yp + p+ y=0.

We solve a homogeneous differential equation ofitseorder in a known way:

=Py dp__ Py
y dy vy
§=U(y), p= yu p= u yi;
u+tyd=-u-1 = yu=-2u-1= ydr-(2u1l) dy=
du dy 1 1 C
=—— = ZIn|2u+1F-In — In 2+ £
el Ty = PnATIETnly kS e = yz

Exercise Set 3.3
In exercises 1 to 9 solve the differential equation

m

1. y" =2x+ cosx 2. yV = ); 3. X%y +xy=1
4. yy' +y?=1 5. y" = x+sin3x 6. X2y" :(y’)2
7.xy'=y(Iny-Inx 8. ytgy=2(y) 9. xy' +y=(y)’

In exercises 10 to 15 find the solution of the eliintial equation that satisfies the
given initial condition.

10 y'=—"—, yO=y@®=y®=0 11 y'=¢”, y{0)=0, y(0)=1

(x+2)"
12. 29y =(Yf, weD=4yED=1 18y =TX y(1)=3, y(§=1
14. xy" -y = X +1, 15. (x+1)y' + xy* =y,
y(-1)=0, y(-9=1y(-J= y(1)=-2,y (1)= 4

Individual Tasks 3.3

1-3. Solve the differential equation.
4-6. Find the solution of the differential equation tisaitisfies the given initial

condition.

1. y"=x*-sinx 1. y"=xsinx

2y =(y) 2. 2yy' =3y?+ 4y
3. xy' - y= Xé 3. @+x*)y' -2xy=0
4. xy"=2, y(1)= 0,5 4. v =INX

g y(1)=3, y'(1)=1
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y(1)=y(1)=0 5. xy"-y=X+1 y-1)=0
5. y(x2+) 2XY, y y'(-9)=0

y(0)=1 (9= 3 6. y'=€”, %0)=0, y(9=1
6. Yy +1=0, y()=1, y(3=

3.4 Linear Homogeneous Differential Equations

Definition A differential equation is called second-order linear differential
equation if it can be represented as follows:
PO)LY' + (¥ 0y+ R XUy G X (1)
whereP(x), Q(X, R 3, G ¥ are continuous functions.
In this section we study the case whe(x)=0 for all values ok. Such

equations are callditomogeneous linear equation3hus the form of a second-order
linear homogeneous differential equation is
POX)LY + QY0Oy+ R X0y 0 (2)
If G(x) 20 for somex, Equation 1 isnonhomogeneousnd is discussed in

Section 3.5.
Theorem 1If y,(x) andy,(x) are both solutions of the linear homogeneous ®auat

(2) andcC,, C, are any constants, then the linear combinaierC,y, + C,y, is also a

solution of Equation 2.
The other fact we need is given by the followingattem which says that the general
solution is a linear combination of twimearly independensolutionsy,(x) andy,(x).

This means that neithg(x) nory,(x) is a constant multiple of the other.

Theorem 2If y,(x) andy,(x) are linearly independent solutions of Equation 2,
andP(x) # 0, then the general solution is givenyy C, y, + C, y,, whereC, andC, are
arbitrary constants.

Note 1 Two functionsf(x) andf,(x) are linearly independent on the

interval[a, b] if and only ifW( f, f,) # 0 for anyxO[a,b|, where the determinant

fl f2
W( 1, f,)=|
B,
is called theronskian of the functiong(x) and f,(x) .
In general, it is not easy to discover particulalugsons to a second-order linear
equation. But it is always possible to do so if theoefficient

functionsP(x), Q( X, R ¥ areconstant functionsthat is, if the differential equation
has the form

+ py + qy=0 (3)
wherep, g are constants.
After replacingy = €, we get the equation

k?+ pk+ g=0 (4)
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Equation 4 is called thauxiliary equation (or characteristic equatio of the
differential equation (3).
The general solution of the initial equation takesform:

1.y=Ce™+ C & if k# k; k kO |
2.y=e"(G+ Gy, if k=K
3. y=€"(GceosBx+ CsinB x), if K,=a+ B.
Definition A differential equation is called Bnear homogeneous differential
equations ordem, if it can be represented as follows:
yP+a Yy +a Y0+ + gyt g =0 (5)
The general solution to the equation (5) is a fiomct

y= C1y1+ Cz Yot t q‘. ¥
..... y, are linearly independesblutions of equation (5).

Particular linearly independersiolutions of equation (5) can be founded in the
formy = €. To determind, the following characteristic equation must barfed

K" +a, K™+ 3 K+ + gkt 3=0.

1. Each real rook of the characteristic equation corresponds to [angicular
solution of (5) of the forny = €*.

2.Each real rook of orderm corresponds ten linearly independent partial
solutions of (5):y, =€, y, = x&,---, y= X €&.

3.1f axip is a pair of complex roots of a characteristicaoun of ordei, then
it corresponds t@am linearly independent solutions of (5):
e™cosBx, € sinB x; x&* coB x, X& sif x;..x" € cosBx,x" & sinB x.

Example 1Solve the equations
y' -5y +6y=0; y'+8y +16y= 0; y'-6Yy +13y= 0.

Solution For each case we compile a characteristic equatierind its roots, we

extract the appropriate linearly independent sohgiof a differential equation and
their general solution:

a) k2_5k+6:0:>k1:2’ k2:3 — y]_:ezx, y2: e?X :>y:C1e2x+ géx,

b) k? +8k+16=0=k =-4, k,=-4 =y, =€*, y,= x€¥" =

=y=e"(G+ G ¥;

c) k®-6k+13=0=k ,=3+2i=>a=3,= 2=

=y, = €7cos2x, y, = € sin2x> y=€"(Gcos2x+ G sin2y.

Example 2Solve the initial-value problem

y'-5y +6y=0; y(0)=1, y(0F C

Solution Example 1 has determined that the general solwiae differential

equation isy = C &* + C, €.
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Differentiating this solution, we get = 2C &* + 3C, &*.

To satisfy the initial conditions we require that
y(0)=C,+C,=1 (@)
y'(0)=2C, +3C,=0 (b)

From (b), we have, = —%Cl and so (a) gives

2 1 : e 22
C1_§C1=1,§C1=1,C1:3, Cz—_gcl—_g[:g—_z.

Thus the required solution of the initial-value lpieom isy = 3¢* — 2¢€”.
Example 3Solve the equations

[\ U —
a) y"-3y'-10y + 24y= ¢ b) yV +3y' -4y=0; ©) yr 2y +y=0

Solution For each case we compile characteristic equatianfimd its roots,
extract the appropriate linearly independent sohgiof differential equations and
their general solution:

a) k®-3k*-10k+ 24= 0,k = 2,k=—3 k= 4;,y= C&+ C&+ C%

b)k*+3k*-4=0, K*-1)K+4)=0, k=-1k=1k=-— 24 k= 2
y=Ce*+ C €+ Gcos2x Gsin2;

c) k*+2k*+1=0, (K*+1¥=0, k,=+i, k,=+i;y,= cox = six
Y, = XCOSX, Y, = xsinx; y= (G+ G XYcosx (G+ ¢ Xsin.

Exercise Set 3.4
In exercises 1 to 12 solve the differential equatio

1.y+y-2y=0 2.y"-9y=0 3.y'-2y+y=0
4. y"-10y + 25y=C 5. y'+6y +13y=0 6.y"+36y=0
7.y"+2y -8y=0 8.y +3y=0 9.y"-6y+34y=0
10. yV +4y' =0 11 Y —4y"+4y'=0 12 y" +8y =0

In exercises 13 to 18 find the solution of the efidintial equation that satisfies the
given initial condition.

13. y"-4y +3y=0,y(0)= 6,y (OF 1C 14. y"+4y=0,y(0)= 0,y (0)=
15. y"+4y +29y=10,y(0)= 0,y (OF 1 16. y"+3y =0,y(0)= 0,y (0)=
17. y"-3y"+3y-y=0, 18. y"+y' -5y +3y=0,
y(0)=1, y(0)= 2,y (0)= ¢ y(0)=0, Yy (0)=1,y (0)=- 2
Individual Tasks 3.4
1-6. Solve the differential equation.

r.n NN

I.
1. y-y =0 1. y'-4y =0
2. y'-4y +13y=0 2. y"+16y=0
3. y"+8y +16y=10 3. y"-10y + 25y=C
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4. y' -2y -15y=0 4. y'-12y +11ly=C
5. yV +4y =0 5. yV +12y"+ 36y = C
6. y¥ -6y +9y=0 6. yW+27y =0

3.5 Nonhomogeneous Linear Equations

Definition A differential equation is called Bnear homogeneous differential
equations ordeh with constant coefficientsif it can be represented as follows:

A Y N A - D Al D (1)
In this section we learn how to solve second-omenhomogeneous linear
differential equations with constant coefficieritst is, the equations of the form
y'+ py + ay= (3 (2)
wherep, g are constants anfi(x) is a continuous function. The related homogeneous
equation
y'+ py + qy=0 (3)
is called thecomplementary equatioand plays an important role in the solution of
the original nonhomogeneous equation (2).
Theorem 1The general solution of the nonhomogeneous diffetezguation (1) can
be written as
y=y+y* (4)
wherey* is a particular solution of Equation 2 apds a general solution of the

complementary Equation 3.
Therefore Theorem 1 says that we know the geneddditien of the
nonhomogeneous equation as soon as we know aypartgolutiony*. There are

two methods for finding a particular solutiofhe method of undetermined
coefficientsis straightforward but works only for a restrictgdss of functiond (x) .

The method of variation of parametezan be used for every functidr{x) but is
usually more difficult to apply in practice.

The Method of Undetermined Coefficients

1.1f f(x) =P (X &, whereP,(x) is a polynomial of degreg then try
y* =X Q3 [E”,

whereQ, (x) is annth-degree polynomial (whose coefficients are deteech by
substituting in the differential equation).

2.1f f(x)=€*(R(Ycosbx+ Q(Rsinbk, whereP(x) is annth-degree
polynomial (Q,(x) is anmth-degree polynomial), then try

y* =X &*( {( ¥cos bx T( ¥sin bp,

wheres, (%, T, (® and areN th-degree polynomialsN = max{n,n}).

Modification: r number is equal to the multiplicity of the numbeth respect to
the roots of the characteristic equation.
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Example 1Solve the equatiog” + 3y — 4y=-4% - 6x+ 1C.
Solution The auxiliary equation ofy” +3y - 4y= 0 isk®+3k—-4=0 with the

roots
_ —-3+4/25
k1,2 - 2

So the solution of the complementary equatiop+sC e* + C €.
Sincef(x) =-4x* - 6x+19 is a polynomial of degree 2, we seek a particular

= k=4, k,=1.

solution of the form of”= Ax2 + Bx+ C. Then(yD)' =2Ax+ B and(yD)" =2A so0,

substituting into the given differential equatiove have
2A+3(2Ax+ B)- 4 AR+ By J=-4%- 6t 1,
—4AX +(6A- 4B) x+(2A+ 3B- 4Q=-4%- 63 1.

Polynomials are equal when their coefficients apgaé Thus

-4A=-4 A=1
6A-4B=-6 = <B=3 .
2A+3B-4C=19 C=-2

A particular solution is thereforng’= AX + Bx+ C= X+3 x 2.

The general solution ig= y"+y=C €%+ G &+ X+3 x 2.

Example 2Solve the equatioly” - y -2 y= 4 x¢€.

Solution The auxiliary equation of” -y -2y=0 isk®*-k-2=0 with the
rootsk, =-1, k,=2. So the solution of the complementary equation
isy=Ce*+ C é~.

For a particular solution we try* =( Ax+ B €.

Then(y*)'= Ae+( Ax+ B é=( Ax A B and(y*")"=(Ax+2 A+ B €& so,
substituting into the given differential equatiove have

2A€ + (Ax+ Bé- Aée-( Ax Be2( Ax Be4d 3,
A-2Ax-2B= 4x.

Polynomials are equal when their coefficients apea¢ Thus
-2A=4, A-2B=0; A=-2,B=-1

A particular solution is thereforg’= —(2x + 1)€.

The general solution ig=C e* + C,é*— (2 % 1) &.

Example 3Solve the equatiog” + y = xsin x.

Solution The auxiliary equation of" + y=0 is k® +1= 0 with the roots
k=+xi=0x10 (@=0,8=1).

So the solution of the complementary equatiop #sC, cosx+ C, sinx.

For a particular solution we try”’ = x(( Ax+ Bcos x+ (Cx- D)sin .

We find derivativegy*)', (y*)" and substitute them in the assigned equation:
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y"=(AX + BYcos x+ (CX+ DXsin ;
(yD)' =(2Ax+ B)cosx— (AX+ BXsinx( 2Cx Dsinx (Cx D3jcos;
(yD)"=2ACOSX— 4 2Ax+ B sinx- (Ax+ Bx)cosx 2Csinx (2 x P cos

—(Cx* + DX)sin x;
2Acosx— 4 2Ax+ B) sinx+ X sing @ Tx D coss X sir.
These expressions are equal when their coefficibatsresinx,cosx, xsin x,
xcosx are equal

(2A+2D=0 (A=-1/4
4C =0 B=0
—2B+2C=0 |C=0
—4A=1 D=1/4

2
Therefore the particular solution ys = —chosx+§ sinx.

2
o . X X .
The general solution ig = C cosx+ C, sinx— 7 cos><+71 Sir.

The Method of Variation of Parameters
Suppose we have already solved the homogeneous
equationy” + a y + a, y=0and written the solution as=Cy(X+ C y( 3},

whereC_,C,-const y( ¥, y( x are linearly independent solutions. We look for a
particular solution of the nonhomogeneous equatfdhe form
y = C(¥) Dy (%) + GOy ¥ (5)
(This method is calledvariation of parameterdecause we have varied the
parameterg ,C, to make them functions.)

FunctionsC,(x), C,(x are determined from the system of equations:
CLOI%A+ G () W ¥=0,
COINM+G(3 p(x= (x

Example 4Solve the equatiog” + 4y =

sin 2x
Solution The auxiliary equation of"+4y=0 isk®*+4=0 with the
rootsk = +2i.
So the solution of the complementary equatiop4sC, cos 2x+ C, sin 2x.
For a particular solution we try
y"=C,/(Xcos2x+ C, (x)sin 2x;
y,(X) =cos2x, y;(X)=-2sin2x,
Y,(X) =sin2x, Vy,(X) =2cos .
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FunctionsC,(x), C,(X are determined from the system of equations:
C,(X¥) [tos2x+ C, (x)Isin 2= 0,

—2C. (X)[sin 2x+ x)Jcos =
19 2G, (X —

We solve this system according to Cramars’ Rules.

COS X sin X _
A= _ =2cos X+ 2siA =
-2sin2X 2cos

Then
1 0 sin 2
Ci(x):a 1
sin 2x
COS X 0
C'(x)—1 1 -}ct92x
7 21-2sinx — 2
sin 2x
Integrating last two equalities, we have:

1
C/(X)=—=
(%) 2)(,

2C0S X )

C,(%) :%m |sin 2x|
The general solution is
y=y+y =Gcos2x+ G sin2x—% xcosZ)erzl1 sinX In|sins.

Exercise Set 3.5
In exercises 1 to 12 solve the differential equatio

1.y -3y +2y=xe* 2. y' -3y +2y=(2x+3)& 3.y -3y +2y= &
4.y"-10y =10¢ + 18x 5. y' -8y +16y=€*(1- ¥ 6. y"-10y = (3x— 4)&”
7.y +9y=3sinx 8. Y +9y=2sin3- 4cos¥ 9.y +16y= xsin4x
10. yV - y=3x¢& 11 YV —y=sinx 12. v/ —y" =2xé

In exercises 13 to 16 find the solution of the eliéintial equation that satisfies the

given initial condition.

13. y"+y=2cosx, 14. y"+4y=4(cos X+ sinX)
y(0)=1, y(0)=0 y(m) =2m, y ()= 21

15. y"+ y=4sinx- 6cosx 16. y"+9y=2cos4x— 3sin&
y(0)=1,y (0)= 1€ y(0)=0,y (0)=12

In exercises 17 to 22 solve the differential ecurati
2X

17.y' -4y +5y=-5 18. y"+4y +4y=€?*Inx 19. y'+y+ctgf x=0

COSX
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1
sin’ x

20.y"+y = thE'COl? 21. y'-y = X cos & 22. y'+4y=

Individual Tasks 3.5
1-6. Solve the differential equation.

y"'+8y =8Xx y'-5y = x+5
y'+4y +3y=9e¥ W—3y+2y=é%)ﬂ+%
y" +y=4sinx- 6cosx y' +9y=2cos4x— 3sin&
Y +Y =2y = R+ X y"+y = 6x
W-ZY+y=%- Y+ y=

sinx

3.6 Systems of differential equations

Definition A system of differential equations is callecharmal system of two
differential first order equationsif it can be represented as follows:

dy_

f(x,Y, 2,
dx
dz (1)
X a(x VY, 2.
X

The Method of Exception
The solution of the normal system of two differahtfirst order equations
permitted relative to derivatives of two unknown ndtionsy(x) andz(x)

(or x(t), y(t)), it is reduced to the solution of one differehBguation of the second

order relative to one of the functions. Let us exanthe given method with the help
of the following example.

Example 1Find the general solution of the system of theedéhtial equations
X =X-Y,
{y =-4x+ Y.

Solution We differentiate the first equation of the systes x - y. Let us
replacey in the last equation with its expression from fseond equation of the
systemx” = X - (-4x+y), x" =X +4x-y. Let us replacey in the last equation
with its expression from the second equation of shstemx” = X + 4x—( x- %),
X'=2X -=3x=0.

The auxiliary equation of'-2x-3x=0 Iisk®*-2k-3=0 with the
rootsk, = -1, k, = 3.

So the solution of the complementary equation(iy=Ce" + G €.

Differentiating this equation with respect to vaitet, we will obtain:

X()=-Ce' +3G &
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Then we findy(t) from the equatiorny = x- X:
y()=Ce'+ Gé-(-Ge+3 C¥)=2 Ce-2 C%
— st t
Therefore{ X()=Ge'+ Gé Is the general solution of the system of

y(t)=2Ce'-2C €
differential equations.

Euler's method to solving uniform systems of diffeential equations with the
constant coefficients
Assume that the system of three equations withethmeknown functions is

X(t) =a,x+ a,yt+ a,7
assigned: y (1) = &, X+ a, y+ a,7
Z(t)=ay X+ a, Y+ 3,2
x(1) = a (&,
We will search for unknown functions in the fory(t) = S &,
z(t) = y .
Substituting these expressions into the systemcangerting it, we will obtain
the system of linear homogeneous algebraic equsatiath variablesy, 5,y :

(all_k)a"' 312:8"' 813}/20,
a,,a + (azz_ k):B"' a2y=0, (2)
8,0 + 8,0 + (a3~ Ky =0.
System (2) has non-trivial solutions, if its deteramt is equal to zero. We will
obtain a cubic equation for determining the nunkber

all_k a, A3
A= &, azz_k A3 =0 (3)

A1 A3, A3~
Equation (3) is called theharacteristic equation of a reference systeme
solve it, we find valuek, for each getting value we finda, 3,y from system (2),
write the linearly independent solutions for eacknown function and compose the
general solution of the system.
Example 2Find the general solution of the system of difféisdrequations

X=X-y+ z
y =x+y-z
Z=2Xx-Y.

Solution The characteristic equation of this system takeddim
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1-k -1 1
1 1-k -1=0,
2 -1 -k
(1-k)*(-k)-1+2-2(1-k)- 1= k)y k=0
(k-D(k-2)(k+1)= 0,
k,=1,k, =2,k =-1
Let us find the appropriate valuesg, y for eachk from the system of equations
A-K)a-B+y=0,

a+(1-k)g-y=0, (4)
2a - -ky=0.
If k=1, then
~B+y=0, B=y., [a=1 |x=¢€,
a-y=0, =ia=y,=>:8=1= y,=¢€,
2a-pB-y=0, 0=0, |y=1, z=¢
If k=2, then

-a-[+y=0, 26 =0, a=1, )(2:e2t
a-p-y=0, =a=y, =:6=0, =:Vv,=0,

2a - B-2y=0, 0= 0, y=1 z,=¢€"
If k=-1, then
20 - +y=0, _ ~ _ a=1, X3=e_t,
a+2B-y=0, = 2a ,6’+y—0,:> F= m’: B=-3, =:y,=-3",
3a+ =0, y=—-r, .
20 - +y=0, y =-5, z,=-5¢e".
We extract the general solution of the system fiédintial equations
X()=Cx+ G+ G X()=Ge+Geé+ GE,
YO=Cy+GCy+ Gy =7 Y}= Ge3GE
2()=Gz+ Gz+ Gz z(t)=Cé+ G & -5GE.

Exercise Set 3.6
In exercises 1 to 14 find the general solution loé system of differential
equations.

. X =5x+ 3y, ) X =2X+ Y,
Y =-3x-y. |y =3x+4y.
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3 {)(:3x+3ﬁ 4 {)( 2X+ Y,
y = X+3y —6x— 3y.
c { =-7y+Z 6 { =y+27
=-2y-5z Z=4y+3z
, { =-5y+2z+ ¢; o {yi 3y, =2y, + %
Z=y-6z+ &, =3y, - 4Yy,.
X(t)=x-4y-z
{ {Y(t) X+,
Z(t)=3x+ z
11{x(t) 2X+ y+ &; {X’(t) X— y+8t
y'(t) = x+2y-3¢€". y'(t) =5x-.
X(t)=3x— y+ z X(t)=-3x+4y- 2z
13.{y(t):x+ y+ Z 14y (t)=x+z
Z()=4x—-y+4z Z()=6x-6y+52

Individual Tasks 3.6
1-3.Find the general solution of the system of diffidiiad equations.
Il.

L {)(’:2x+y 1 {)(:4x—8y;

|y =3x+4y. |y =-8x+4y.

) {x’(t)=3x—4y+ e?; ) {x’(t):4x+ y— 36t;
y'(t) = x—-2y-3€e?. T y(H) =-2x+ y-28.
X(t)=x-4y-z X(t)=x-2y- z

3. 1Y (M) =x+Yy 3. 1Y) =-x+y+ 2
Z(t)=3x+ z Z(H)=x-z

IV MULTIPLE INTEGRALS

In this chapter we extend the idea of a definiteegnal to double and triple
integrals of functions of two or three variablese Will introduce two new coordinate
systems in three-dimensional space — cylindricabrdinates and spherical
coordinates — that greatly simplify the computatad triple integrals over certain
commonly occurring solid regions.

4.1 Double Integrals over Rectangles
We consider a functioif of two variables defined on a closed rectangle

R={(x yOR?*|as xx b= ¥ §
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and we first suppose thé(x,y)=0. The graph of is a surface with the

equationz= f(x ).

Let Sbe the solid that lies abowand under the graph df, that is,

s={(x ¥ 90R’|0s = {(x ¥.( x YOR]

(See Figure 22). Our goal is to find the volumé&.of

The first step is to divide the rectandteinto subrectangles. We accomplish this by
dividing the interva[a,b] intom subinterval§x_,x] of the equal
width Ax=(b—a)/ r and dividing[c,d] inton subintervals y, ,,y, | of the equal
width Ay =(d - c)/ n. By drawing lines parallel to the coordinate aemugh the
endpoints of these subintervals, as in Figure 23fonm the subrectangles

R :{(x VIX s x Xy, ¥ 13}

each with the areAS=Ax\y.

z= flx,y)

v

| .
- | o
——= 1 i |
ol 3
le

e e
a ™ d O g T 0 1 F DL
Frile Silum
r£¥{:=—m R - L 1;2\ |Muii| \ } -
e
Figure 22 Figure 23

If we choose aample poini(x;, y') in eachR,, then we can approximate the part
of Sthat lies above eadR by a thin rectangular box (or “column”) with ba’eand
height f (>qu, ij) as shown in Figure 24.The volume of this box is leeght of the
box times the area of the base rectanblg;’, y;)AS.

™
=¥

R,
Figure 24
If we follow this procedure for all the rectanglesd add the volumes of the
corresponding boxes, we get an approximation tadta volume ofS.

Figure 25
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V:Zm:i fO, ¥)AS (1)

i=1 j=1
(See Figure 25). This double sum means that fom sabrectangle we evaluateat
the chosen point and multiply by the area of theresctangle, and then we add the
results.

The approximation given in (1) becomes bettefasndn become larger and so
we would expect that

V= lim () y)AS 2
TTUNAL =

We use the expression in Equation 2 to definevtilemeof the solidS that lies

under the graph of and above the rectangke

Limits of the type that appear in Equation 2 ocitaguently, not just in finding
volumes but in a variety of other situations aslwekn whenf is not a positive

function. So we make the following definition.
Definition Thedouble integralof f over the rectangIR is

”f(x y)ds= lim ZZ (£, A ¢

i=1 j=1
if this limit exists.
A function f is calledintegrableif the limit in Definition exists. The double

integral off exists provided that is “not too discontinuous.” In particular, ff is
bounded, and is continuous there, except on a finite humbesmboth curves,
thenf is integrable oveR.

The sample pointx;, y}]) can be chosen to be any point in the subrectaggle
but if we choose it to be the upper right-hand eoofR, [namely(x,y,), see Figure
23], then the expression for the double integraksosimpler:

”f(x y)ds= lim ZZ f x y)A ¢ (3)

i=1 j=1
The sumZZf(ij, ¥ )AS is called adouble Riemann sumnd is used as an
i=1 j=1
approximation to the value of the double integtblf happens to be positive

function, then the double Riemann sum represestsuim of volumes of columns, as
in Figure 25, and is an approximation to the volumder the graph of and above

the rectangl&.

Properties of Double Integrals

L [[@to s Moy [ fxy axayB[[ € x)y dx
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2. If D=D,0D,, whereD, andD, don’t overlap except perhaps on their
boundaries

(see Figure 26), theﬂ £ (x, y) dxdy= Z I j f( x y dxd.
R i=l 'R

¥

D

Figure 26
3.0 £(x y)= g(x y) forall (x, y) in R, then”f(x, y)dxdyz” d x ¥ dxd.

4. If we integrate the constant functidrfx, y) =1 over a regiorD, we get the
area ofD :

S, = IldS.

5. If f(x,y)=0, then the volum¥ of the solid, that lies above the rectangle
and below the surface= f(x y) is

Vzﬂf(x y) ds.

6. Midpoint rule for double integralslf function z= f(x y) is continuous in the
closed domairR, then there is a poim,(x,, y,) in this region such, that

j f(x y)dS= f( P)O¢

R
Is the average value of functia= f(x y) in the regiorR.

Iterated Integrals

The evaluation of double integrals from first pipies is even more difficult, but
in this section we see how to express a doublgnakasan iterated integralwhich
can then be evaluated by calculating two singlegrals.

Suppose that is a function of two variables that is integrabtethe rectangle

R={(x yOR?|as x< h = ¥ §.

We use the notation| f (x,y)dy to mean that is held fixed and (x,y) is

integrated with respect @ fromy=c toy=d. This procedure is callegartial
integration with respect t9. (Notice its similarity to partial differentiation
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Now.[ f (x, y)dy is a number that depends on the valug, & it defines a function

of x: S(x):j f(x y) d

If we now integrate the functia®( X with respect ta from x = a to x = b, we get

jS(&dX=j(i f(xy d% d (1)

The integral on the right side of Equation 1 idezhlniterated integral Usually
the brackets are omitted. Thus

ﬁ F(x, Y)dydﬁf[f f(x y d% d (2)

means that we first integrate with respecy tromy=¢ toy=d and then with
respect tox from x = a tox=b.
Similarly, the iterated integral

j“l f (X, y)dydx:jl(“tz f(xy d% d (3)

means that we first integrate with respeck tholding y fixed) fromx=a tox=Db

and then we integrate the resulting functiony ofvith respect tg fromy=—c

to y=d. Notice that in both Equations 2 and 3 we wiookn the inside out.
Fubini’s Theoremlf f is continuous on the rectangle

R={(x yOR?|as xx h < ¥ §,

”f(xy)ds jd;{ f(xydx:j df<(fx)y(

More generally, this is true if we assume thatls bounded oR, f s
discontinuous only on a finite number of smoothvesr and the iterated integrals
exist.

Example 1Evaluate the double inteng(x —3y?)dxdy, where

then

R
R={(x YOR?|0< x< 2, I< y< 3.
Solution 1Fubini’'s Theorem gives

”(X—3y2)dxdy=i d>J%( %3 9) d?f[ Xy 3\%: dXJ%( X7) (;b{x?z— 7 Tx:_lg

Solution 2 Applying Fubini’'s Theorem again once more, bus time integrating
with respect tx first, we have
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x=2

”fdxdy jdy_[(x—s;%)dxﬂ —3x§/} dyj(z 63 dy[ 2 y2%y=-1

If f IS continuous on a regidn such that
D={(x,y)|as x< b g(¥< y g( % (see figure 27), then
b 92(X)
j fxyds=[ o (xyd (@)
a g0

The integral on the right side of (4) is an itedatetegral that is similar to the
ones we considered in the preceding section, exteptin the inner integral we
regardx as being constant not only fi{x, y), but also in the limits of integration,
g,(x) andg,(x).

We also consider plane regions, which can be egpdeas

D={(xy)lcs y< d B(Ys< x b %},
whereh, (y) andh,(y) are continuous. Two such regions are illustratefigure 28.
Using the same methods that were used in estaiiigi), we can show that

d ha(y)
”f(xy)dS—J. dyJ. {xyd 5)
c hy(y)
¥ v v
’ y=g,x) ’ V=¢hlx) ’ y=g,lx)
D
D | D \ \
| | | | |
| | | | y=g(x) |
| y=g(x) | | y=glx) | \ \
| [ s | | \ \
0 a b X 0 a b X 0| 4 b X
Figure 27
»
: ¥
d—————
d————=
x=hyly) y=h.(y)
’ D o x=ly) D x=h,(y)
L' ______
0 X
0 X 2
Figure 28

Example 2Eva|uateﬂ(x+2y)dxdy, whereD is the region bounded by the

D
parabolasgy=2x* andy =1+ x*.
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Figure 29

Solution The parabolas intersect whex? = 1+ x?, that is,x* =1, sox=+1. We
note that the regiod, sketched in Figure 29, is a type | region but adype Il

region and we can writ® ={(x,y)|-1< x< 1, 2¢ < y< I+ %}.

Since the lower boundary ys= 2x* and the upper boundaryys=1+ x*, Equation 4
gives
12 1

1 1
j (x+2y)dxd)FI de(XI-Z ydycj[ xy A d:xJ'(—S e w2 %% D) d
-1 2x2 -1 -1

y=2
D

2 +20 + 2+
5 4 3 2

:_3x_5_x4 X xR _32
. 15

Example 3 Evaluateﬂxydxdy, whereD is the region bounded by the
D

line y=x-1 and the parabolg® = 2x+ 6.

Solution The regionD is shown in Figure 30. Again it is both of typarid type
[I, but the description ob as a type | region is more complicated becauséother
boundary consists of two parts. Therefore we prefexpresP as a type |l region:

D={(x,y)|—2£ y< 4,%)2—:% X< y+J}

5; 4)

P

x=y+1

(—1.—2) A

Figure 30
Then (6) gives
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LY g9y 2
d*’z_fz( L+a w278 )y e

4 1+y 4 2 x=1+y
j j xydxdy= I dyj xydxﬂx— }/
D 2 X=%y2—
3 4
:_|:—y—+y4+2l—4y2:| = 36.
3 -2

Exercise Set4.1

In Exercise 1 to 6, evaluate the iterated integral.
2. 1 8 5 2 X 5

1. | dx:(x2+2y)dy 2. .dyj (x+2y)dx 3. .dX.X—de-
0 0 5 y2-4 1 % y
4 2 2 1 1
~ - dy 2. X * * dey
4. dx . _ 6. |dx .
301 (x+y)* > J dxJ (2x= ) dy v olt y’

X

1
In Exercise 7 to 12, sketch the region of integratand change the order of
integration.

In

dxjxf(x y) dy

3x

1 Jx 1
7 J'de' f(xydy 8 J'dxj f(xydy O
0 X3 0 2x
2

1 1+W 2-X 1-y
10. .[dy I f(x y) d» 11. J.dXJ. f(x ydy 12.|dy j f(x y) dx
0 2-y o X, ~i-y?

4

In Exercise 13 to 16, evaluate the double inteﬁjtaﬂ X, y)dxdy, if f(x,y)=1
D

Ot 2 2 e

andD is given by:
13. {(xy)|¥=2y,5x 2y- 6= § 14 {(x, Y y=va- 2, y=/3x, % (}
15. {(x, V) y==% ¥ = xt 2} 16. {(x y) y=10gys X, y=1, y=-1, % (})
In Exercise 17 to 19, evaluate the double integral

17. "(x3+3y)dxd), whereD:{(x, y)| x+y=1y= X-1 » (}

[ ]
d Ue

18. .(x— y) dxdys whereD:{(x, y)| X+ y=2, y=0, x= )}

19. .x“y dxdy; whereD :{(x,y)| xy=1, x= 2, x= ¥.

[ ]
O e

Individual Tasks 4.1
1. Evaluate the iterated integral.
2. Sketch the region of integration and change therosflintegration.

78



3. Evaluate the double integral.
I

T 1+cosx
o

1. dxj y’sin x dy:

» W

5 3-y
2. 2y]|;f(x,y)dx+J.dy f xy d
-Jy-1 2

— y_l

3. || dxdys WhereD:{(x, y)| y=2-x, ¥ = 4x+ 4}

4.2 Double Integrals in Polar Coordinates
Suppose that we want to evaluate a double intﬁrh{x, y)dS, whereD is one
D

of the regions shown in Figure 31. In either cds®e description oD in terms of

rectangular coordinates is rather complicatedbus easily described using polar
coordinates.
¥ y

tgi=1 xi+yi=4

Figure 31

Recall from Figure 32 that the polar coordinatesagboint are related to the
rectangular coordinates by the equations

X=rcosd,
y=rsind.
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¥4 6=p

Pir.8) =Pix.y)
P R

0 X X 0 >

Figure 32 Figure 33

The regions in Figure 31 are special casesplar rectanglewhich is shown in
Figure 33.
Change to Polar Coordinates in a Double Integrédd f is continuous on a polar

rectangleD given byr, (8)<r <r,(6), a<6< 3, then
ro(6)
”f(x, y) dxdyzﬂ f( rcos , r sird )rdrd9=j v j f(rcoé t sifl ndr 1)(
D D r1(6)
The formula (1) says that we convert from rectaaugia polar coordinates in a double
integral by writingx = rcosgd andy = rsiné, using the appropriate limits of integration
for r and@, and replacinglS by drd& . Be careful not to forget the additional factasn

the right side of Formula 1.
Example 1Evaluate
”smn£—+ y jdxdy,
whereD: {(X, —+ 1; —+L-
I
Solution x:2rcosé’,y:r sid, 1=1¢2

2
Xz+y2:1:> r’cos@+r?siffd=1=r=;

x>y 1/, . B r’_ B

—+=1= —(r cos@+r S|rf¢9)— 1> —=1=r= 2, @< 7.

16 4 4 4

In polar coordinates it is given hyr <2, 0< @< 27. Therefore, by Formula
(1):
X2 2 2

”sinﬂ(7+ yzjdxdy:” sin(nDrz)DZrdrdé?:I d9_[ sir(ﬂ F)D2rdr:
D D 1

0

:stin(rzn)d(rzﬂ):—Zcozérzﬂ)‘lz:— 2(cos#—- cos 9- 241 %)
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Exercise Set 4.2

In Exercise 1 to 6, evaluate the given integratihgnging to polar coordinates.

1.

.IS ’X +y

o 2
[1—%]dxdy, whereD :{(x, y)| ¥ + Y < 717} .

X

"6dxdy, whereD:{(x,y)|x2+ V=4x X+ Y=6% ¥ X ¥ (}

(x* + y?) dxdy, whereD :{(x, y)| ¥ + y< 43} .

Xy —dxdy, whereD: {(x,y)llsx2+ V<4, y=x y=0, x 0, ¥ })

e dxdy, whereD :{(x, y)| X+ ¥y < Rz}.

(x2+y2)dxdy, WhereD:{(x,y)|x2+ Y =4x X+ Y=6%x ¥ % y;\/_3}<.

L
D

Individual Tasks 4.2

1-3. Evaluate the double integral.

l
1. dxj /1 X_yd
.0 1+ X2 +y

(12— x— y) dxdy WwhereD: {(xy)I ¥+ y<2g.

dxdy: whereD :{ (x, y)|1< ¥ + < 16,x< .

2. ”(6 2x — 3y)dxdy, WhereD : {(x y)| X+ ¥ < A}

D

3. ” yflxdy , whereD :{(x, y)|1 ¥ + y< 9,y §.

D

4.3 Applications of Double Integrals

Areas of Figures and Volumes of Bodies
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1. If we integrate the constant functiéx, y) =1 over a regiorD, we get the

area ofD :
Sozjjlds;_[j ds
D D

2. If the regionD is determined in the polar coordinates, we seethieaarea of
the regionD bounded byr <8< 3, r(8)<r <r,(8),is

g 10
S= Hrdrd@ J.dé?j rdr.
a r1(6)

3. If f(x,y)=0, then the volumv of the solid that lies above the regibnand
below the surface= f(x y) Iis

Vzﬂf(x y) dS.

D

Example 1Find the volume of the solid that lies under theapaloidz = ¥ + y?,
above they-plane, and inside the cylindgf + y* = 2x.

Solution The solid lies above the digk whose boundary circle has the
equationx® + y* = 2x or, after completing the square-1)* + y* =1 (See Figure 34
and 35). In polar coordinates we hayer y* = r? andx =rcosf, so the boundary
circle becomes® = 2r cosf, orr = 2cosd .

y
(x—1)2+y*=1
— for r=2cos 8)
SSEET D
=== 0 '1 " X
et SSE2222
A
3

Figure 34 Figure 35

Thus the diskD is given byD ={(r,8)|-m/2<@<m/2,0<r < 2co$} and we
have

2cos A4 5
ayj f rdr= H } d9=4DIcoé‘909=
3

2

|y

v=[[(x+y)ds=

D

NIy
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(1+ 2cosZ9+—2]( £ cosa)j dé =

'—w\:l

(1+ c;sﬂ?j 40 =20

1
e L

NS

Ny

3 ar

m

=2EE§H+ sin219+—1 sinzﬂ}
2 8

Example 2Use a double integral to find the area enclosedrgyloop of the four

leaved rose =cos .
Solution From the sketch of the curve in Figure 36, wetBaga loop is given by

the regionD ={(r,6’)|—gs Qsi—i,Osr < cos??}.

So the area is

L4T cos ¥ % cos ¥ % 17:
S= ﬂrdrdezjdej rdr=J[ rz} dg== j B = Zj(1+ cosé) ¥ =
; & : ’
== [6’+ S|n49} =
4 7 8
e
| /7
__.//
# .
\]\\
1\
\6‘:—%
Figure 36

Moments and Centers of Mass
Consider a lamina with a variable density. Supptse lamina occupies a
regionD of thexy-plane and itsdensity (in units of mass per unit area) at a

point(x,y) inD is given byp(x,y), wherep(x,y) is a continuous function

on D (see Figure 37).
The total mass of the lamina can be obtained as the limiting gabf the

approximations:

:klmmiip()f’ BF)ASFHp( X ¥ d.

i=l j=1
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¥ Sk
(i yip) - Ry

0
Figure 37 Figure 38
Suppose the lamina occupies a rediorand has a density functign(x, y). The

momentof the entire Iaminabout the x-axigs

= lim ZZy.,p(xD y)A S= ﬂ w( x ¥ de

i=1 j=1

Similarly, themoment about the y-axis

- ||m Zlejp(xj, y)AS= j w( x ¥y d.

i=1 j=1
We define the center of mag y) so thatrx= M, andmy M. :
;(:& V= MX
m’ m

The physical significance is that the lamina bebaas if its entire mass is
concentrated at its center of mass. Thus the larbadances horizontally when

supported at its center of mass (see Figure 38)
The moment of inertia(also calledthe second momgnof a particle of mass

about the x-axican be obtained as the limiting value of the apipnaxons

= Jim ZZ(y., P\ A S= jj Vo x ¥ de

Similarly, themoment of |nert|a about the y-axis

= lim ZZ(X., 2 p(x, Y)AS= jj Xp( X ¥ d

i=1 j=1
It is also of interest to consider tmeoment of |nert|a about the originalso

called thepolar moment of inertia
o= [[0¢ +y)p(x Yy ds

D
Exercise Set 4.3

In Exercise 1 to 8, use a double integral to fimel drea of the region
2. Y’ =4+ X, x+3y=0 3. X=V, X=42- Y

1. y=x°, y=3x
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4, y=2-x, y¥=4x+4 5. r=asin3d,a>0 6. r=acos® .,a> (
7.1

=4(1+ cod | 8. rcosf=1r=2
In Exercise 9 to 14, use polar coordinates to firedvolume of the given solid.
9. X*+y?’=R?}, ¥+ Z2= R 10. z= X+ Vy, z= x w10

11. x>+ y?*=4x, 2z= X+ ¥, =0 12. 6z= X+ V', X+ yV+ 72=27, >
13.z2=4-%,2x+ y=4,x=0,y= 0, = ( 14. 2(x*+y?)-7=0, ¥+ y¥- Z=-1
In Exercise 15 to 17, find the mass and the ceotanass of the lamina that
occupies the regiod and has a given density functigix, y) .
15. D:A(xy)lx+y=2,x=2,y=  PXY=1
16. D:{(x,y)|x2+ y2—2x=(} 0(x,¥)=3,5
17. D:{(x, y)| y= ¥, y=]} p(xy)=xXy

Individual Tasks 4.3

1. Use a double integral to find the area of the negio

2. Use polar coordinates to find the volume of theegigolid.

3. Find the mass and the center of mass of the lathataoccupies the regidn
and has a given density functignx, y).
I
1. x=y" -2y, x+ y=0.
z=X+Vy, y=X, y=1, =0.
D:{(x y)| y=cosx,x= 0x=7 /¥, wherep(x, y)=1.

=l w N

Ly=4x-x, y=2X-5x
X2+ yP=9, X+ Y- Z=-9.
D:{(x, y)| y=sinx, x= 0,%= 7 /4}, wherep(x, y) = 1.

w NP

4.4 Triple Integrals
Let f be defined on a rectangular box:

B={(xy20R’|a< x h& ¥ dE £ |
The first step is to dividB into sub-boxes. We do this by dividing the
interval[a, b] intol subinterval§x_,, x] of the equal widtix, dividing[c,d] intom
subintervalg y, ,, y; | of the widthay, and dividing[r,s] inton subinterval§z, ,, 7]
of the widthAz. The planes through the endpoints of these suladteparallel to the

coordinate planes divide the bBxnto I mn sub-boxes which are shown in Figure 39.
Each sub-box has the volum® = AxAyAz. Then we form thériple Riemann sum
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Ziif()ﬁi’ ijk’%?()AV (1)

izl j=1 k=1
Definition Thetriple integral of f over the regiomB is

” f(x,y,2 dV— I|m ZZZ f(xy 24\ (2)

izl j=1 k=1
if thls limit exists.
Note The triple integral always exists if is continuous.

Just as for double integrals, the practical metiloodcevaluating triple integrals is
to express them as iterated integrals.
Fubini’'s Theorem for triple integralsif fis continuous on the rectangular

box B, then

”jf(x y,2)dV= _HI f( x y 2 dxdyc (3)

rca

The iterated integral on the right side of Fubinilseorem means that first we
integrate with respect to (keepingy andz fixed), then we integrate with respect

to y. (keeping fixed), and flnally we mtegrate Wlth respectzto

/f o / ¥ \

[ ([

1 | \H /

Figure 39

There are five other possible orders in which a® iotegrate, all of which give the
same value. For instance, if we integrate witheespoy , thenz, and therx, we have

” f(x,y,2) dV= ”j f(x y 3 dydzc (4)

arec

Now we deflne thdriple integral over a general bounded regioniik three
dimensional space (a solid) by much the same ptweethat we used for double
integrals. We enclosg in a boxB. Then we define a functiof so that it agrees

with f onE, but is O for points that are outsiie By definition,

.mf(x Y, 2)dV= _m Rox y 3 d\

This integral eX|sts if is continuous and the boundary Bfis “reasonably
smooth”.The triple integral has essentially the same propsias the double integral

We restrict our attention to continuous functidnsind to certain simple types of
regions. If the solid regiok lies between the graphs of two continuous funstion
of x andy, that is,
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={(x%.21(x YO Du(xys = 4 x¥
whereD is the projection oE onto thexy-plane as shown in Figure 40, then

uz(x,y)

H £(x,y, 2) dV= H j f(xy3dz d (5)

D \ u(xy)

Z=usxlx,y)

Z=Hu,(x,y)

- )

0 :_ =S
=+
| |
|

_l
P p D

Figure 40
In particular, if the projectio of E onto thexy-plane is given by the following
plane region (as in Figure 41)
E={(xy,29las x hg(3s ¥ g( % U x) 2 ,§ xh

then Equation 5 becomes
b 92(X) ua(x y)

” f(xy,z)dv_jj j f( x y 3 dzdyc (6)

a (% w(xy
If, on the other handD is given by the following plane region (as in Fig41)
={(x vl v d (I x (¥ U X} 2 ,0.xp,

then Equation 5 becomes
d ha(y) ua(x y)

'U f(xy,2) d\/_j j j f( x y 2 dzdx (7)
¢ h(y wixy
e =[x, y)
I
— / Z = Usy(x,y) =0 _‘
l T T
A AE £ z=1y(x,y)
.i_ . E = I --h\""l
LT BT x=ay(y)
A Y . ix P
- 0——_l_|_ | | | | | bl =
a / | J|_ ___l_———-}—__________h _1'/ | D I | )
l“:/ | V |
y=g,(x)\; D e ' "
x NN Y =g,(x) Sy =hy(y)
Figure 41 Figure 42
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Example 1Eva|uate”jzdv, whereE is the solid tetrahedron bounded by the

four planesx=0, y=0, z=0 andx+ y+ z=1.

Solution When we set up a triple integral, it is wise towditavo diagrams: one of
the solid regiorE (see Figure 43) and one of its project®non thexy-plane (see
Figure 44). The lower boundary of the tetrahedsotthe plane=0 and the upper
boundary is the plane+y+z=1 (orz=1-x-vy), so we use/(xy)=0
andu,(x, y)=1- x- y in Formula 6. Notice that the planes y+ z=1 andz=0
intersect in the link+ y=1 (or y=1- x) in thexy-plane. So the projection & is
the triangular region shown in Figure 44, and weeha

E={(xy,2]|0s x<1,0< y« - x,& = F x V.

This description ofE as a type 1 region enables us to evaluate thgraitas

follows:
1l—x1—x y 1+x 22 1-x-y 1 11—.x
[[[zav=] H THH ariffa- x ¥ o
J 2 2J J
E 00 00 0 00
1 a-x-yrT 1 @=xyT 1
=—I ——y dx-—_[(l— X)* dx= | - =
2 6 6 4 24
0 -0 0 o
I VA
(0,0, 1)
£ z=1—x—y o L
N -_ y=1—x
' % - m 1,0) 2|
(1, :} 0) / \\-5__:: 0 5 o i >
Figure 43 Figure 44

If the solid regionE is given by the following form
E={(xv.21(y20 Du(y 3 = u y}k
where this timeD is the projection ofE onto theyz-plane (see Figure 45), when the
back surface is = u,(y, 2, the front surface ig=u,(y, 2, then we have

ux(y.2

mf(x,y,z)dv:” j f(xy 3 dxd (8)

D\ u(y.2
Finally, if a region is of the forrE={(x y,2|(x 20 Dy(x 3 ¥ U Xk,
whereD is the projection oE onto thexz-plane, theny = u (x 2 is the left surface,
andy = u,(x, 2 is the right surface (see Figure 46). For thigtgpa region we have
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[[[toxvav=[[| | txy3d ©)
E D Uy (% 2
h h
e L ¥ =u,(x.z)
0L D 17777
/’xha"m = D [
/,/ . H‘Hxﬂh’(/ = E ||
ol s i N e = / |
= g . -/ h
X ‘//:';-- 3 E » f’,;: ) 0 | e —
' > r=iu(y.2) B S SRR
{ 7 y=ulx,z) ____:
i S
X=1u,ly,z)
Figure 45 Figure 46

Triple Integrals in Cylindrical Coordinates
In the cylindrical coordinate systema pointP in three-dimensional space is

represented by the ordered tripted,z), wherer and@ are polar coordinates of the
projection ofP onto thexy-plane and: is the directed distance from thg-plane

to P (See Figure 47).

To convert from cylindrical to rectangular coordies we use the equations
x=rcosfd,y=rsid,z=z, r=2 0, ®< Zr 2] k

Cylindrical coordinates are useful in problems thablve symmetry about an axis,
and the z-axis is chosen to coincide with this axis of syrtmnd=or instance, the axis of

the circular cylinder with Cartesian equation+ y* = ¢® is the z-axis. In cylindrical
coordinates this cylinder has a very simple egonatioc (See Figure 48.) This is the
reason for the name “cylindrical” coordinates.

ZA )
e P(r,0,z) - J_ o

-
(1 (i, c. )
e /_’}:_“'_“_ E 4:'_‘__'?_'__’_0'
m (¢,0,00—T - | y
: g
(r, 8,0 « -
Figure 47 Figure 48

Suppose thaE is a region whose projectidi on thexy-plane is conveniently
described in polar coordinates (see Figure 49)pdnticular, suppose that is
continuous an@ ={(x, v, 2 |(x YO D y(x y< = u( x ¥, whereD is given in
polar coordinates bp ={(r,8) |a <6< B ,h (@)<r<h,(@)}.
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r=hyi8)_o

g
{ER
e
[ =
I_|
/ S
=« | B
X |

r=Hh,(8)

1S
I
|
I
iy

Figure 49 Figure 50
We also know how to evaluate double integrals ilapcoordinates. We obtain
ha(8)  zp(10)
ﬂjf(rcos@r sirf z ) drdGdz= jd;aj rdr j f ¢ coé r sifl Z Jz.
a  hE) oz

The last formula is theormula for triple integration in cylindrical coordates It
says that we convert a triple integral from rectdagto cylindrical coordinates by
writing x=rcosd, y=rsiné, leavingz as it is, using the appropriate limits of
integration forz, r, andé@, and replacinglV byrdrdé&dz.

Example 2Evaluate

2 N4-x2 2
I I I (x* + y?) dzdyd..
_Z_WW
Solution This iterated integral is a triple integral oviee tsolid region

:{(x,y,z)|—2£ < 27\ 4 %< N & Ry %+ §s & %

and the projection dE onto thexy-plane is the disk® + y*<4. The lower surface

of E is the cone=./X + Y and its upper surface is the plane2 (See Figure 50.)

This region has a much simpler description in djiical coordinates:
E={(r,0,2)|0s0< 27,0sr< 2r<zs< }.
Therefore, we have

277 N 4-x2 2

I I I (x* + y?) dzdydx=
o e

= Zn[lr“ —}rf’T =1—6n.
2 5 5

0

O'—.§
O'—om

j?rdzdré]:_[ e{ ¥2- ) de

r

Triple Integrals in Spherical Coordinates
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Another useful coordinate system in three dimerssisrthespherical coordinate
systemlt simplifies the evaluation of triple integraiser regions bounded by spheres
or cones.

The spherical coordinatesr,é,¢) of a pointP in space are shown in Figure 51,

wherep =|OP| is the distance from the origin By & is the same angle as in
cylindrical coordinates, ang is the angle between the positivaxis and the line
segmenOP.

The spherical coordinate system is especially lisefproblems where there is
symmetry about a point, and the origin is placetthigtpoint.

The relationship between rectangular and sphecmaitdinates can be seen from
Figure 52. Triangle®QP andOPP giver = psing,z = p cosp.

Butx=rcos# andy=rsind, so to convert from spherical to rectangular

coordinates, we use the equations
X= psingcod ,y=p sip sid ,z=p cag.

o
Pip. 8, d)

P'(x,y,0)

Figure 51 Figure 52

We have obtained the followingprmula for triple integration in spherical
coordinates

” f(xV,2) dxdydz-'m‘pzsinqal] fosinpcod p sip si@g cags p 6 4.
E E

Exercise Set 4.4
In Exercise 1 to 4, define the Ilimits of integratioof the triple

integral j j j f (.y,z)dxdyd, where:
Vv

1. Vix+y+z=1, x=0,y=0,= 0 2. V:X+y=4,2=5 =0
2 2 . -1 — —_ —
3_V;X_+L:é12:3_ 4. V:z=1- ¥ - ¥, =0.
4 1 9
In Exercise 5 to 8, calculate:
1 1 1 dZ 1 1-x 1-x-y
5. J.de.dyJ. 6. Idxj dyj xyzd.
0 0 0\/X+y+ Z+1 0 0 0
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2 Na-x 4-x2-y? ax—y?

7. J‘dXJ; dy J; \/4_de_zy2_zz 8. jdxzfdy Jg xd:

0 0 0
In Exercise 9 to 14, evaluate the triple integral.
9. x*y?zdxdydz V:{(x v, 2]0< x< 1,05 y< x & = X.

10. .xzyzdxdydzv:{(x, Y, )| z= %+ §, X+ §=1 z(}.

11. .(2x—y+4z)dV,V:{(x, v, 9| xt2y =2, %20, ¢ 0, 2z §.

12. .(2x—y)dV,V:{(x, V)| z=x w4, §=4x x4, 20, ¥ P

13. .(x—y+z)d\/,V:{(x,y,z)|3?:4x = 4 xz(}.

14. .xydxdysz:{(X, Y, 9| z= &+ §, X+ §=4, z(}.

In Exercise 15 to 17, write down the equations iweg surfaces in cylindrical
coordinates:

,2=2=-X - ¥ 5.2=4 X%+ Y z=\|R-X-¥

In Exercise 18 to 20, determine the type of sudagéven in cylindrical
coordinates:
18.z=5 19.9=m/3 20.p=2
o
21. Change the variables in the mtegr{ldxj dyj
XWJX+V
cylindrical coordinates.

In Exercise 22 to 24, write down the equations iwkeg surfaces in spherical
coordinates:

22.X°+y*+ 72=81 23.2= X+ Y 24.y = \/_ x> 0.

In Exercise 25 to 27, determine the type of sudagiven in spherical
coordinates:
»0=3rr/ 4 .9 =57/ 6 "p=3
Individual Tasks 4.4
1- 3 Evaluate the triple integral.

1. jdxj' dy_[ dz

— 1_
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2. jjj(x_2y+6z)d\/,V:{(x, Y, 2)|2x+ 3y =6, % 0, y 0, 2 }J

3. ﬁszyzdxdyd:,Vi{(X, V.9 2= %+ §, = §.

a

1. dxjdyj Xy zd:

0

2. jj(x+z)dv, (x,y, 2| x+2y 36, % 0, y 0, 2 }J

3. ”x ydxdyd:,V-{(X,y,Z)|f= X+ ¥, X+ y=9, E(}'

4.5 Applications of Triple Integrals

1. Let’s begin with a special case whdrgx, y, 2 =1 for all points inE. Then a

triple integral represents tlvelumeof E: H dVv =\;.

E
2. All the applications of double integrals in Sentid.3 can be immediately
extended to triple integrals. For example, if tleaglty function of a solid object that
occupies the regioR is p(x, Yy, 2), in units of mass per unit volume, at any given

point(x, y, 2), then itsmassis

m= [[[p(x v 2 av

E
and itsmomentsabout the three coordinate planes are

:HIZ,O(X y, 2 dV; MyZ:”J‘xp(x, y, 2 dV; MXZ:H yo(x Y, 2) dV.

Thecenter of masss located at the poirfk,y,z), where
M, __M M

X = y= Xz Z= xy.
m ' m’ m
If the density is constant, the center of masshef<golid is called theentroid

of E. Themoments of inertiaabout the three coordinate axes are

L= [[[@+yev g av, = [[[oc + 2000 v 2 v

L= [[[o? 39000 v 2 av.

E
Example 1A solid E lies within the cylindex® + y> =1, below the plane=4,
and above the paraboloid-1- ¥ - y* (See Figure 53.) The density at any point is
proportional to its distance from the axis of tiyérder. Find the mass & .
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| | R
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| o.0.1 . '*\ 9 = /
crsrT N L_,z. W
X O
Figure 53 Figure 54

Solution In cylindrical coordinates the cylinder ns=1 and the paraboloid
isz=1-r% so we can WriteE:{(r,H,z)|Os < 2r,0cr< 1, Er*<z< }1 Since
the density afx,y,2) is proportional to the distance from thexis, the density

function is
f(x,y,2)= Ky X+ ¥ = Kr,whereK is the proportionality constant.

Therefore, the mass & is
2l 4

m:.”p(x,yz)dv—”_[ K/ %+ @d\t”j( Ky rdzdrél= ” Rf 4- (1- 7)] dré=
=Ki?d9'[(3r2+r4)dr=2m<{r3+r—;}l=%.

0
Example 2Use spherical coordinates to find the volume of dbéd, that lies

above the cone=./ X + Y and below the sphesé + y> + < z (See Figure 54.)
Solution Notice that the sphere passes through the origid has the

center(o,o,lj. We write the equation of the sphere in sphericabrdinates

asp® = pcosp Of p =cosgp .
The equation of the cone can be written as thieging = cosp, or¢:77:.

Therefore the description of the solidin spherical coordinates is

:{(p,9,¢)|0£6?s 2n,o$¢s’7: & p< c0¢}.

Figure 55 shows ho¥ is swept out if we integrate first with respectao
theng, and ther@. The volume oE is
3 cosg

0

27 4 4 cosg

o~ Jfjov-[[ ] romaswa- a

o'—._b\:l
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¢ varies from 0 to /4 6 varies from 0 to 277.

while # is constant.

Figure 55

p varies from 0 to cos ¢
while ¢ and # are constant.

Exercise Set 4.5
In Exercise 1 to 4, use a triple integral to firek tvolume of the given solid

bounded by given surfaces.

1. V:{(x,y,z)|>€+ y=10x%x X+ y=13x z, % ¥, 20,3/})
2 V:{(x,y,z)|z:>%+ Vy, ¥ X ¥1 z(}

3. V:{(x,y,z)|>5+ 224,y:—1,y::}$
4

V{(xy.9)lz= %+ §, = § x4, 2
In Exercise 5 to 7, find the mass and the centenads of the solid with the

given density functiomp(x, y, z) = 1.

5. V:{(x,y, 2)| 28( X + ?), E 3%
6. V:{(x, v, 2| z9/ %+ §, E 3(}
7. V:{(x,y,z)|y23\/>%+ zZ, 3&9}

Individual Tasks 4.5
1.Use atriple integral to find the volume of theajivsolid.
2. Use a triple integral to find the volume of the egivsolid bounded by given

surfaces.
3. Find the mass and the center of mass of the goldth the given density

function p(x,y, 2 =1.
I
1.V:{(x,y,z)| X+ ¥+ 2<1, 2> %+ §}

2.z=X+Vy, y=X%X, y=1, =0.
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V:{(x,y,z)| 22 X+ Y, & f}

1. '{(xy, 2| 2z %+ ¥, E@.
2. xX*+y*=9, X+ y'- 7Z=-09.

3. {xyz|>e4/§+i >s1e}

4.6 Line Integrals

In this section we define an integral that is samtb a single integral except that
instead of integrating over an interyalb], we integrate over a curg. Such

integrals are calledine integrals, although “curve integrals” would be better
terminology.
We start with a plane cung@ given by the parametric equations

x=Xt),y= Y, as t< L (1)

If we divide the parameter interVfal,b|] inton subintervalgt_,,t.] of the equal
width and we lek = x(t) andy, =y(t), then the corresponding poirRgx, y)
divide C inton subarcs with the lengthiss ,As,,A s,...,A s (See Figure 56.)

We choose any poiR"(x", y") in thei -th subarc. (This corresponds to a paint
in[t_.t].) Now if f is any function of two variables whose domain iies the

curveC, we evaluatef at the pointP”(x", y”), multiply by the lengti\s of the

subarc, and form the SUE f(x", y)As, which is similar to a Riemann sum. Then
i=1

we take the limit of these sums and make the fofigvdefinition by analogy with a

single integral.

i P_, ;P:“‘J yi)
—p—a P,
o, A [
C ro7
P II !II P;u
|2 | .
e | |
v | ||
» p, | |
0 | | *
-
".Il T;k I.-'I
% !\ bt
F! =1 t i
Figure 56 Figure 57

Definition If f is defined on a smooth cur@ given by Equations 1, then the
line integral of f along Cis
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[ feyds= an (X, V)4 s 2)

if this limit exists.

b 2 2
We found that the length @f is L :J‘\/(%(j +($/j dt.

dt

A similar type of argument can be used to show ith&tis a continuous function,

then the limit in definition always exists and fblowing formula can be used to evaluate
the line integral:

[ toonas=[ 100, X))J[%j (2] o @

The value of the line integral does not depend han garameterization of the
curve, provided that the curve is traversed exawilye as increases from tob.

Just as for an ordinary single integral, we camrpret the line integral of a

positivefunction as an area. In fact, fi{x, y) = 0, j f (X, y)ds represents the area of
C

one side othe “fence” or “curtain” in Figure 57, whose base&€i and whose height
above the pointx, y) is f(x, ).

Example 1 Evaluat%(2+x2y)ds, whereC is the upper half of the unit
C

circle x? + y* =1.

Solution In order to use Formula 3, we first need parame@quation to
represenC. Recall that the unit circle can be parameteribgd means of the
equationx=cost ,y= sint and the upper half of the circle is described bg t
parameter intervadl <t < ;7 (See Figure 58.)

Therefore Formula 3 gives

I(2+x2y)ds=j(2+ co§tsint{/(%} +(%} dt=J (2 cdst siny) s+ cosdt=

:I(2+co§t sirt Mtz{ Z—Cogt} = 2+ 2

) 3 3
¥4
FHyi=1
(y=0)
/ \
I ! -
= 0 1 X
Figure 58
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Suppose now tha is apiecewise-smooth curyéhat is, C is a union of a finite
number of smooth curves,C,,C,,...,C, where, as illustrated in Figure 59, the initial
point ofC,, is the terminal point of. .

¥
- a— (1,2)
s : .

(1,1)

-

0 0.0) X

Figure 59 Figure 60

Then we define the integral d¢f alongC as the sum of the integrals bfalong
each of the smooth pieces®f

Lf(x, y)ds=jq f(x Y dsjcz txy dﬁ...+L Xy .

Example 2 Evaluate| 2xds, whereC consists of the arc, of the
c

parabolay = x* from (0,0) to (1,1) followed by the vertical line segmenj from (1,1)
to (1,2).

Solution The curveC is shown in Figure 60C, is the graph of a function af
so we can choose as the parameter and the equations Cfor
becomex = x, y= ¥,0< x< 1.

Therefore

o 22 e e e ] 55

X 0

Onc, we choose y as a parameter, so the equations C,of
arex=1,y=y,1< y< 2and

2 d 2 d 2 2
I 2xds=J.2El g dy:j 2dy= 2,
c ] dy dy 1
5/5-1

6
Any physical interpretation of a line integlfrll f (X, y)ds depends on the physical
C

+ 2.

J‘Zxdszj‘ 2xds+j 2 xds
c G o)

interpretation of the functiofi. Suppose thab(x, y) represents the linear density at
a point(x, y) of a thin wire shaped like a cur@ Then thanassm of C is
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m= [ p(x Y de
The center of masf the wire with a density functiopn(x, y) is located at the
point (X,y), where

_ 1 1
x=—_[xp(><, y) ds; y=—jyp(><, y) ds
mC mC

Two other line integrals are obtained by replagigg by eitherax = x - x_,
or Ay =y -y, in definition. They are called thée integrals of f along C with
respect to x and:y

[ fouyax im> 1%, YA x
(4)
[ foendy=im>" 106 oy

When we want to distinguish the original line irrmq‘ f (X, y)ds from those in
C

Equation 4, we call it thine integral with respect to arc length
The following formulas say that line integrals witspect tox andy can also be

evaluated by expressing everything in terms t:of
x=x(1),y= YD, dx= X(), dy= ¥ }-
REVES REIRON ST )

It frequently happens that line integrals with estptox andy occur together.
When this happens, it is customary to abbreviateiyng

[ POy [ @xyar| Rxya @y ©)
Example 3 Evaluate| y’dx+ xdy, where (@) C=C, is the line segment
C

from (=5,-3) t0 (0,2) and (b)C = C, is the arc of the parabole= 4 - y* from (-5,-3)
to (0,2) (See Figure 61.)

0 . X “
/i. = B

I e e & i
53 A J// =&
Figure 61 Figure 62
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Solution
(@) A parametric representation for the line segmen
Isx=5t-5,y=5t— 3, t< .. Thendx=5dt, dy=5di, and Formula 6 gives

_[ y2dx+ xdy= _[ (5t 32 (5dd+ (5t 5)(5dt) g (2%t - 25 4yt

3 2 !
2 _28°
3 2 .

(b) Since the parabola is given as a functiog ,0ft’s take as the parameter and
write C, asx=4-y?, - 3< y< 2. Thendx=-2ydy and by Formulas 6 we have

[ yaxe xay=[ j(2 y dw (4~ §) dF[ 2 % 3 4) o
= 40°.
6

(LYY,
= -L-L 44
S

In general, a given parameterization x(t), y= Y1), a< t< k, determines the
orientation of a curveC, with the positive direction corresponding to e@sing
values of thgparametet. (See Figure 62, where the initial poAtorresponds to the
parameter valug and the terminal poir® corresponds tb.)

If —C denotes the curve consisting of the same points st with the opposite
orientation (from initial poinB to terminal pointA in Figure 62), then we have

[ o= 10y o
[ feuyay=-] txya

But if we integrate with respect to the arc lengtie value of the line integral
does not change when we reverse the orientation of the curve

j_cf(x, y)ols:jC f(x y d.

We now suppose th& is a smooth space curve given by the parametric
equations

S
-

2

5

(7)

x=X(t),y=¥Y,z= £}, & € L
If f is a function of three variables that is contindloon some region
containingC, then we define thine integral of f alongC (with respect to the arc
length) in a manner similar to that for plane csrve

Lf(x, y, 2) ds= Li['.li (% § 20«

We evaluate it using a formula similar to Formula 3
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Jrowy z)ds:J. (X0, 1) U)J[dxj CEEK ®)
dt dt dt
Therefore, as W|th line integrals in the plane,evaluate the integrals of the form
[ Pocydoe @xyrdy Rxyyz ©)
by expressing everything, y, z, dx dy d2 in terms of the parameter
Example 4Eva|uateLysinzds, whereC is the circular helix given by the

equationsx = cost,y= sint z=t,& t< 2r (See Figure 63.)

k/—l C
}'0 Ox 0 T

(|

Figure 63 Figure 64
Solution Formula 8 gives

j ysmzd;j(smt)sm\/(g)t(j (%} +(£Zj dt-j sif t/ sih & cost dE
—\/_J‘ (1-cos2 jit= \/_{t——; smﬂ} =J z.

Exercise Set 4.6
In Exercise 1 to 4, evaluate the line integral, igheis the given curve.

1. 'x dl, if L is the line segment from(0;0) to B(d, 2).

L

dl
J (x+ y)

3. [J2yd, if L is given by{

, If L is the line segmemt= x+ 2 from A(2;4) to B(1,3).

x=a(t-sint), (a>0)
y = a(1- cost) '

4. |(x+vy) dl, if L is given byp? =a?cos’8.

L

In Exercise 5 to 12, find the mass of the cu@ravith the densityo = p(x; y):
5. C:y=2Jx0< x<1p=y
101



X+ Y =6xp=X%

1 x=3t, y=3¢,z= 2f from O(0;0;0) t0A(3;3;2), p=4

: x=cost, y= sint {0[ 0r7] p=y

1 x=€'cost, y= € sint, =z 8 , @[ Oto) p=

10. C:x=2cost,y= 2sift p=|xy

11. C:r=3(1+cod) o= 2/r

12. C:r*=4cos® p= 2

In Exercise 13 to 16, evaluate the line integrdlereL is the given curve.
13. [( -2xy) dx+ (¥ -2 %) d, if Lis y= ¢ from A(-1,) to B(L D).

L
14. [2xydx— % dy, if L is given byOAB: O(0,0), B(2,0), A(2,1).

o
L

© o N O
O 000

( D X=2cost
15. | xdy— yd», if L is given by _ from A(2,0) to B(0,2).
! y =2sir’t,
X=cost,
16. J-nydx+ Y dy Z d, ifL,, is given by {y=sint, from A(0,0)
Lag z=2t.

to B(L,0, 47).

Individual Tasks 4.6
1-3. Evaluate the line integral, whekeis the given curve.

I

1. % if L is the line segment from(2;1) to B(1,4).
o X_ y

L

2. |3+ y?dI, if L is given by{xz a(cost+ tsint )

y = a(sint— tsint).

3. .Xde+ Z)% dy- XyZG if Lis given byx:é, y= e", = %, 0< K1

L

1. d—l if L is the line segment from(-2;1) to B(1,—-3).
! (2x+y)
. L X=acos't,
2. (3x— 23 2y) dl, if L is given by{ .. (@>0).
y=asin’t,

3. j Xdy= ¥ dx it | js given by from A(2,0) to B(0,2).

{x=200§t
Doy

y=2sir't,
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4.7 Green’s Theorem

Green’s Theorem gives the relationship betweemaihtegral around a simple
closed curve€ and a double integral over the plane rediorbounded by (See

Figure 64.) We assume that consists of all points inside as well as all points on.)
VA VA

€

(a) Positive orientation (b) Negative orientation

Figure 65
In stating Green’s Theorem we use the conventiahttiepositive orientatiorof
a simple closed curvé refers to a singleounterclockwis¢raversal ofC. Thus ifC

Is given by the vector functiof(t), a<t<b, then the regio is always on the left
as the poinf (t) traverse£ (See Figure 65.)

Green’s TheoremLetC be a positively oriented, piecewise-smooth, simple
closed curve in the plane and [2tbe the region bounded K. If P andQ have
continuous partial derivatives on an open regiant tiontaindD , then

0Q 0JP
jp(xy)dx+qudy=”(§ jd. (1)
Then Green’s Theorem gives the following formulasthe area ob :
S:qs xdy= —(JS ydx= lcj) xdy yc (2)
C C 2 C

2

2
Example 1Find the area enclosed by the eIIistzremL% =1.
a

Solution The ellipse has parametric equaticnsacost,y= bsint,
whereO<t < 277. Using the third Formula 2, we have

2 2
:%j xdy- ydx:%j( &0s )( lcos f) dt (bsin t asint)d:a?bj dr e
C 0 0
Exercise Set 4.7

1. Does the integralj ydx+ xdy depend on a form of the curve C?

2.What is the integraggxzdx+ ydy y: X+ y=4equal to?

y
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In Exercise 3 to 4, find the area of the domBinbounded by the given curves
using the line integral:

3. D:y=xX,y¥=x8xy=1

4. D:x=2cog- cos® y= 2sit— sint

In Exercise 5 to 7, evaluate the line integralstifi@r given points:
5. [ (x+3y)dx+( y+3% dy ALY, 23

La

6. .(xyz—xa) dx+( yX — )?) dy &11), B23

[ 4
La

X g +—yd, 1,0), B 6;
Ly ey M AR

In Exercise 8 to 10, evaluate the line integralere. is the given curve.

8. (JSydx— xdy, if L is given by{
L

7.

X = acost,
y = bsint.

9. (j)xdy, if L is the triangle bounded by= x, x=2, y=0.

L
10.<JS(x2+y2)dx+(><2— y)d, ifL is  the  tiangle  with

L
verticesA(0,0), B(1,0),C(0,1).
Individual Tasks 4.7
1-2. Evaluate the line integral, whekeis the given curve.

I
1. CﬁydeJr( X+ ”2 dy, if L is triangle with

vertlcesA o) B(3 3) C(0,3)-
2. (ﬁ )F) dy, if L is positively oriented circle? + y? = 4.

I
1. <J->y2dx+( X+ 92 dy if L is triangle with verticeg\(2,0), B(2,2), C(0,2).

x=3cost .
y =2sint.

2. <J->(x2y— x) dx+( ¥ x2 )) dy if L is given by{
L
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