И. П. ПАВЛОВА

* Беларусь, г. Брест, БрГТУ

НАПРЯГАЮЩИЙ ДИСПЕРСНО-АРМИРОВАННЫЙ БЕТОН ДЛЯ УСТРОЙСТВА И РЕМОНТА ЕМКОСТНЫХ СООРУЖЕНИЙ

В процессе возведения конструктивных элементов ёмкостных сооружений встречаются характерные дефекты, требующие устранения и придания конструкции правильных геометрических форм. К характерным дефектам относятся:

- выступы на поверхности бетона, образующиеся из-за применения опалубки низкого качества, неправильной её установки и недостаточной её жесткости;
- наплывы из бетона или раствора, образующиеся при недостаточной герметичности опалубки;
- недостаточная толщина защитного слоя, образующаяся при неправильной установке или смещении опалубки;
- раковины на поверхности бетона, образующиеся в следствии некачественного приготовления бетонной смеси, скопления воды и воздуха вблизи опалубки, недостаточного уплотнения бетонной смеси в опалубке;
- большая щебенистость бетона, возникающая при расслоении бетонной смеси, неоправданно высокой жесткости бетонной смеси, вытекании цементного молока и т. п;
- полости в бетоне, образующиеся из-за зависания бетонной смеси на арматуре и опалубке, а также в местах устройства технологических швов, при преждевременном схватывании ранее уложенного бетона и недостаточной подготовке основания при укладке вышележащих слоев бетона;
- усадочные трещины, образующиеся при недостаточном влажностном уходе за свежеуложенным бетоном;
- трещины различного происхождения: конструктивные, технологические и организационно-технологические, возникающие в конструкциях в период строительства и появившиеся процессе эксплуатации.

В эксплуатируемых конструкциях емкостных сооружений повреждения разделяют по характеру влияния на несущую способность на три группы: I группа — повреждения, практически не снижающие прочность и долговечность конструкции (поверхностные раковины, пустоты; трещины, в том числе усадочные и учтенные расчетом, раскрытием не свыше 0,2 мм, а также те, у которых под воздействием временной нагрузки и температуры раскрытие увеличивается не более чем на 0,1 мм; сколы бетона без оголения арматуры и т. п.);

II группа – повреждения, снижающие долговечность конструкции (коррозионно-опасные трещины раскрытием более 0,2 мм и трещины раскрытием более 0,1 мм в зоне рабочей арматуры, предварительно напряженных пролетных

строений, в том числе и вдоль пучков под постоянной нагрузкой; трещины раскрытием более 0,3 мм под временной нагрузкой; пустоты раковины и сколы с оголением арматуры; поверхностная и глубинная коррозия бетона и т. п.); III группа – повреждения, снижающие несущую способность конструкции (трещины, не предусмотренные расчетом ни по прочности, ни по выносливости; большие раковины и пустоты в бетоне сжатой зоны, полные повреждения защитного слоя и т. п.). Повреждения І группы не требуют принятия срочных мер, их можно устранить нанесением покрытий при текущем содержании в профилактических целях. Основное назначение покрытий при повреждениях I группы – остановить развитие имеющихся мелких трещин, предотвратить образование новых, улучшить защитные свойства бетона и предохранить конструкции от атмосферной и химической коррозии. При повреждениях ІІ группы ремонт обеспечивает повышение долговечности сооружения. Поэтому и применяемые материалы должны иметь достаточную долговечность. Обязательной заделке подлежат трещины в зоне расположения пучков преднапряженной арматуры, трещины вдоль арматуры. При повреждениях III группы восстанавливают несущую способность конструкции по конкретному признаку. Применяемые материалы и технология должны обеспечивать прочностные характеристики и долговечность конструкции.

При выполнении ремонтных работ необходимо правильно выбрать материал. В ходе выбора ремонтного материала необходимо учитывать:

- совместимость ремонтного материала и материала ремонтируемой конструкции;
- степень ответственности элементов конструкции, включая зависимость несущей способности сооружения от их целостности;
 - глубину разрушений;
- условия эксплуатации (температурный режим, влажность и агрессивность среды, динамические воздействия);
 - эстетические требования;
 - положение и доступность конструкции;
 - объем подлежащих выполнению работ.

При проведении ремонта следует помнить, что совместимость материалов — это соотношение между физическими, химическими и электрохимическими характеристиками и размерами составляющих ремонтной и существующей систем. Это соотношение является обязательным, если ремонтная система должна выдерживать все усилия и напряжения, вызываемые эксплуатационными нагрузками и при этом не терять своих свойств в течение заданного промежутка времени. Именно несовместимость материалов является главной причиной плохого ремонта. Совместимость подразумевает характер поведения материала как в затвердевшем, так и в твердеющем состоянии.

При выборе материалов следует учитывать требования к ремонтным бетонам:

- специальные бетоны и фибробетоны для ремонта несущих конструкций должны выполняться из рационально-подобранных смесей, согласованным с головными организациями по конкретным видам объектов;
- специальные бетоны, которые используются при ремонте емкостных сооружений, должны отвечать следующим требованиям:
- прочность на сжатие: через 24 часа не ниже класса C12/15; через 28 суток не ниже класса C35/45;
- прочность сцепления со «старым» бетоном через 28 суток не ниже 2,5 МПа;
- прочность сцепления с гладкой арматурой через 28 суток не ниже 3 МПа;
 - усадка в пластичном и затвердевшем состоянии не допускается;
 - морозостойкость не ниже F 300;
 - водонепроницаемость не ниже W 10;
 - коэффициент сульфатостойкости не ниже 0,8;
- удобоукладываемость для бетонов, определяемая по осадке конуса, не меньше 200 мм.

Автором в рамках ХД была выполнена работа по техническому сопровождению и подбору состава номинального бетона на объекте «Строительство и обслуживание сельскохозяйственного комплекса по выращиванию грибниц с котельными на газовом топливе южнее д. Борисово Киселевецкого сельсовета Кобринского района». Состав бетона подбирался в соответствии со следующей спецификации по СТБ EN 206 [1]:

— C35/45-XA3-Cl0.2-D22,4-SF1 (или по СТБ 1035 [2]: БСГТ РК5 C35/45 St-3 F200 W12).

Минимальное значение характеристической прочности на сжатие образцов кубов $f_{ck,cube}$ в соответствии с требованиями СТБ EN 206 [1] должно быть не менее 45 МПа.

В связи с особенностями конструктивного решения и спецификой выполнения работ для бетонирования следует применять самоуплотняющиеся бетонные смеси.

Учитывая необходимость обеспечения прочности, низкой проницаемости, усадочной и термической трещиностойкости конструкций, бетон изготавливается с учетом влияния экзотермии и исходя из условий компенсации усадки.

Требования к бетонной смеси

Бетонная смесь, поступившая на стройплощадку, должна соответствовать C35/45-XA3-Cl0.2-D22,4-SF1 и обладать следующими характеристиками:

- класс по расплыву конуса SF1 (испытание по расплыву конуса) в момент выгрузки в бункер бетононасоса в диапазоне 550 мм и более;
 - максимальное водоцементное отношение 0,45;
 - содержание портландцемента не менее 360 кг/м³;
 - средняя плотность $2400 \pm 40 \text{ кг/м}^3$.

Требования к материалам

Компоненты бетонной смеси должны соответствовать следующим условиям:

- Цемент для бетона.
- Общестроительные с низкой теплотой гидратации и содержанием C₃A не более 5 % массы клинкера (индекс LH в спецификации по СТБ EN 197-1).
- CEM II-A/Ш по СТБ EN 197-1 с содержанием C_3A не более 5 % массы клинкера.

Для минимизации риска трещинообразования из-за повышенной экзотермии следует исключить применение цементов классов CEM I с индексом R СТБ EN 197-1.

- Расширяющаяся добавка сульфоалюминатного типа для компенсации усадочных явлений РСАМ СТБ 2092-2010, изг. ЗАО «Парад».
- Мелкий заполнитель 0/4 по СТБ EN 12620 или песок кварцевый с Мкр не менее 2,1 I класса, соответствующий ГОСТ 8736.
- Крупный заполнитель фракции 4/22,4 СТБ EN 12620 или щебень гранитный фракции 5...20 мм с содержанием фракции 5...10 мм в количестве 20–30 %, марки по прочности не менее 1200, соответствующий ГОСТ 8267.
 - Фибра стальная.
- Пластифицирующая добавка I группы «Реламикс ПК» ТУ ВҮ 190679156.002-2013, изг. ООО «ПолипластХим».
 - Вода для затворения бетонной смеси, соответствующая СТБ 1114. Состав бетонной смеси

Таолица 1— Поминальный состав остона								
Условное обозна-		Расход материалов на 1 м ³ бетонной смеси						
чение	Цемент,	Песок,	Шоболи ке	РСАМ, кг	Фибра, кг	Вода, л	Реламикс	
бетонной смеси	КГ	ΚΓ	щебень, кг				ПК, кг	
C35/45-XA3 - C10.2-D22,4-SF1 (БСГТ РК5 С ³⁵ / ₄₅ St-3 F200 W12 Sp0,6 СТБ 2101, СТБ 1035-96)	450	860	910	40	45	195	5,4	

Таблица 1 – Номинальный состав бетона

В соответствии с требованиями СТБ EN 206 были определены основные параметры качества для самоуплотняющихся смесей.

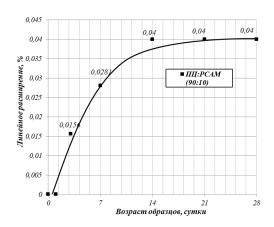
- 1. Класс консистенции по расплыву конуса в соответствии с СТБ EN 206 (таблица 6 [1]) SF1 (расплыв конуса, определяемый в соответствии с EN 12350-8 590 мм).
- 2. Класс по вязкости в соответствии с СТБ EN 206 (таблица 7 [1]) VS2 (t_{500} , определяемое в соответствии с EN 12350-8 2,4 с).
- 3. Класс по вязкости в соответствии с СТБ EN 206 (таблица 8 [1]) VF1 (t_v , определяемое в соответствии с EN 12350-9 на V-образной воронке 3,3 с, после 5-минутного выдерживания 7,8 с).
- 4. Класс по растекаемости в стесненных условиях в соответствии с СТБ EN 206 (таблица 10 [1]) PJ2 (растекаемость, определяемая с применением блокировочного кольца в соответствии с СТБ EN 12350-12 PJ = 8 мм, расплыв конуса $SF_J = 56$ см, интервал времени растекания $t_{500J} = 4,1$ с).

- 5. Класс по сопротивлению расслаиванию в соответствии с СТБ EN 206 (таблица 11 [1]) SR2 (расслаиваемость, определяемая в соответствии с EN 12350-11 на сите с ячейкой 5 мм SR = 1,52 %, водоотделения на поверхности бетонной смеси не зафиксировано).
- 6. Средняя плотность $\rho = 2445 \text{кг/m}^3$ (определяемая в соответствии с EN 12350-6).
 - 7. Потери подвижности во времени представлены в таблица 2.

Таблица 2 – Изменение удобоукладываемости бетонной смеси во времени

	Время т, мин						
	0	30	60	90	120		
Расплыв конуса, мм	590	590	570	550	490		

В возрасте 7, 14 и 28 сут. соответственно были проведены контрольные испытания образцов-кубов бетона на сжатие (см. таблицу 3).


Таблица 3 – Результаты испытаний бетона

	D	Прочность образца,	Прочность при сжатии, МПа				
№ п/п	Разрушающая нагрузка, кН	приведенная к базовому размеру, МПа	Среднее значение (фактическое)	Требуемая прочность бетона согласно окументу о качестве			
1	502,7	44,9					
	589,1 513,5	56,0	52,4				
		48,8					
2	668,3	63,5		£ 57.0			
	701,9	66,7	65,1				
	659,2	62,6		$f_{c.rp} = 57.8$			
3	697,5	66,3					
	697,2	66,2	(0.0				
	764,8	72,7	68,8				
	708,1	67,3					

В лаборатории для анализа эффективности применения расширяющейся добавки в бетоне были выполнены экспериментальные исследования расширения и самонапряжения образцов вяжущего и бетона (см. таблицу 4, рисунок 1).

Таблица 4 – Результаты испытаний контрольных образцов цемента и бетона, модифицированного расширяющейся добавкой, на линейное расширение и самонапряжение

No	<u>No</u> D	Собственные де-	Возраст образцов, сут							
$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Вид образца	формации	1	2	3	7	14	21	28		
1	Ц+РСАМ	Линейное расши- рение, %	_	0,016	0,022	0,028	0,04	Стабилиз.		
(90:10, %)	(90:10, %)	Самонапряжение, МПа	0,73	0,91	0,91	0,91	1,05			
2 E	Бетон	Линейное расши- рение, %	_							
		Самонапряжение, МПа	_	0,3	0,5	0,5	0,5	0,6	0,6	

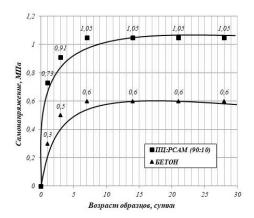


Рисунок 1 — Собственные деформации исследуемых составов вяжущего и бетона

Заключение

Анализ выполненных экспериментальных и теоретических исследований позволяет сделать следующие выводы:

- 1. Фибробетон является перспективным строительным материалом с высокими эксплуатационно-техническими характеристиками, в особенности для ремонта сооружений, в том числе эксплуатируемых в средах разной степени агрессивности.
- 2. Как любой строительный материал, фибробетон не лишен недостатков, обусловленных и самой структурой, и технологией изготовления усадочные деформации, необходимость сокращения сроков схватывания и предотвращения «оплывов».
- 3. Применение расширяющейся добавки сульфоалюминатного типа как компонента вяжущего для фибробетона позволит компенсировать негативные усадочные напряжения и создать в ряде случаев деформации расширения.
- 4. Введение параллельно с расширяющимися компонентами стальной фибры позволяет не только предотвратить нежелательные «оплывы», но и создать совместное с расширяющейся цементной системой 3D-армирование, что в итоге приводит к получению композита с высокими эксплуатационными показателями (включая прочность, непроницаемость и долговечность).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бетон. Требования, показатели, изготовление и соответствие: СТБ EN 206–2016. Минск : Стройтехнорм, 2016-67 с.
- 2. Смеси бетонные. Технические условия: СТБ 1035–96. Минск : Стройтехнорм, 1996. 12 с.
- 3. Бетоны напрягающие. Технические условия: СТБ 2101–2010. Минск : Стройтехнорм, 2010-14 с.
- 4. Добавка РСАМ для бетонов и строительных растворов. Технические условия: СТБ 2092–2010. Минск : Стройтехнорм, 2010 9 с.

- 5. Павлова, И. П. Исследование влияния расширяющихся сульфоферритных и сульфоалюминатных добавок на прочностные показатели и собственные деформации цементных систем / И. П. Павлова, Т. В. Каленюк, К. Ю. Беломесова // Весн. БрГТУ. 2016. № 1: Строительство и архитектура. С. 123—127.
- 6. Волженский А. В. Минеральные вяжущие вещества А. В. Волженский М.: Стройиздат, 1986. 410 с.

УДК 691. 544

н. с. ступень

* Беларусь, Брест, БрГУ имени А. С. Пушкина

ЭФФЕКТИВНОСТЬ НЕРАЗРУШАЮЩИХ МЕТОДОВ КОНТРОЛЯ СТЕПЕНИ КОРРОЗИИ СТРОИТЕЛЬНЫХ ОБЪКТОВ

Обследование технического состояния зданий и сооружений производится с целью определения деформаций или других воздействий от влияния осуществляемых вблизи них нового строительства или реконструкции, а также для разработки в случае необходимости мероприятий по усилению их конструкций или укреплению грунтов оснований.

Строительная реставрация — это восстановление внешнего вида, а также отдельных деталей здания различных годов постройки. Благодаря современным материалам и эффективным технологиям профессиональные бригады выполняют работы быстро и полностью возвращают сооружениям первоначальный внешний вид. Корректировка рабочего проекта реставрации ведется на протяжении всего периода работ, и окончание проекта совпадает с окончанием реставрации в натуре. Большие разрушения памятника архитектуры и невозвратимые утраты иногда исключают реконструкцию, а тем более полную реставрацию. Поэтому при инженерной реставрации таких памятников ограничиваются лишь необходимым укреплением уцелевших частей. Нельзя воспроизводить любой памятник культуры, если нет достоверных сведений о его первоначальном облике. Основная задача реставрации — сохранение памятников истории и культуры, позволяющее последующим поколениям осознать преемственность культуры, придающее смысл настоящему и вселяющее надежды на будущее.

Реставрация зданий и сооружений — исключительно сложный вид работ, требующий совместной деятельности различных специалистов, и в первую очередь архитекторов-реставраторов, инженеров и техников-строителей, а также археологов.

Реставрация — это совокупность мероприятий, которые направлены на восстановление исходного облика и улучшение характеристик старых сооружений, имеющих историческую или культурную ценность. Чаще всего объекты