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I FUNCTIONS OF A SINGLE VARIABLE
1.1 Functions and limit

Definition Let X and Y be sets. A function from X to Y 1is a rule or method for
assigning to each element in X' a unique element in Y . (See Figure 1.1)
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Figure 1.1 Figure 1.2 Figure 1.3

There are four possible ways to represent a functionsverbally (by a description
in words); numerically (by a table of values); visually (by a graph); algebraically
(by an explicit formula). A function is often denoted by the symbol f . The element

that the function assigns to the element x is,denoted y= f(x) (read f of x). In
practice, though, almost everyone speaks ‘interchangeably of the function f or the
function f(x).

Definition Let X and Y be sets and let.f be a function from X to Y. The set X
is called the domain of the function. If y = f(x), y is called the value of f at x.

The set of all values of thesfunction is called the range of the function (see
Figures 1.2, 1.3).

VA Y4

/\/6\ \D

Figure 1.4 Figure 1.5

When the function is given by a formula, the domain is usually understood to
consist of all the numbers for which the formula is defined. The value f(x) of a

function fat x is also called the output, x is called the input or argument. If
y=f(x), the symbol x is called the independent variable and the symbol y is
called the dependent variable. If both the inputs and outputs of a function are
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numbers, we shall call the function numerical. In some more advanced courses such
a function is also called a real function of a real variable.

If both the domain and the range of a function consist of real numbers, it is
possible to draw a picture that displays the behavior of the function.

Definition (graph of a numerical function) Let f be a numerical function. The

graph of f consists of those points (x;)) such that y = f(x).
If some line parallel to the y axis meets the curve more than once, then the curve

is not the graph of a function. Otherwise it is the graph of a function. The cutve in
Figure 1.4 is the graph of a function, the curve in Figure 1.5 is not the graph of a
function.

Basic characteristics of functions
Definition (composition of functions) Let f and g be functions.”Suppose that x

is such that g(x) is in the domain of f . Then the function that,assigns to x the value
f(g(x)) is called the composition of f and g .
Definition (even function) A function f such that)f(—x)= f(x) is called an

even function (see Figure 1.6).
Definition (odd function) A function f suchithat f(—x)=—f(x) is called an odd

function (see Figure 1.7).

/
! / y=x°
L, & : F(x) -/

Figure 1.6 Figure 1.7 Figure 1.8

Most functions are neither even nor odd. Many functions used in calculus happen
to be even or odd. The  graph of such a function is symmetric with respect to the y

axis or with respect to the origin, as will now be shown.
Definition A function f is called a one-to-one function if it never takes on the

same value twice; thatis, f(x,)# f(x,) whenever x, # x,.

The graph of one-to-one numerical function has the property that every horizontal
line meets it only in one point (see Figure 1.8).
Definition (monotonic function) If f(x,) < f(x,) whenever x, <x,, then f is an

increasing function. If f(x,)> f(x,) whenever x, <x,, then f is a decreasing
function. These two types of functions are also called monotonic.



Definition Let y = f(x) be a one-to-one function. The function g that assigns to

each output of f* the corresponding unique input is called the inverse of f . That is, if
y=f(x) ,then x=g(y).

The following types of functions are called the basic elementary functions:

polynomials, rational functions, root functions, trigonometric functions, inverse
trigonometric functions, exponential functions, logarithmic functions.

Definition (Limit of f(x) at a) Let f be a function defined on some open
interval that contains the number a, except possibly at a itself. Then we say that the
limit of f(x) as x approaches a is 4, and we write

lim f(x)= 4

xX—a

if for every number £ >0 there is a number 0 >0 such that if0 < ‘x —a‘ <o then
|f(x)—A4|<e:
lim f(x)=A<Ve>0 35(6)>0 Vx:|x~a| <6 =3 /(%) -4 <e.

X—>a

Definition (right-hand limit of f(x) at a), A number A is called right-hand
limit of f (x) at a if for every number € >0 there'is a number 6 >0 such that if
a<x<a+o then ‘f(x)—A‘<g. It is denoted by lirqf(x)z lim f(x)zA.

x—a+0

Definition (left-hand limit of f (x) at a )»A number A is called left-hand limit of
f(x) ata if for every number £ >0 there is a number 6 >0 such that if
a—&<x<a then |f(x)—A|<¢. Itissdenotéd by lim f(x)= lim f(x)=4.

x—>a—0

Theorem limf(x) = A if and only ifxligzof(x) = lim f(x) =A.

x—a x—a—0

Definition A function f{x) isicalled infinitesimal function at the point a, if

lim f (x) =0. A functionyf (x) ‘is called infinitely large function at the point a, if

xX—>a

lim f(x) = oo.

xX—>a

The sum and product of a finite number of infinitesimal functions as x
approaches a, as, well“as the product of an infinitesimal function for a bounded
function, are infinitesimal functions as x approaches a.

We use the following properties of limits, called the Limit Laws, to calculate limits.

Theorem (Limit Laws) Let u=u(x) and v=v(x) be two functions and assume

that limu (x) =4 and limv(x) = B both exist. Then

X—>a xX—>a

1) 1im(c : u(x)) =climu(x)=c- A, where ¢ — const .

2) liin(u(x)iv(x)) :liinu(x)iliinv(x) =AxB.

3) lim(u(x) . v(x)) =limu(x) -limv(x)=A4-B.



limu(x)
9 imP P e A 20,
—ay(x) limwv(x) B x>a

lim v(x)

5)  limu(x)'™ = (limu(x))Ha = A",

Xx—>a

If the conditions of these theorems are not satisfied, then there are the ‘so-called
indefinite expressions (indeterminate form) of types: (co/ ), (0/0), (s0—o0),

(O-oo),(lw),(Ow) ,(000). To uncover indeterminate forms, additional algebraic

transformations are required.
Example 1 Evaluate the limit if it exists.

2 2
(@) limw (h) limw (©) lim(\/xz +x —x)
oo 3x" +6x—2 =l x"—5x+4 3>

Solution
(a) Asx gets large, the numerator 4x” —3x+5 agrows  large, influencing the

quotient to become large. On the other hand, the denominator 3x” +6x —2 also grows
large, influencing the quotient to become small. An algebraic device will help reveal
what happens to the quotient. We have
43 3 5
x2(7—7+2j 4242

2 2
lim4x2 3x+5:(f]:hm XY X)) fim X x :ﬂ_
=3t +6x=2 o) o=y (3:F 6x 2| ey 62 3

X —2+72_72 X X2
X X X

(b) The basic indeterminate of type (0/0) is obtained by replacing x=1. We
factor the numerator and the denominator:

x* —6x+5=0; x*—5x+4=0;
D=36#4:1.-5=16>0; D=25-4-1-4=9>0;
+ +
=6_\/E;x1=5;x2:1; x:S_\/§;x1=4;x2:I;
2 2
x” 26X +5=(x—1)(x=95). x*=S5x+4=(x-1)(x—4).

The numerator and denominator have a common factor of (x —1). Therefore we
can cancel the common factor and compute the limit as follows:
_ _ _ _5 lim(x-5)
m> 6x+5:(9):hm(x D(x 5)=limx 5 i

x—1 —
—1x* —5x+4 \0) =1(x=1)(x-4) =—lx—4 lirrll(x—4)

w |~

-5 B
—4
(c) As x — o, both v/x* +x and x approach oo. It is not immediately clear how

their difference Vx> +x —x behaves. It is necessary to use a little algebra and
rationalize the expression:

8



lim(\/xz+x—x):lim(\/x2+x—x) =lim =
X—>00 X—>00 ( [x +x+ x) X—>00 /x2 +x+x
— lim al — lim al i ! 1

=lim——=—.
o R (1 x)+x 2 x(V T xe1) e Ie x4l 2

Exercise Set 1.1

1. Find the exact value of each expression f(0), f (—éj, f&x) (lj, !

4 x) f(x)
if f(x)=v1+x*.
2. Find an expression for the function which graph is the given curve.
(a) The line segment joining the points (3;—Lyand (2;5).
(b) The line segment joining the points (—2;—1)andy(0;7).

In exercises 3 to 6 find the domain of the function

1 2+%
3. — _x+ 4. :1 — _ 2
V=N Bt y g2—x 5. y=~I124x-x

X
6. y=arcsin| lg—
y [gmj

In exercises 7 to 10 find a formula for the inverse of the function

7. y=+10-3x 8 y=e 9. y=In(x+3) 10. y=2x*+3
In exercises 11 to 14 determineswhether f(x) is even, odd or neither even nor
odd.

II.f(x):%(ax+ax) 12. f(x)=N1+x+x"

13. f(x)=sin2£x+i) 14. f(x):{/(1+x)2 +i/(x—1)2

In exercises. 15:to 56 find the limit, if it exists. If the limit does not exist, explain
why.

2

15. lim(4%* —6x +3) 16. lim=>_—4x+7 17 tim 2
A —=12x% —5x+6 x>2x—=2

18/ lim — 19. lim — 20. tim ——
x—0+0 x x—0-0 x x—1+0 x —1

21" tim —! 22 fim — 23, lim ——
x—)—l—o(x+1) x—)—l+0(x+l) x—)—l (x+1)
1 3 2_

24. lim 25, lim £ 26. 1im > —2X*10
x—wo x+4 x—-1 x“ +1 x=>1  x°“ =25
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. 2x" —3x+4 3x° +4x2+2 Vx
27. lim ———e— 28, lim 2> ™ T4 29. lim
X \/x4+l x—>to0 x3—7x—10 o \/x—|—\/x—|—\/_
. 9n’ +4n—6 A3V 4 Jx+1-3x% 41
30. lim =5~ 31. lim 32. 1
" ne x> \/x +1 x_m\/x +1- \/x +1
2 2 _
33 thx"'6 34. lim M 35. thx;l—lO
=2 x? —12x+20 -1 4x? —5x+1 o2 =X
3.2, 3 3 2
36. lim~ 5 ¥ rxl 37. hmx—8 38. limxz?’—x—|_2
x>l x“—4x+3 x—>22x +x—-6 91 x"57x+6
3_
39, tim L 40, tim—=2 o lim Y4
x_>16x =5x+1 x—>5\/ —-1=-2 w3 x2—9
. cosx—sinx 2
42, lim — x“+1-1 4. lim( 18 j
i C0s2x 43. lim ———— ol x+d 16-x2
45. lim 4 j 46. lim(L— 3 3j 47. lim(\/x2+6x+5—x)
=2\ x2 -4 x-=2 I\ 1—-x 1=x X—%
1 1
48. lim(x(\/x2+5—\/x2+l)) 49. lim( _ j (16
X0 -0\ 4sid®x Wsin’ 2x 50. )161_% x—3_x2—9
2 2 2
S5+x) —(1+2x 2 ) 6x—5
51. lim( /- ) 52, lin 2 20¥ 3 53. lim ——=—
0 x(x? -2 >5[ 12 2] 4x 43
2
54, lim Y2279 S5inn 22 VE 56 lim—~+*~12
9 Jx—3 x—>4\/6x+ -5 ix—2 - JA—x
Individual Tasks 1.1
1. Find the domainrof the function.
2. Find a formula for the inverse of the function.
3. Determine whether f (x) is even, odd or neither even nor odd.
4. Find thedimit, if 1t exists. If the limit does not exist, explain why.
L. I1.
- 2
1. yzlgw 1. y=arccos—x
x+1 I+x
_ 4x—1 2 y= e’
2x+3 1+2¢"
3 f(x)_lgr_x 3. yzlg(x+\/1+x2)
X
4. 4.
2
342 x“+4
) lim 5x°+x"+4 a) h_l;l;lo : 3
x>0 7x +4x% —x—3 DX+ X =




3

x* +1 . X2 +1+4x

b) lim b) lim ————

) xow x+1 / oo Yot x4 x
. 2x% +11x+15 2

c) hn_l : ¢) lim 5x7+4x-1
x—>-3 3x° +5x—-12 x—>13x +x=2

d) lim Y3 &) fim 2 x 2
e x42-2 im =1

e) )}i_f)lgo(\/szrl_\/xz_l) e) lim (x(\/m—x))

X—>00

1.2 Some remarkable limits
To uncover the indeterminate of types (O / O), (1“’) the following two remarkable

limits are widely used:

. ) 1
(1) lim>= =1 2) 1im(1+lj —emor wlim(1+x): =e.
X

=0  x X—>0 x—0

The general form of these limits can be represented by the following expressions:
sin f'(x) Y
(1a) m =1 (2a)  lim |1+ =e.
S(x) el f(x)
Example 1 Evaluate the limit if it existst

@) im—2— ) i () lim

XS X —TT e x>0 aresin 3x

Solution
(a) To uncover the indeterminate of type (O/ O), trigonometric simplifications

can be used:

lim & :(nghm (7)o L A
—rx—mg \0) 2z(¥=rm)cos(x—x) rcos(x—m) 7 Xx—7

(b) The expressionw is a product of a bounded function sinx and
X

e, . sinx . e el
infinitesimal function’y =1/x at the x >o. Then y= is an infinitesimal

X
sin x

function at the x = o. Thus, lim =0.

X—>0 x

(c) To uncover the indeterminate of type (0/0), following substitution can be

: 1. : . :
used arcsin3x =¢ = x = gsmt. If x >0, then t = 0 and given limit can be rewritten

and calculated as following

1.
—sint
lim+:(9jzlim3 _L

x>0 aresin 3x

11



Example 2 Evaluate the limit if it exists.

x 1-3x
(a) lim(l —gj (b) lim( 2x 1)
X—»00 X =\ 2x + 5
Solution
(a) If x >0, then 2 — 0 and the basic indeterminate of type (1°°) will be
X

obtained. To uncover obtained indeterminate form the remarkable. limit

X—>0

lim(l + lj =e can be used:
X

)
X _i.(_z) B _i
1im£1—3j =(1°°):1im(1+_—2j " _lim (1+—2)2 _e?
X—>00 x X—>00 x X—>00 x

(b) If x > o, then 2x 1

S is —1, (1-3x) > o0 and«o uncover the indeterminate of
X+

type (1°°), the following algebraic simplifications can be used:

1-3x 1-3x 1-3x
tim 2271 ) 2 (1) = tim| 14 2L i 14 220 )
e\ 2x+5 X—>o0 2x+5 x>0 2x+5

2%+51 —

_6 1-3x 6 % ~m-(l 3x) —-6(1-3x) 18x—6
=lim| 1+ =lim| 1+ =lime > =lime>* =¢’,
X—>0 2x + 5 X—>0 2x + 5 X—>0 X—>0

Exercise Set 1.2
In exercises 1 to 48 find the limitaf it exists.

1. lim—=— 8x 20, lim X 3. lim 51.n ’x
=0 x x>0 sin 3x x>0 3in 3x
4 lim s?n 5x 5 lim 2arcsin x 6. lim sin3x —sinx
x—7 §1n 6x x—0 3x x—0 Sx
7 lim arc§1n 5x & im In(1+4x) 90 i 3 —1
x—0 sin.x x—0 SX x—0 X
10. im0 4y i g X 12, limS00Gx=5)
x>0 2x x—0 3 x—1 _X,' + 4x 5
sin4x sin® 3x —sin” x T
13. 1 . i 15. i tgx ——
1 \/xT 1 14 £1£r01 > limx| arcigx
16. lim 3x42)’ 17. lim| 2 18, lim[ 271}
x>0l 3x—1 x>0l 14+ x x>\ x4 3
2x 2x+1
19, lim[ 14> 20. lim| 2! 21. Sx+]
X—®© X xon| 5x—1 x_)_oo 4x-3
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3x2 3x 3x
22. Tim| 2X=7 23, llm( 3x_1j 24, lim (1—ij
x>l 3x +4 oo\ 2x+5 x—>%o0 S5x
2x+1 2 x
25, lim[ 2X=%] " 26. lim w 27. lim(1+ 1gx)™
x>0\ Sx + 2 ool x*—4x+4 =0
28 lim(2—x)tgﬂ 29, lim\/1+smx—\/1—smx 30. lim smx2
x—2 4 =0 X X7 T A
. L . (sin3x )™ ) 1
31. hm(l +sin x)x 32. lim 33. lim(1= 3x)x
x—0 x—0 X x—0
. . 1 2 — ct; 2x
34. hm(x - sm—j 35. lim I+ x_ 5 08X 36. lim(l + tgzx)2 ¢
X—>00 X x>0 SIn” x x—0
. 1/x . x 2
37. hnol(\/l +x— x) 38. 1615)1(005 X)l/ 39. lin(}(cos3x)x2
X 83 L ctg22x
U5 BT R T
. in’ o Jl—tax —J1+¢ L
43. 11mL)§ 44. hm\/ gx. ol g 45. lim(1+tg2\/;)2x
7]+ c0s” X X1 sin2x x>0
46. lim M 47. lim M 48. 1ir1r+10 i
x—>to0 X x>0y EYX — 1‘
Individual Tasks 1.2
1-5. Find the limit if it exists:
I. 11.
/. lima A [ limi=S0s6*
-0 x x>0 xsin3x
2 lim s1r21(2(x —1)) > lim sin (3x + 3)
x>l x = x 46 x—>—1x2—4x—5
3x+1 x+1
3. Tl 2] C (3x—4Y)3
X—>0 2x_1 3 }Cl_)n:l.o 3x+2
— xz —2x
7 lim(zx lj S e (2x1
oo\ 3x 44 T e 4x -3
1
. = . tg2x
5. £1£13(cosx)x 5. xlg;/u(tgx)

1.3 Comparison of infinitesimal functions
Let a(x), B(x) are two infinitesimal functions at the point x, and the following

a(x) _

limit can be evaluated lim —< =

X=X ,B(X)

A.

13



1. If A#o0 and A#0, then r(x) and B(x) are called infinitesimal functions of
the same order at the point x, .

2. If A=1, then a(x) and B(x) are called equivalent infinitesimal functions at
the point x, and denoted by a(x) ~p (x) :

3. If A=0, then a(x) is called the infinitesimal function of a higheriorder of
smallness than B(x) at the point x, and denoted by a(x)=0(3(x)).

4. If A=, then a(x) is called the infinitesimal function of a'lower order of

smallness than 3(x) at the point x, and denoted by B(x)= o(a(x)).

5. If limit limM does not exit then (x)and S(x)are called incomparable

X=X ﬂ(x)

infinitesimal functions.
Theorem Let o(x)~ ¢, (x)and £(x)~ f,(x) at the pointyr, -

If 1imM=A,then tim 20y
X=X, ﬁl (.X) XX ﬁ(X)

Let a(x) 1s be the infinitesimal function at the point x, and the following table of
Equivalent infinitesimal functions can be used in'solving problems.

Table of Equivalent infinitesimal functions

sina(x) ~ a(x) tga(x) ~ a(x)
arcsina(x) ~ a(x) arctga(x) ~ a(x)
2
(1-cosa(x))~ d 2(x) (a“(x) —1)~ a(x)Ina
(e“(x) — 1) “a(x) log, (1+a(x)) ~ (x)
Ina
In(1+ a(x)) ~e(x) (1+a(x))k —1~k-a(x)
Example 1 Evaluate the limit if it exists.
(@) lim 2xsin3x (b) lim In ccz)sx
0 ] —cosx =0 x

Solution
(a) If x =0, then the basic uncertainty (0/0) will be obtained. To uncover

obtained uncertainty the algebraic simplifications and the table of Equivalent
infinitesimal functions can be used:
2
. 2xsin3x (0 1—cosx~x— . 2x-3x
lIim———= 6 = 9) =11n’01 —=12.
x— X

sin3x ~3x —
2

x>0 1 —cosx

14



(b) Like in the previous example, the algebraic simplifications and the table of
Equivalent infinitesimal functions can be used:

In(1+(cosx—1
lim 008X _ (QJ = lim (1 . )
x—0 X O x—0 X
2
=lim COS); ! = {1 —COSX ~x—} =lim
x—0 X 2 x—0

Exercise Set 1.3

In(1+¢)~¢

= £i£r(}(cosx—1):0 =
t=cosx—1
-x*2 1
X 2/

In exercises 1 to 8 compare infinitesimal functions at the given point.

1. a(x)z

3. a(x):\3/x4 +2)c3,,b’(x)zln(1+x),x0 =0
5. a(x)=1-cos’x, B(x)=sin’x, x,=0

7. a(x)=1+sin’x, B(x)=cos’ x, x, = 7/2

3x’

+1

—4

, ,B(x):x3, x,=0

2.

a(x
a(x

In exercises 9 to 34 find the limit if it exists.

sin(3(x—2))

xsin 6x

)_
):

. 11 10. Ilm—————
g — w0 (ardig2x)’
. eSx _ 1 ) sin2x _1
12. lim— 13. lim—;
=0 sin10x 0 x° +4x
3 _ 2 _
15 limnx =3 76, lim & =5¥+7)
x—e xX—e x—3 X — 3
18, lim-2reSn8x 19, 1im &%
0 In(l#4x) 0 (o 8x
1
I+ 2% -1 —1
At 201 .
21. £1_r)13 % 22, 1lim J1-3x
x—0 2x
. 2
24 Vi s12n 3(x+1) 25 Tim tg(x”—3x+2)
>-lx"+4x -5 X2 x' -4
l/cosE ) 23x _ 32x
27. lim(ctg fj © 28 lim A
X7 4 x>0 x +arcsinx
3x+1 _ 3
. 1-x 31. lim
30. Elir&simx 0 ln(1+xm)

x +1

T+
arctgx
x*+17
/f(x)=tgx,p(x)=arcsinx, x, =0

11.

14.

17.

20.

23.

26.

29.

32. 1

f(x)=1#cosx,p(x)=3x",x,=0

A(x)

=—_.X, =00
2270
X

sin3x —sinSx
2x
2
lim In(1+3x7)

x—0

lim

x—0

sin® 7x

lim(cos x)l/Sinz }

x—0

tg’ 4x

lim—=;
-0 gin” 10x

i In(l+5%)

x—0 X

lim 'ln(l - 2x)
=0 sin 77 (x +4)

X
e —e

lim
1 Inx
arctg(x2 — 2x)

im

x—1

sin zx

15



11’1(14‘\/)(773) 34. lim 2(87[)(_1)

33, lim———— =03(Yex 1)

Individual Tasks 1.3
1. Compare infinitesimal functions at the given point.

2-5. Find the limit if it exists.

I L.
1. yzl_—x,yzl—i/;,xozl 1. y= 2x , y=%x,%,=0
I+ x I+x
P lm1n(1+7x)
2 1 sin 7x 1 . 50 Sil’l 7X
im—;
x>0 x _|_3x 3 1 ln l‘gx
C flrx-1 CL®c0s2x
3. lIim———— 4
x—0 X X
1 COS7
— 1 4. lim
4 limdtx S 1-Vx
=0 x tg(37" -3)
. 18
_ (x-22) 2. lim———
5. Im——— 2
Mﬂtg(cosx—l)

1.4 Continuity. Asymptotes
Definition (Continuity at the point x,) Assume that f(x) i1s defined in some

open interval (a;b) that contain§ the'point x,. Then function f(x) is continuous at
the point x,, , if ll_g(l)f(x) = f(xo).
It means that function f(x) satisfies the following conditions:

f(xo)zlim (x)= lim f(x)z lim f(x).

x>, x—>x)—0 x> xp+0

Definition (Continuous function) Let f(x) be a function which domain is the x
axis or is madeyuprefiopen intervals. Then f(x) is a continuous function if it is
continuous at‘éach peint x, in its domain.

A function obtained by the sum, difference, product, and composition of
continuous functions is also continuous. The following theorem can be proved.

Theorem The basic elementary functions are continuous at every point in their
domains.

If%f (x) is defined near x, (in other words, f(x) is defined on an open interval
containing x,, except perhaps at x,), we say that it is discontinuous at x, (or has a
discontinuity at x,) if f(x)does not satisfy the conditions of the previous definition.

Geometrically, you can think of a function that is continuous at every number
within in an interval as the function which graph has no break in it. The graph can be
drawn without removing your pen from the paper.

16



Let f(x)has discontinuity at the point x,, .
1. If lim f(x)= lim f(x)# f(x), thenx, is called a point of removable

x—>x9—0 X—>x+0
discontinuity.
2. If 1im0f(x) =4, limof(x) =A, and 4 # A4,, then x, is called a point of

Jjump discontinuity.
3. Ifeither lim f(x)=o0 or lim f(x)=o0, or at least one of these limits does

x—>x¢—0 x—>xy+0

not exist, then x, is called a point of infinite discontinuity.

Figure 1.9 shows the graphs of the different types of functions. In each case the
graph can’t be drawn without lifting the pen from the paper because a hole or break
or jump occurs in the graph. The discontinuity illustrated in parts (a) and (c) is
removable discontinuity because we could remove the discontinuity by redefining
f(x) at just the single number 2. The discontinuity in_part (b) is infinite

discontinuity. The discontinuities in part (d) are jump discontinuities because the
function “jumps” from one value to another.

y / y ! / y
1e 1 . 1 —0
0 1 2 X 0 X 0 L 2 x 0 1 2 3 X

2 1 . X*—x—2 .
@ f =272 (b)f(-r)={x2 - (c)f(x)=[ x—z  UXF2 @ f()=lx]
10 if x=0 1 if x=2

—_

Figure 1.9

Example 1 Locate the discontinuities of the function
x+2,if x<-2;

2
f(x)= al 5 4,l'f -2<x<0;.
sinx, if x>0.

Solution
The functionvis defined on the entire numerical axis and continuous on the

intervals (—oo; —2), (—2; O), (O; + oo), since it is represented on them by elementary
functions. Let us investigate the function at points x =-2 and x =0, passing through
whichithe analytic formula of the function changes.

—2) -4
If x=-2, then f(-2) :% =0. Right-hand and left-hand limits can be

=0.

2
calculated as follows: lim (x+2)=0, lim x -4

x—>-2-0 x—>-2+0 2

17



According to the definition of continuity at the point x,, the given function is
continuous at the point x =-2 because lim f(x)= lim f(x)=/(-2)=0.

x—>-2-0 x—>-2+0
If x=0, then f (O) =sin0=0. Right-hand and left-hand limits can be calculated
as follows:

2
. x —4 .
lim =-2, lim sinx=0.
x=0-0 D x—0+0

According to the definition of discontinuity at the point x,, the given funietion has
jump discontinuity x =0, because li{)nof(x) # lim f(x)= f(0).

x—0+0

Definition The line y = A4 is called a horizontal asymptote of the graph of f(x)
if lim f(x)=4, where 4 is a real number. An asymptote is'defined similarly if

X—>~+00

f(x)—> A as x > —0.
Definition The line x = x, is called a vertical asymptote of the graph of f(x) if
lim f(x)=-+c0 or lim f (x)=+00. A similar definition is used if lim f(x)=—o0

x—=>x+0 X=Xy~ x—=xy—0

or lim f(x)=—o.

xX—x+0

Figures 1.10 and 1.11 show some of these asymptotes.

~ N

=Y

Figures 1.10

y VA VA

/ \ N

N
Y

//\Y»/a X Oa\x 0 \a

(a) lim f(x)=o0 (b) lim_f(x) =0 (¢) lim f(x)=—c0

x—a- x—a x—a

Figures 1.11

Some curves have asymptotes that are oblique, that is neither horizontal nor
vertical.

18



The line y =kx+b is called a slant asymptote if lim (f(x)—(kx+Db))=

In this case, the vertical distance between the curve y= f(x) and the line
y=kx+b approaches 0. For rational functions, slant asymptotes occur when the
degree of the numerator is more than the degree of the denominator. In such case the
equation of the slant asymptote can be found by a long division. The following
formulas can be used to find coefficients of slant asymptote:

k= lim L9, b= Tim ( f(x) - k).

x—>too X X—>Fo0

Note (1) If at least one of the coefficients cannot be calculated‘or equals infinity,
then the graph of f(x) does not have slant asymptote. (2) A vertical asymptote of the
graph of f(x) is partial case of slant asymptote if £ =0 and b = A4

2
Example 2 Find the asymptotes of the graph of the function y =

x-1
2x?

Solution The line y=2 1s a horizontal asymptote’ of the graph of y =

because

x—>to0 _x2 — o0 x>t xz

2
lim 2x IZ(SJ— lim 2i:2.
The similar result can be obtained by using a slant asymptote:
2
k = lim S lim [ 2% xj: 1im( 2x ]— 1lm2i3— llmg:O

2 3

x—oto x—>Fo| yx _1 x=Fo| xT — x xX—Foo  yx X—too x 2
2x° 2x°
b= lim ( f(x) —dx) = lim S— = lim ——-=2.
x—>+o0 X—>+o0 x _1 x>ty

Since the denominator is‘Oywhen x =1, we compute the following limits:

ph 2 2x? 2
lim 3 =+o00, lim =| — |=—oo0,
x—>—1= 0x _1 +O X—— 1+Ox _1 _O

2%° 2 2x? 2
Iim = — , Iim = =400,
x—1-0 _x _1 _O x%1+0 _x _1 +O

Therefore(the lines x =1 and x =—1 are vertical asymptotes.

Exercise Set 1.4
In exereises 1 to 12 find the numbers at which f(x) is discontinuous. Sketch the

graphof f(x).

x+4, x<-1
27 if x#0; X9 ifx3% 3 f0)=1x>+2,-1<x<l1
L. f(x)= . T2 f(0)=4 x=3" ’ T
2, if x=0. A if x=3. 2x, x21.
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20

—x%, x<0; —2x, x<0; -x, x<0;

4. f(x)={1gx, 0<x<7/4; 5. f(x)={x, 0<x<4; 6. f(x)={x", 0<x<2;

4x -3, x> /4. Mt x>a4. x+4, x>2.
3x+3 2x+4 3x-2
7. f(x)= 8. f(x)= 9. f(x)=
/(%) 2x+4 /(%) 3x+9 /() x*—4
3
_ Al/(x-1) . 12. XX
10. f(x)=3 +1 11. f(x)=2<" f(x) ‘x‘
In exercises 13 to 27 find the asymptotes of the graph of the functions.
3x° —x+4 x’ (x—l)2
13. y=—" 4. y= 15. wy=—"2
4 x+2 4 x—1 %
x> —6x+10 X’ 3x
16, y=—"-—"T"—— 17. y= 18,y =
L Yy "2
5 Inx
19. y=2x+arctgx 20. y=x’€" 21. y=—+=
Jx
1 1
22. y:\/1+x2 23. y=x-ln(e+;j 24. y:e‘;
1 3x =2 x°
25, y=2x"+— 26. v = __xr
4 x YT s 27 YT 0GH1y

Individual Tasks 1.4
1-3. Find the numbers at which () is discontinuous. Sketch the graph of f(x).

4-5. Find the asymptotes, of the graph of the functions.

I. I1.
x=l, x<0; x—1, x<0;
1. f(x)=4x, 0<x<2; I f(x)={sinx, 0<x<7;
2x, x>2. 3, x2r.
_3X+5 2 x) = x+3
2, f(x)—zx_g S (x) .
ffx)=e 5. f(x)=5
2 _ xP—x—17
4 y:2x 3x+4 4 y=
x=2 x+2
e 1 5 ¥
5. y=x . . 2x-1)




1.5 Derivative
Let f(x)1s a function determined at points x, and x,, y, = f(x,) and y, = f(x,)

are corresponding values of the function. Then Ax = x, —x, 1s called the increment of
the argument and Ay = f(x,)— f(x,) 1s called the increment of the function in the
line segment [x;; x,].

Definition (Derivative of a function at the x ) If

E%%:gr_{%f(x-l_?_f(x):f!(x)

exists, it is called the derivative of f(x) atx and the function isusaid to be
differentiable at x .

Definition (Slope of a curve) The slope of the graph of the, function f(x) at
(x; f(x)) 1s the derivative of f(x) at x.

Definition (Tangent line to a curve) The tangent line to.theigraph of the function
f(x) at the point P(x;y) is the line through P that has a slope equal to the

derivative of f(x) at x.

Definition (Velocity and speed of a particle moving on a line) The velocity at
time ¢t of an object whose position on a linevat times is given by f(¢) is the

derivative of f(¢#) at time . The speed of. the particle is the absolute value of the

velocity.
Definition (Magnification of a linear projector) The magnification at x of a lens

that projects the point x of one linewonto the point f(x) of another line is the
derivative of f(x) at x.
Some common alternative notations for the derivative are as follows:
N Ay _df _d
X)=—=—=—f(x).
Jix) T dxf()
The symbol di is called differentiation operator because it indicate the operation of
X

differentiation, which is the process of calculating a derivative.

Differentiation Rules
Let usu(x),w=v(x) are two differentiable functions at point x, and C = const .

Thedollowing rules can be proved:
1. /C'"=0.

2. (Cu(x)), =C-u'(x), (%x)] Z(lu(x)] z&gc).

3. (u(x)Ev(x) =u'(x)+V(x).
4. (u(x)- v(x)), =u'(x) - v(x)+u(x)V'(x).
21



u(x)| _ w0 —u()v ()
(wm]_ v (x) |

6. (Chain Rule) 1f y = f(u(x)) 1s a differentiable function ofu andu is a
differentiable function of x, then y = f(u(x)) is a differentiable function of x and
V'(x)= f'(u)-u'(x), where x is called the basic argument, u is called the temporary

argument.
Using the definition of the derivative, the limit and the rules of differentiation, the
table of derivatives of elementary functions can be obtained.

Table of derivatives of elementary functions

1. (x“) —a-x"",aeR |2 (x),=1 3. (\/;)’:L

2Jx

Dt e LAy
X
g

7. (log,x) = . 8. (Inx) :% 9. (sinx)' =COSX
! . ' | '

10. =- 11. = 12, —_

(cosx) sin x (tgx) N (cigx) -
13. (arcsinx)’ = lixz 14. (arccosx)' =— 11x2 15. (arctgx)’ .
16. (arcctgr) =——— 1% (shx) =chx 18. (chx) =shx

1+x°
] )

19. (thx) = 20. (cthx) =—

(1)~ ftha) =

Note If x is the temporary argument, then each of derivatives must be multiplied

by the derivative of the corresponding temporary argument.
Example 1 Differentiate

(@) y=10%2 (b) y=cos’8-5x") (¢) y=e* NI’ +3 (d) y=

Solution
(a), The given function can be represented as follows y=10“, u=3x—-5. Then

x +1n(3x)
1g2x

the derivative of the function with respect variable x equals:
¥ =10 -u'=(10"), -(3x-5). =10"In10-3=10*"In10-3=3In10-10>".
(b) Like in the previous example, the given function can be represented as
follows: y=u’, u=cosv, v=8—5x". Using the rules of differentiation and the table
of derivatives of elementary functions, the following result can be obtained:
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V' = (cos3 (88— sz)), = (u3 )'u -(cosv)'v : (8 —5x° )'x =3y’ - (—sinv)-(=10x) =
=3cos’*(8—5x%)- (—sin(8 — sz)) : (—IOx) =30x-cos’(8—5x%)-sin(8 — 5x%).

(c) According to the Differentiation Rules and the table of derivatives of
elementary functions, we have

!

y'=(e3x)'-\/7x2+3+e3x-(\/7x2+3) =
=™ - (3x '-\/7x2+3+e3x-;-
( ) 247x% +3 (

=e"-3.47x*+3 +e3x-;-l4x=e3{3- 7x* +3 +Lj
247 +3 \7x* +3

(d) According to the Differentiation Rules and the «table’ of derivatives of
elementary functions, we have

f_ (x + ln(3x)), 1g2x — (x + 1n(3x)) - (tg2x)' B

7x* + 3), =

(tg2x)2
1 4 1 i
1+ —-(3 1g2x —(x+dn(3%)) ———- (2
(13, 0 e Gl )
197 2x
2(x+1In(3
(1+1-3)-tg2x—(x+ln(3x))-’21—-2 (1+1)-tg2x— (x Ing %)
_ 3x cos’(2x) _ X cos”(2x)
tg2x tg’2x
Exercise Set 1.5
In exercises 1 to 12 differentiate using the definition.
1. y=3x-5 2. y=x"-3 3. y=x"-3x 4. y=x"+2x-3
5. y=1 6/ y=—2% 7 y=In(5x+6) & y=In(2x—3)
X 3x+1
9. y=e&") 10.y =2 11. y=sin3x 12. y=cosS5x

In exereisesyl3 to 72 differentiate using the Differentiation Rules and the table
of derivatives of elementary functions.

7 :
130 y=5x"-3Ix+— 14 y=5-2" —dtgx 15. y=x’sinx
X
4 1 xt+1 2x* —4x+5
16. y=2x ——+— 17. v= 18 p=22 — TS0
X Jx 4 xt -1 Y 3x
19. y:x2+%—2x+2x 20. yzl—cg)sx 21. y=x-chx+l
X X X

23



X=X,.

24

22,

25.

28.

31.

34.
37.

40.

43.

46.

49.
52.
55.

58.

61.

64.

67.

70.

y=\/;+%—tg\/§

y=log,x -

X

arctgx

y = arcsin Jx
y=sin3x+th’x
y — 2—cos4 Sx
y=("+3x-1)"

y=arcsin’ x-Jx+9

x+e*

3
x—e"

y:hls(x—Z_x)

y=2m
y= (2’g3x +1g 3x)2
y= arcz‘g2 S5x-In(x—4)

arccos3 X

_Vx+5
In(x’ -1
,_ nGe -
In(2x —3)
y= In® (ctgbx + sin° X)

x—1

yz(l—x—xz)e7

-1
4
X

y=in

23.

26.
29.

32.

35.
38.

41.

44.

47.

50.

53.
56.

59.

62.

65.

68.

71.

y= (\/; + 1) -arcsin x

100

y:(x+1)
y=Incosx

y =x"sin 3x
y=x-cth’Tx
y=Ax"+sin*x

D) 3
x —=5x+1

Y=—777—"7—"=
x“—4x+10

x +1 ’
3
x -1
» =sin(tgx)
y = arétg\1+x’

tg35x

y:

y=3

V= tg4 3x -arcsin 2x°

y=sh’x’

y:1+\/x+\/x+\/;

_ arctg’2x
4 ch(l / x)

2x —x2
y=e" +e

/l—x
y=arctg,|——
I+x

24, y- X-ctgx
arccos x
27, y=.Jtgx
30. y=e&™
ex
33. y=
4 ctg4x
36. y:2—c0545x _{_earctg\/;
3940y =cos*(2x +2%)
arct \/;
e g
42,y =
N x*+1
4 4 3
45. y=(2x —tg x)

48. y=sin’x-2%
51. y= e*\/x2+2x+2
54. y=sin’2x-cos8x’
57. y=(x-3)* arccos 5x°
arcctg”5x
60. y=—"—
Y sh/x
2
63 v \cos3x

66.

69.

72.

y_x3+4x+1

y=In(x+x-3)

=ct al
Y g\l1+x3

10"

arcsin 2x

In“exercises 73 to 76 find the slope of the given curvey = f (x) at the point

73. f(x)=x-arctgx, x,=0

75. f(x)zln—x, X, =e
X

74. f(x)=x"+x"-17°, x, =1

76. f(x)=v3x"—x’-5, x,=2



In exercises 77 to 80 find the angle between given curves at the intersection
point.

77. f](x)zi, fz(x)zx2 78. fi(x)=—, fz(x):x3

2N R |~

79. fi(x)=3x%, fi(x)=1-x%" 80. f(x)==, f,(x)=1+x"
Individual Tasks 1.5
1. Differentiate using the definition.
2-7. Differentiate using the Differentiation Rules and the table of derivatives of
elementary functions.
8. Find the slope of the given curve y = f(x) at the point x =%, .

L L.
1. y=sin(4x—-1) 1. y=In(5%+3)
3 1
N R 2 GATA S,
y NS g ‘ Jx
N y:2+3c20sx 3.0,y =x"cos 3x
4x 4. yzcosz(Z/x+2x)
_ —cos® 2x
4. y=5 3 ' X 5. y:(2x—3)5-arccos3x4
5. y=ctg {b;-arcsm 3x arctg’ (5x +3)
earcsm x 6 = \/_
ye ch/x
NN 1-3x
7 y—lnm fo y=aredg o
' (x*=1) g V5 —x° 1
8 f(x):5/(2x2_4x3)4, X0:1 . f(x)_ 54y » X =

1.6 Implicit Differentiation. Logarithmic Differentiation. Calculus with
Parametric Curves
The functions“that we have met so far can be described by expressing one
variable explicitly in terms of another variable. Some functions, however, are defined
implicitly by atelation between x and y . We do not need to solve an equation for y

in_ terms of x*in order to find the derivative of y . Instead we can use the method of

implicit differentiation. It consists of differentiating both sides of the equation with
respectito x and then solving the resulting equation for y’.

Example 1 Find y',if X’ +Iny—x"-¢" =0.
Solution Differentiate both sides of the equation x° +In y — x* -e” =0. Remember
that y is a function of x and using the Chain Rule, we have
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1
3x* +—-y'—(2x-ey +x’e’ -y')=0.
y
Now we solve this equation for y’:
Y 242,
y'(l—xzey] =2xe’ —3x’= ) = (2xe” =3x7)-y :
y

The calculation of derivatives of complicated functions involving products,
quotients, or powers can often be simplified by taking logarithms. The method used
in the following example is called logarithmic differentiation. This method includes
the implicit differentiation and the Laws of Logarithms.

Cosx

Example 2 Differentiate y = (1gx)“".

1-x"ye’

Solution We take logarithms of both sides of the equation and use the Laws of
Logarithms to simplify:

In y =In(tgx)*** = In y =cosx#Infgx.

Differentiating implicitly with respect to x gives
' : 1 1
Y - (cosx)'-Intgx +cosx - (Intgx)' = (—sinx) - Infgx~+cos x - — - ———.
y Igx COS™Xx

: 4 ' . 1
Solving for y', we get y :y[—s1nx-lntgx+ . j
sin x

Because we have an explicit expression for ), we can substitute and write

! Cos X . 1
v =(tgx) (—smx-lntgx—k . j :
sin x

Some curves defined by parametric/equations x =x(¢) and y = y(¢f) can also be
expressed, by eliminating the parameter, in the form of y = F(x).

If we substitute x=x(f)y. and y=y(f) in the equation y=F(x), we get
()= F(x(?)) and so, if x=x(¢), y=y(¢) and y = F(x) are differentiable, the Chain
Rule gives

' ' ' l yt,(t) _ dy
Y, () =F.(x)-x, ()= y, Y0 dx
L3
Example.3 Differentiate t+1°
y=t+2t.

Solution Using the last formula, we get

x,(t)_( 3 ]’_(3t)'-(r+1)—3t-(t+1)'_3(¢+1)—3t_ 3
1) (z+1) ) @+ )Y

V) =(F+20) =2+2=2(+1) ;
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dy _y(1)

dx

2(t+1)-(t+1)2:2

x'(t)

3 3

Exercise Set 1.6

In exercises 1 to 45 differentiate.

10. y=

13. y=

16. y=

19.
22,

25. y

28.

31.

34.

37.

40.

43.

C(x=3)*(2x-1)
- (x+1)°
_ (x=3)(x+2)

V=1’

(3x 2 (Tx+1)

(6x —4)?

Jx+7(x-3)"

(x+2)

(x=3)°Vx+4
(x+2)

(2x—7)"V3x -1

(x> +2x+3)
¥y’ =x+In(y/x)
xsiny+ ysinx =4
2_X7)

X+ y

y2+x2
X
Iny+—=x+

=t —t

x=t —t
y=t4h

—sin(x’y*) =5

2.

26.

29.
32.

35.

38.

41.

44.

y=(cosx— 1))‘2
cosS5x

y =(sin3x)

In x

y=(cos(x+2))

y=(log,(x+4))%"

— (COS(Zx » 5))arctg 5x

. y=(g3x)
. xy s dx -5

. e o= S5x

sin(3x + y°) =5
2427 =2
(x+y) =27(x~)

{x—m;

=t

X =arccos t,

2(1 cos t).

{x 2(t —sin t);

—(t+

12.

15. y

18.

21.
24.

27.

30.

33.

36.

39.

42.

45.

1),

( jx
Y X #+ 1
1g2x

y =¥t 1)
y b (th Sx)arcsin(x+l)

y — (Sh 3x)arctg(x+2)

= (sin(7x + 4))“<8

y=(sin x)"3

x2y2+x=5y
Jx+y=+7

ctg’(x+y) =5x

2.2
e —x*+y'=5

e’ =e—xy

x =3cos’ t;

y =4sin’t.

{ t+1
t+1
x=0+3t+1;
y=3£+5¢.

_t—Sll’lt

y=1-cost.
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In exercises 46 to 49 find the angle between the given curves at the intersection
point.

8
46. y=—,x"—y" =12 47. y*=2x, x*+y° =8
X
48. y=x+3x"+2x, y=—5x-5 49. y=sinx, y=cosx, 0<x<r.

Individual Tasks 1.6
1-6. Differentiate.

| I1.
;- (2x-3)'Gx+2) P 2V (4x +1)
Ja-1y C T B4y
2. y=(sin(2x —3))"> 2. y=(InGut H)"™™
3. xp'-yt=x"-5y 3. 20’ ¥y’ =x-2
4. tg*(x+2y")=2 44 cos(x2 yH=7x"
5 {x =2 —t+5; 5 {x=3e’ cos2t;
y =4t +1%. W | y=5¢'sin21.
x=e ' cos3t; x=47 +1;
0. {y—ez’sirﬂt. 0. {y:3t3—5t2—2.

1.7 Differentialsand Linear Approximations
Definition The differential of .a~function y = f(x) is the principal part of its

increment, linear with respect to the increment of the argument x. The differential of
the argument is the increment of'this argument dx = Ax.
The differential dy is defined interms of dx by the equation dy = f'(x)dx = y'dx.

Basic properties of the differential

1. dC=0, C=const 2. d(Cu(x))=Cdu(x)
3. d (u(x) + v(x)) = du(x) £ dv(x) 4. d (u(x) : v(x)) =v(x)du(x) +u(x)dv(x)
5 d[uj_vdu—udv b= v(x) £ 0 6. d(f(u))=f"(u)du, where u=u(x)

[/ 2
\%

v

The geometric meaning of differentials is shown in Figure 1.12. Let P(x; f (x))
and Q(x + Ax; f(x+ Ax)) be the points on the graph of y = f(x) and let dx = Ax. The
corresponding change in y is Ay = f(x+ Ax)— f(x).

The slop RP of the tangent line is the derivative f'(x). Thus the directed distance
from Sto R be dy = f'(x)dx. Therefore dy represents the amount that the tangent
line rises or falls (the change in the linearization), whereas Ay represents the amount
that the curve y = f(x) rises or falls when x changes by an amount dx.
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Figure 1.12

Notice that the approximation Ay ~dy = f'(x)Ax becomes better as Ax becomes
smaller. Notice also, that dy was easier to compute than Ay ."Eor more complicated
functions it may be impossible to compute Ay “exactly. In" such cases the
approximation by differentials is especially useful.

In the notation of differentials, the linear-approximation at the point x, can be
written as

y(xo +Ax)—y(x0) zf'(xo)-Ax or y(x0 +Ax) zy(x0)+y'(xO)Ax.

Example 1 Compare the values of Ay anddy at the point M (1;5)1f
y=2x"+5x"-3x+1.
Solution We have
Ay = flx+Ax) - f(x)=
=2(x+Ax)’ +5@x + AX)> =3(x + Ax) +1 - (2x° + 5x” = 3x +1).
According to the initial'eondition x =1, the following result can be obtained
Ay(D) = F(1+Ax) = D21+ Ax)’ + 501+ Ax)* =31+ Ax) +1-(2+5-3+1) =
=2(1+3Ax +3Ax° + Ax’) + 51+ 2Ax + Ax*) =3 -3Ax—4 =
=24+ 543—PHFAx(6+10-3) + Ax*(6+5) + 2Ax" =13Ax +11Ax" + 2Ax".
dy(1)=y'MWdx; y' =6x" +10x-3; y'(1)=6+10-3=13; dy(1)=13Ax.
If Ax=14then Ay=13+11+2=26 and dy=13.
If Ax =01, then Ay =1,3+0,11+0,002=1,412 and dy =1,3.
The obtained result shows that if Ax becomes smaller, the approximation Ay = dy
becomes better.

Example 2 Find the differential of the function y = gxl 49 — x> + ?arcsin% :

Solution The derivative of y = f(x) is
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ol —— x  2x 49 1 2
y:_ 49_x 4+t = 49—X .
2 2 2J49-x* 2 x’

In particular, we have dy =49 — x’dx.
Example 3 Use a differential to estimate J67.

Solution The object is to estimate the value of the square root functien. f (x) = Jx
at the input x = 67 . In this case, f(64) is known. We have
1 1 1
64)=8 and f'(x)=—~—, f'(64)=——=—.
1(64) f()zx/;f()2\/6_4 T
Since 67=64+3, f(x,+Ax)~ f(x,)+ f"(x,)Ax,Ax=3. Therefore,
\/5zf(64)+dy=f(64)+f'(64)-3 =8+%-3 =8,1875.
A calculator shows that to four decimal places J67'~ 8,1854. So the estimate
obtained by the differential is not far off.

Exercise Set 1.7
In exercises 1 to 18 find the differential of the functions.

2_
1L y=x"+4x+6x> 2 y:x 21 3. y=+x +6x°
p
4. y=xtg'x 5. y=\jarctgx +arcsin’x 6. y=In(x+v4+x?)
x x+1
7o y=—— = - 29, y=cos’
y -+ 8.0 y=xarctgx —In\1+x y 2
10. y=cig(3x> +In6x) o 11. Y= sh’4x-arccosx 12, y =th*\x -arcctg3x>
13. y=10" I4ry =cth*2x-arcsin7x*> 15, (x+y)*-(2x+y)’ =1
16. y:e_; 17.x° +2xy—y' =a’ 18. In\x* +y° =arctg§

In exercises 19 to 26 use a linear approximation (or differentials) to estimate the
given number,

19. #17 20. 42 21. 326,19 22. sin29°30'
23, %2 24. In(e*+0,2) 25 Intg47°15 26 =
) ) ’ 2,92 +16

Individual Tasks 1.7
1-3. Find the differential of the functions.
4-5. Use a linear approximation (or differentials) to estimate the given number.
L. IL.

1. y=arcsin’ x-3Jx+9 ] y=(2x4—tg4x)3
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arct, \/;
(x3+1j2 2. y=% :

2. y:3 x3_1 x2+1
3. Nx+yfy=417
3. y2=x+1n(J’/x) 4. arctgz)/;%

4. arcsin0,51 .
5. 4/16.64 5. ctg60°30

1.8 Higher Derivative
Definition The derivative of the derivative of a function y = f£(x).is called the
2
second derivative of the function. It is denoted by )" = ( f'(x) & ilz’ )2} =f"(x).
X

Definition The derivative of the second derivative is called.thesthird derivative
and denoted by y" =( f ”(x)), :

Definition The derivatives y"” :( f (”_1)(x)) forne>2 are called the higher

derivatives of y = f(x).
If some curves defined by the parametric. equation x=x(¢), y=y(f) and

V. =yﬁ—g§, the second and third derivatives of the function y= f(x) are
'xt
differentiated by the formula:

' y'(t) " (y;); m o (yzx ):

Y = x’(t)’ Vx _Tf), xxx _W’

The differential of the second orderis defined as the differential of the differential
of the first order dy = d(dy). Differentials of higher orders are defined similarly

d'y=d(d’y), - d"y=d(d""y).

If x is an independeént vatiable, then differentials of higher orders are evaluated

by the following formulas
d’y=y"(dx);  d’y=y"(dx);-- 5 d"y=y" (dx)".

@

Example I'Compute y" if y=x"—4x’ +7x>—8 and n is a positive integer.

Solution
ViES5x"T —12x7 +14x, Y'=20x" —24x +14, " =60x> —24,
y* =120x, y¥=120, =37 =...=0.
Example 2 Compute y" if y =Inx and n is a positive integer.
Solution
Y=mx =R T =D P = (DI

y(n) — (_1)(_2)(_3) . '(—I’l + l)x—n _ (_l)n—l (I’l . 1)!x—n _ (_1)”—1 En _ 1)' |
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Example 3 Find )" if x* + y* =16
Solution Differentiating the equation implicitly with respect to x, we get
3
4x’ +4y’ -y =0. Solving for )’ gives )’ = —%.
To find y" we differentiate this expression for y’ using the Quotient Rule and
remembering that y is a function of x:

y":(_i], :_(x3)' .y3 _(y3), .x3 __3x2 _y3 _3y2 -y'-x3

3 3\2 - 3)\2

(») (9

If we now substitute the last equation into this expression, we get
3

3x2. 5 =3 2 | X X
, d 4 ( y’ 3x7 -yt +3x° 3x”-(f +xh) 48x’
y == Ry == 7 a 7 BN
(»*) y y y
_ .| x=In¢,
Example 4 Find " if { .
y=1/t.
Solution Using the formula y’ = 4 ,(t) we get
, 1 , 1 , dy 11 1
{ =——, x(t =—, x:_:__:_:__
Y £’ © t TR TTE
- v _ O,
Using formula y! =--*"t we get
x'(¢)
yudy O, 111
Yodd X £ttt
Exercise Set 1.8
In exercises 1 to=8 . compute y".
1
1. =1/x 2. y=2° 3. =COSX 4. =
=V Y 4 4 2x+5
5. y= P 6. y= x". \/; 7. y= xe* 8 y= 11’1(3 +X)

"

In exereises 9 to 20 find y"(x,) at the given point x,.

9. y=sin2x,x0:% 10. y=arctgx, x,=1 11. yzln(2+x2),x0:O

12. y=e'cosx, x,=0 I3. y=e'sin2x, x,=0 I4. y=e "cosx, x,=0
15. y=sm2x, x,=7x 16. y=(Q2x+1), x,=1 17. y=In(l+x), x,=2

1 i
18. yzgxze",xO:O 19. y=arcsinx, x,=0 20. y=(5x-4), x,=2
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In exercises 21 to 32 find " .

_ 2.
21, x—20(.)s t;
y=3sin’t.

x =cos(t* +1),
24. 2( )
y=sin"t.
J— 2t .
1+£
t2
144
Int
xX=—;
30. | t
\y=tInt.

X

27.

y

22,

25.

28.

31.

In exercises 33 to 47 find »".

33. y* =8x

36. y> =5x—4
39. 3x+siny=5y

42. y=e" +4x

45. 3y =T+xy’

1-2. Compute y".

34.

37.
40.

43.

46.

{x =In(1+ %),

y=t—arctgt.
X = arccos \/; ,

y=Nt—-t.

x=vt —-1;
t+1
21

y:

{x =¢' cost;

y =é'sint.

2 2
X_+y_:1
5 7

arctg y.=4x+5y
tg y=3x+35y

my—l=7
X

4sin’(x + y) =x

Individual Tasks 1.8

3. Find y"(x,) at the given point x,.

23.

26.

29.

32.

35. y=x+arctgy

38. y*—x=cosy
41. xy=ctgy

44. y* +x* =siny
47. siny=T7x+3y

4-6. Find y".

L. I1.

1. y=In(5+2x) . y:(x_7)—1

2. y=co§3x 2 y=e™

3y =xsinx, x,=7/2 3 y:lenx,x0:1/3
x =5(t —sint), :

4. { X =sin2t;
y=5(1-cost). 4. {y:coszt.

5. 2x3+co§y:4y 5. ctgy=2x—5y

6. Xy =2y 6. x*+y° =3x
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1.9 L Hospital’s Rule
Let f(x) and ¢(x) are two differentiable functions at the point x, such that
Q'(x)#0.
Theorem 1(L’Hospital’s Rule) 1f }1_)111 f (x):}ijlxl @(x)=0 and the limit of a

quotient of the derivatives (hm S )j exists, then lim f (x) f (x)
=% ¢'(x) =0 g(x) o ¢'(x),
L Hospital’s Rule says that the limit of a quotient of functions is equal to the limit
of a quotient of their derivatives, provided that the given conditions‘areisatisfied. It is
especially important to verify the conditions regarding the limits of f'(x),and ¢(x)

before using I’Hospital’s Rule. L’Hospital’s Rule is also validifor one-sided limits
and for the limits at infinity or negative infinity.
L Hospital’s Rule can be used every time when a quotient of functions satisfies

S is‘an indeterminate of type (0/0)
9'(x)

or (oo /o) and it satisfies the conditions of Theorem. 1 then lim /() = lim A - ()
X—)XO @ (x) x—)xo @ (x)

To uncover the indeterminate form of the types (oo — OO), (0- ( ) ( ) ( )

the conditions of Theorem 1. For example, if

. . . . b
additional algebraic transformations and properties a” =" =",
. lim 7 (x) ,
lime/™ =e™*  are required.
X—>X)

Example 1 Find the limit if it exists.

_ 2x 2 .
o) lim*—Ltnx b) lim—= ¢) lim(x*Inx)
x—1 ex_e x—)oox_|_ex
1 1 . L
d) lim| —— e) lim(l+ x)n~
x—0 X e _1 X—>00
Solution

a) Since lirrll(x2 —1+Inx)=0, linll(ex —e) =0, we can apply I’Hospital’s Rule:

1
2 2 ' 2x+—
> 1+1nx:(9):hm(x l+Inx) lim X :3.
x—1 ex —e 0 x—l1 (ex _e)! [N ex e
b) Since limxe™ = oo, lim(x + e4") =00, we can apply I’Hospital’s Rule:
. xe™ 0 . e 4+ 2xe™
lim —=|— |=lim———
X% x4 @ 00 oo 14 4e

Since lim(e™* +2xe™) =00, lim(1+4e* ) =co the limit on the right side is also

X—>0 X—>0

indeterminate and a second application of I’Hospital’s Rule gives
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o |4 4e™ X—00 16e™ x—>m 47

. e+ 2xe™ 00 C 27 +2e* + 4xe™ 1+x
Im————=| — |=lim =lim )
o0

Since lim(1+ x) =0, 11m4e =00, the limit on the right side 1is also

X—>0

indeterminate and a third apphcatlon of ’Hospital’s Rule gives
l+x (o) 1. 1
lim =| — |==lim =

X—>0 4e
c¢) Substitutingx =0 in the function, we get the indeterminate form of the type

(O : oo) . We transform the expression under the limit sign and apply /’"Hespital’s Rule.
3 2
limx*-Inx=(0-00)= hmln—f = (Sj = liml 2 AimE =0,
x—0 x—0 x o0 x—0 x _2 x—>0 _2
d) Substituting x =0 in the function, we get the indeterminate form of the type

(oo - oo) . We transform the expression under the limit signvand apply 1’Hospital’s Rule:

1im(l— ! ):(oo—oo)—hm 9 4k (QJ
-0\ x e =1 x>0 X(e ) 0

We simplify the expression and see that a seecond application is unnecessary:

e—1-x (0 : e -1 0 ) e’ : 1 1
lIim——=| — [=lim——— =) — [=lim———=lim =—.
0 x(e* — 1) 0) 0" —1+xe" 0y *02e" +xe" +02+x 2

e) First notice that as x — oo, the given limit is the indeterminate form of the type

(ooo). To uncover the indeterminate form of this type, additional algebraic

lim f(x)
. . b Ina® bl : x> :
transformations and properties a’ Ze"* =" lime/™ = are required.
X—>X
1 —ln(l-#x) In(1+x) lim In(1+x)
1 1 1 1 1 1

lim(1 + x)™n~ =(oo )—hme“ =lime ¥ === x|
X—>00 X—>00 X—>00

Substituting x — oo in“the function, we get the indeterminate form of the type
(o0 / o0)and we can apply, F*Hospital’s Rule:

1 1
[onln(l + x) =(fj:nm /(x+1) . x
X—>0 lnx
Then
1 iy InC1+2)

lim(1+ x)hx === hr =¢ =g,
X—>0

Exercise Set 1.9
In exercises 1 to 48 find the limit if it exists.

3752 Y pe - . —2arctgx
L m® 37x +4x+2 2 lim e+e -2 3. hm/—g
= x" =5x+4 0 ] —cos2x el 1
1 3 1
4. linll x! 5. lirrg xHinx 6. lim(x+2%)"
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36

ex3_1_x3 . 1 2 . €7x—1
im—— 8 lim| ——ctg'x 9. lim
- sin® 2x 0 ( w8 j =0 1g3x
_  d i 3 5
10. 1im 28X 11, i ZHTO) L cosx
0 x —sin x x>l 1-x 20 X7 —sinx
. tgx x Inx
13. lim 14. lim<- 15. lim—
Hg 1g5x x>0 3 X0 3/;
16. tim— 2% 17, lim 24T 18, limil SO 7*
0 ctg(7x/2) yoto Iy -3 x0" x8in 7x
19. lim(l - j 20. lim|— -~ | 21, lim( : —izj
=0\ x e -1 2\ ctgx  2cosx =0 xsinx x
22. limxsin> 23, lim=2E RS 24, lim(l —cosx)-crgx
X—>00 x X—> x
25. lirrll Inx-In(x—1) 26. 1irr01(x -Inx) 27, limx'e™
_ —si . tg3
28. lim8X X 29, lim8X 75X 30. 1lim&2
x>0 2sin x + x x>0 4x —sin x 5 1gSx
r
. In(x+5 - :
31, limnx+d) 32, lim—X 33, lim| 1 -
X—>00 ,4/x +3 x—0 X >0\ x Ssinx
Clg——
2
34. ling(arcsinx - Ctg X) 35. linl1(x SN 36. lim xsinE
X—> X—> X—>0 X
fgx _ x X 1/x? .
37, lim<—¢ 38 lim 1 39, lim—o !
0 fgx — X x>0 ] — ye* x> Qarctgx” — 1w
X X 4 7 —2arctgx
40, tim e DesR e R(TXIA) iy P20
x—0 x4 x—>2 x—2 X—0 1n(1+1/)€)
. . Inx 1
43. }g{.}(” — 2arctgx) ‘Inx 44, lxlgll(l — x) 45. }gg(ln x)x
X 3x 2x-1
46. lim|Ind 47, lim[ 22 48, lim[ 22
x>0 X x>0\ x4+ 3 x>\ 3y 4+ 3
Individual Tasks 1.9
1-6. Find the limit if it exists.
L. II.
I limPe=D I limnsinx

4 In(e* —e”)

2. lim(l—ctgx)
x>0\ x

7 (7 —2x)°




3. llrrol(l ) -ctgx P lim( 1 _LJ
4. limx-ctgmx ~ix-1 Inx

. iHo(. - 3. }Ll’ll/lz sin(2x —1)-tgrx
. lim(sinx

x>0 4. llng(x Inx)

liml 2% o8 x.» 3
6. lim 3 5. £1£1(}(cos2x)x2

6. hm( lgx j
x—0 X

1.10 Taylor and Maclaurin Polynomials
If a function y = f(x) has derivatives of the n order inclusivelyyin some interval

containing the point x = a, then it can be represented as a‘sum of a polynomial of
degree n and a remainder term R (x):

4 (n)
@ = f@+ H -+ LD o LBy g ()
where f(x)= f(a)+f( )( )+f”( )( a)2+--~+L'()(x—a)” i1s called
n!
Taylor polynomial and R (x) = J; (M)f')( W E e (a; x).

Formula 1 1s called Taylor formula with the remainder term in the form of
Lagrange. If a =0 then Maclaurin formula can be obtained

O " 0 (n) O (n+1) n+
21 n! (n +1)!
The followmg representations of some elementary functions are widely used for
the calculations of limits'and an approximation of the functions at the given point.

2 3 4 n £
X X X e
1. € =l+igmmg—af—+—+ X", Ee(0; x)

...+ +
20 31 41 nl o (n+1)!

3 5 7 1y 2l () e
2. sifiv=ge o+ L D" x +( ) a cosé, £e€(0; x)
3 st 2n-1)! (2n+3)!
2 4 6 n_2n ntl  2n+2
3 cosx=1-—+ 2 2 4. ( D'x +( ) al cosé, & €(0; x)
2! 4! 6! (2n)! (2n+2)!
2 3 4 _1\ln 1\ n+l
S TGS P T S S PRI S M SV G A S P
2 3 4 n n+l1 (1+§)
1 2 n-1 x”
5, —=l4+x4+x"+...+x""+ —, £e(0;x)
I=x (1-2)
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6. (1+x)" :1+nx+”(”2_"1)xz+...+”("—1)(n—2);--(n—m+l)xm+
m:

+ n(n—1)n-2)--(n-m)(A+ &'

m+l
x", £Ee(0; x
(m+1). (0
An approximation of the given functions can be represented as follows:
N N x’ . . x x’
e'~=l+x; e =l+x+—; sinx=x;, SInx~xx——; coSx~l——;
2 x4 x2 X x2
cosxrl-—+—; In(l+x)=x; n(l+x)=x——; JVIi+x~l+=——,|x<I.
2 24 2 8
Example 1 Find the limit lin(}(iz - ctg2xj , if it exists.
X—> x
Solution
: 1 ) (1 1 . (A4 cosxuf'1l cosx
lim| — —ctg"x |=lim| ——cigx | —+ctgx |=lmf——= — + — =
0\ X 0\ X X 0% smx J\x  sinx

. sinx—xcosx sinx+xcosx .. 1 XX x X
=lim , : . =lm— | Vxe—+——R, |- x| 1-——+——-R, | |X
x>0 xXsin x xXSin x =0 x 3l 5! 2 4!
X x xt
X[ | X——+——-R, |[+x|1-—+——-R, |{=
31 5l 2 4!
zliml x’ 11 +x* 1.1 + R | x| 2x—x° l+l +x° l+i - R |=
=0 x? 2 6 5! 4 31 21 5! 4!
(2 2
m

Exercise Set 1.10
In exercises 1 to 4 expand the polynomial in powers x — x,,, using Taylor formula.
I P(x)=x"—ata:5x>~4x+1,x,=1

2. P(x)=x"+4x"-6x-8,x,=-1
3. P(x)=x-3x"+7x+2, x,=2

4. P(x)=x"-4x"+7x-11, x,=2

In exercises 5 to 8 find the first three terms in the expansion of a given function
in powers'x = 2. Find approximate values of the function at the given points.

5. f(x)=x —5x +x, £(2,]) 6. f(x)=5x+3x+x°, £(1,99)
70 (x)=2x"—4x +3x" +x, £(1,96) 8 f(x)=3x"—4x’+x"+1, £(2,2)
Iniexercises 9 to 12 expand the given function in powers x using Taylor formula.

9. y=+l+x 10.

y=xe"
11. y=tgx

12.  f(x)=(x"-3x+1)’
13. y=arcsinx

In exercises 14 to 16 find the limit using Maclaurin formula.
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Inx — _ 2
14 lim— % 75 im0+ x)—x+0,5x
e —1-x-0,5x =0 x(1—cos2x)

x 2
16. lim—S —1=*¥=0>x

=0 In(x +1)— x +0,5x

Individual Tasks 1.10
1-2. Expand the polynomial in powers x — x, using Taylor formula.

3-4. Expand the given function in powers x using Taylor formula.
5. Find the limit using Maclaurin formula.

L. IL.
1. P(x)=3x"-2x"+x* —11x +4, 1. P(x)=5x"=2x"-3x"+6x-9,
x,=-—1 x, =1
2. P(x)=7x"—4x> +6x+5, 2. P(x)=2x" =8x" +5x+1,
x,=-1 X, =—1
3. f)=+x 3. f(x)=arccosx
4. f(x)=arctgx 4. f(x)=cos3x
5 lim x(In(1 + x) — x) N (cozsx —140,5x%)x>
=0 sin2x—2x =0 ¥ 1 —x*—0,5x"

1.11 Using the Derivative and. Limits when Graphing a Function
Definition (monotonic function) 1f ' (x,)< f(x,) whenever x, <x,, then f 1s an

increasing function. 1If f(x))> f (a7 Wwheénever x, <x,, then /' 1s a decreasing
function. These two types of functions are also called monotonic.

Theorem 1 (increasing/decreasing test)

(alf f ’(x) > 0 on an interval (a; b), then y = f(x) is increasing on that interval.

(b) If f'(x)<0 on an intetval(a; b), then y = f(x) is decreasing on that interval.

Definition (Critical mumber and critical point) A number x =x,, at which
f'(x,) =0 or does notexist 1s called a critical number for the function y = f(x). The
corresponding point (x,5 f(x,)) on the graph of y = f(x) is a critical point on that
graph.

Definition (Relative maximum (local maximum)) The function y = f(x) has a
relative maximum (or local maximum) at the number x =x, if there is an open
interval (a; b) around x = x, such that f(x)< f(x,) forall x in(a;b) that lic in the
domain of y = f(x). A local or relative minimum is defined analogously.

Definition (Global maximum) The function y = f(x) has a global maximum (or
absolute maximum) at the number x =x, if f(x)< f(x,) for all x in the domain of

y=f(x). A global minimum is defined analogously.

Theorem 2 (first-derivative test for local maximum (minimum)) Let y = f(x) be
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a function and let x =x, be a number in its domain. Assume that such numbers a
and bexist that x, €(a; b) and
1. y= f(x) is continuous on the open interval (a; b).
2. y= f(x) is differentiable on the open interval (a; b), except possibly at x = x, .
3. f'(x)>0 for all x<x, in the interval and is negative for all x>, in the

interval.
Then y = f(x) has a local maximum at x =x,.

A similar test, with “'positive" and "negative" interchanged, isfused for a local
minimum.
Theorem 3 (the second derivative test) Suppose f"(x) is continuous near x = Xx, .

(@) If f'(x)=0 and f"(x)>0, then y = f(x) has a local minimum at x = x, .

(b) If f/'(x)=0 and f"(x)<0, then y = f(x) has a localimaximum at x = x, .

Example 1 Find the intervals on which the function y=w’ <3x’ is increasing or
decreasing. Find the local maximum and minimum values of y = f(x).

Solution If y=x"—3x",then ' =3x" —6x =3x(x—2).

To use the first-derivative test we have to. know where f '(x) >0 and where
f '(x) <0. This depends on the signs of the two factors of f '(x) , namely x and
x—2.

Sign of denvative

W’

Behavior of function

We divide the real linefinto intervals whose endpoints are the critical numbers
x=0 and x=2. A plus Sign indicates that the given expression is positive, and a

minus sign indicates that.it is negative. It means that y= f(x) is increasing on
interval x € (—o0; 0)Aa}(2; £90) and decreasing on interval x € (0, 2). Consequently,
y = f(x) has alocal maximum at x =0 and local minimum at x =2.

Y. (0) = 071s"a Jocal maximum value of function and

y..(2)=2"-3.2=8-12=—4

is a local minimum value of function.

Definition (Concave upward) A function y= f(x) whose first derivative is
increasing throughout the open interval (a;b) is called concave upward on that

interval.
Definition (Concave downward) A function y = f(x) whose first derivative is

decreasing throughout an open interval (a;b) is called concave downward on that

interval.
Definition (Inflection point and inflection number) Let y = f(x) be a function
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and let x=x, be a number. Assume that there are numbers ¢ and b such that
a<x,<b and
1. y= f(x) is continuous on the open interval (a;b);
2. y= f(x) is concave upward on the interval (a; xo) and concave downward on
the interval (x,; b) or vice versa.
Then the point (xo; f (xo)) is called an inflection point or point inflection. The

number x = x, 1s called an inflection number.

y B V4 B
IR
g I |
f 0 4 Lo o>~
=2 | |
| |
A A ) |
| T "
y | |
0 X 0 X I I
x=-1| | x=1
(a) Concave upward (b) Concave downward
Figure 1.13 Figure 1.14

Note that when a function is concave upward, it is shaped like a part of a cup. It
can be proved that where a curve is concave upward, it lies above its tangent lines
and below its chords, as shown in Figure 1.13(a). If a curve is concave downward, it
lies below its tangent lines and aboye its,chords, as shown in Figure 1.13(b).

Theorem 4 (concavity test) (a)If /*(x)>0 for all x in (a;b), then the graph of
y = f(x) is concave upward on (a;b).

(b) If f"(x)<0 for allxWin (a;b), then the graph of y= f(x) is concave
downward on (a; b) .

Theorem S Let = f(x) be a function and let x = x, be a number in its domain.
Assume that numbers @ and b exist such that x, €(a; b) and

1. y= f(x) 1sicontinuous and differentiable on the open interval (a; b) :

2. f"(x)=000r f"(x) does not exit.

3" (%) >0 (f"(x)<0) forall x<x, on the interval and f"(x)<0 (f"(x)>0)
for all & > x, in the interval.

Then the point (xo; f (xo)) is an inflection point.

Example 2 Find the intervals of concavity and the inflection points of function
y=x"=2x"-12x" —6x+5.

Solution If y=x"-2x"—12x" —6x+5, then
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Y =4x> —6x" —24x—6;
V' =12x" —12x =24 =12(x* = x—2) =12(x = 2)(x +1).
To use the concavity test we have to know where /”(x)>0 and where /" (x)<0.
This depends on the signs of the two factors of f "(x) ,namely x+1and x—2 . We

divide the real line into intervals whose endpoints are the numbers x =—1 ahd x=2.

A plus sign indicates that the given expression is positive, and a minus sign indicates
that it is negative.

Sign of second denvative

+ —_ +
1

< 1 N\ 2 \/

Behavior of graph

[

It means that the graph of y= f(x) is concave upward on the interval
x € (—o0; —1) U(2; +00) and concave downward on thé mterval.x € (-1, 2). We find
the values of the function at the points x =—1 and x =2
() =1+2-124+6+5=2; y(2)=16-16—-48—-12+5=-55.
The point (2;—55) is an inflection point Since the curve changes from concave
upward to concave downward there. Also, (=1;2) is an inflection point since the
curve changes from concave downward to concave upward there.

Guidelines for Sketching a Curve
The following checklist is intended as,a‘guide to the sketching a curve y = f(x)

by hand. Not every item is relevant to every function. (For instance, a given curve
might not have an asymptote of possess any symmetry.) But the guidelines provide
all the information you need to ‘make a sketch that displays the most important
aspects of the function.
A.Domain
B. Intercepts
C. Symmetry
" even function
" odd function
= periodic function
D. Asymptotes
= ertical asymptotes
= slant asymptotes
E. Intervals of Increase or Decrease
F. Local Maximum and Minimum Values
G. Concavity and Points of Inflection
H. Sketch the Curve

2x?

—.
x =1

Example 3 Use the guidelines to sketch the curve y =
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Solution
A. The domain is
D =(—o0; —1) U (-1;1)U(]; +0).
B. The x- and y - intercepts are both 0.
C. Since f(—x)= f(x), the function is even. The curve is symmetric about the y

axis.
D.

2 2
lim 2% :(fj: lim 25 = 2.

x—>too y _1 o0 X—>too x2
Therefore the line y =2 is a horizontal asymptote.
Since the denominator is 0 when x =+1, we compute the following limits:
: 2x’ 2 : 2x’ 2 e 2
lim ——=| — |=+w; lim ——=|—|=-00; lim =| — |=—;
x—>-1-0 x _1 +0 x—>-1+0 x _1 _0
. 2x ( 2 j

lim ——=| — |=+00.

=140 x° —1] +0
Therefore the lines x = +1 are vertical asymptotes.

2 2 2
kzlimf(x):lim( 2x :szlim( Q )zlimzizlimzzo

2 3 3

x>ty x—oo| x° —1] xotoo| ¥ — x x>0y x>0 x s
. L 2x? . 2x?
b:hm(f(x)—kx):hm ——=lim —=2.
xX—>*oo x—>too D x—>too X

It means that y = f(x) has not a'slant asymptote.
E.

(x2 —1)2 (x2 —1)2 '
Since f'(x)>0 when %<0 and f'(x)<0 when x>0, y= f(x) is increasing on
(—o0; = 1) U (=1L;0)and\décreasing on (0;1) U(l; + ).
F. The only, critical number is x=0. Since f"(x) changes from positive to

’ 252 ' 4x-(x2—1)—2x-2x2 4x
y: x2_1 = =

negative at 0,0,/ (0)=0 is a local maximum by the First Derivative Test.
G.

el Ax :_4.(x2—1)2—4x2-(x2—1):4

(x2 —1)2 (x2 —1)4 (x2 —1)3 .

Since 3x*+1>0 for all x, we have

f(x)>0 e x’-1>0s |x]>1
and
f"(x)<0<:>x2—1<0<:>‘x‘<1.
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Thus the curve is concave upward on the intervals (—oo; —1)U(l; +00) and
concave downward on (—1;1). It has no point of inflection since 1 and -1 are not in
the domain of y = f(x).

H. Using the information in E-G, we finish the sketch in Figure 1.14.

Exercise Set 1.11
In exercises 1 to 12 find the intervals on which the function is increasing or
decreasing. Find the local maximum and minimum values of the given function.

1L y=2x—6x"-18x 2. y=(x-20Qx+1)* 3. y:—xz;le”
4. y=xe" 5. y=xlnx 6. (y=x-¢

7 y=Q-x)x+l? & =§ifz P
10. y=3x-7 11. y=xIn"x 12. Y=o

In exercises 13 to 18 find the absolute maximum and absolute minimum values of
the function on the given interval.

13, y__ [0;4] 14. y=x—xvJ-x, [=40] 15 y=1100—*, [-6;8]

16, y=125E5 0] 17,y = 20 M 0:4] 18.y=tgx—x,[—£;£}
l-x—x" 4 4
In exercises 19 to 24 find the itervals of.concavity and the inflection points.
4 2
19. y=In(x*+2x+5) 20 y=— 21 y=-2
x =1 x—1
) =3t+1;
22, y=xte" 23 y=c 24. 7777
xX=r.
In exercises 25 to 35 use the guidelines of this section to sketch the curve.
x° A 6x+10 (x-1) Inx
25, y=—"—7 — 26. v=- ) 27 y=—r
4 x—3 4 x Vx
L 3x+2
28, p=es 29, y=3Y(x+3)x° 30. y= ’SC
x’
3
X
3L y=x-e" . y=R6x*—x° 33 y=—"—
y=x-e 32, y=46x"—x y 2x+1)
34. y=34x’-12x 35 y=In(x"+2x+2)

Individual Tasks 1.11
1. Find the intervals on which y = f(x) is increasing or decreasing. Find the local

maximum and minimum values of the given function.
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2. Find the absolute maximum and absolute minimum values of the function on
the given interval.

3. Find the intervals of concavity and the inflection points.

4-5. Use the guidelines of this section to sketch the curve.

L. I1.

2 — 2(1_
Ly=v—x Lo
2 y=x4—8x2,[—2;2] 2. y=x+3x, [—1;1]

1 3 _3x-12
3. y=2x"+— e 552

. 4 y=x-e L

4. y=x"-e -y
3

3 2 2 _ _ X
5 y:x +2x ‘|2'7X 3 5 y_3_x2

2x

1.12 Optimization Problems

The methods we have learned in this chapter for finding extreme values have
practical applications in many areas of life (a businessperson wants to minimize costs
and maximize profits; a traveler wants to minimize transportation time). In solving
such practical problems the greatest challenge,is eften to convert the word problem
into a mathematical optimization problem, by setting up the function that is to be
maximized or minimized.

Steps in solving optimization problems

1. Understand the Problem

The first step is to read the problem carefully until it is clearly understood. Ask
yourself: What are the given quantities?*What are the given conditions?

2. Draw a Diagram

In most problems it is ‘useful to draw a diagram and identify the given and
required quantities on the diagram.

3. Introduce Notation

Assign a symbol.to the/quantity that is to be maximized or minimized (let’s call
it Q for now). Also select symbols (a, b,c,...,x, y) for other unknown quantities and
label the diagram'with these symbols. It may help use initials as suggestive symbols,
for example, S\ for area, 4 for height, ¢ for time.

4. Express £ in terms of some of the other symbols from Step 3.

5. If O has been expressed as a function of more than one variable in Step 4, use

theygiven information to find relationships (in the form of equations) among these
variables. Then use these equations to eliminate all but one of the variables in the
expression for (0. Thus, O will be expressed as a function of single variable x.
Write the domain of this function.

6. Use the methods of Section 1.11 to find the absolute maximum or minimum
value of f(x). In particular, if the domain of f(x) is a closed interval, then the

Closed Interval Method can be used.
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Example 1 A cylindrical can is to be made to hold 1 L of oil. Find the dimensions
that will minimize the cost of the metal to manufacture the can.
Solution Draw the diagram as in Figure 1.15, where 7 is the radius and / is the

height (both in centimeters). In order to minimize the cost of the metal, we minimize
the total surface area of the cylinder (top, bottom, and sides). From Figure 1.16 we
see that the sides are made from a rectangular sheet with dimensions 277 and 4.

S
e N ; NN
\ D
i b» \\
h ( \\ 8 km
l \
R \\

= \
<« Area 2(m7?) AredRar)h B
Figure 1.15 Figure 1.16 Figure 1.17

So the surface area is S =27r> + 271k’
To eliminate /2 we use the fact that'the volume is given as 1 L, which we take to

be 1000cm’. Thus 7zr°h=1000, which gives h:IOOO/(mﬁz). The substitution of

this into the expression for S gives S(r)=27zr> + 2000 .
r

Therefore the functionsthat we want to minimize is
2000

S(r)=27r"+ , r>0.
r
To find the critical numbers, we differentiate:
' 4(zr* =500
ST {20+ 2200 gy 20 S 500
r r r

Then(S'(#)=0 when 77’ =500, so the only critical number is »=3/500/ r .
Since the domain of S(r) is (0;+), we can observe that S'() <0 for r <3/500/
and"§’(r) >0 for r>i/500/ 7, so S(r) is decreasing for all » to the left of the

critical number and increasing for all » to the right. Thus 7 =</500/ 7 must give rise
to an absolute minimum.
The value of corresponding to »=<3/500/ 7 is
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_1000_ 1000 _,.[500 _,

zr’ 7r(500 / 7z) V4
Thus, to minimize the cost of the can, the radius should be /500/ 7 cm and the

height should be equal to twice the radius, namely, the diameter.
Example 2 A man launches his boat from point 4 on a bank of a straight river, 3

h

km wide, and wants to reach point B, 8 km downstream on the opposite bank, as

quickly as possible (see Figure 1.17). He could row his boat directly aeross the river
to point Cand then run to B, or he could row directly to B, orshe, could row to

some point D between C and B, then run to B. If he can row 6k m / hyand run 8

km / h, where should he land to reach as soon as possible? (Weassume that the speed
of the water is negligible compared with the speed at which the manirows.)
Solution 1If we let x be the distance from C to D, then'the tunning distance is

DB=8—-x and the Pythagorean Theorem gives the “wowing distance as

: _ dist : . :
AD=~/x*+9. We use the equation time=——. Then the rowing time is
rate

Vx> +9 /6 and the running time is (8 —x) /8", so the total time T as a function of
X 18
Xh+9 8—x
+ :
6 8
The domain of this function 7'(x) is [0;8]. Notice that if x=0, he rows to C

and if x =8, he rows directly to B The derivative of 7(x) is
3 !
T'(x)= Vx +9+8 x| X 1
6 8

6t 49 8
Thus, using the factthat x>0, we have

T(x)=

X 1
= (0 4x=3/x"+9 < 16x* =9x% +81
6x2 +9

7x* =81 x=49/7.

The only, critical number is x=9/ J7. To see whether the minimum occurs at

T'(x)=0=

this_critical/number or at an endpoint of the domain [0;8], we evaluate at all three
points:
T(0)=1,5 T(9/7)=1+~/7/8~1,33 T(8)=73/6~142
Since the smallest of these values of 7'(x) occurs when x=9/ J7 , the absolute
minimum value of 7(x) must occur there. Thus the man should land the boat at a

point 9/ J7 km (= 3,4 km) downstream from his starting point.
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Exercise Set 1.12

1. Find the area of the largest rectangle that can be inscribed in a semicircle of
radius R .

2. Find two numbers whose difference is 100 and whose product is a minimum.

3. A farmer has 2400 ft. of fencing and wants to fence off a rectangular field that
borders a straight river. He needs no fence along the river. What are the dimensions
of the field that has the largest area?

4. Find the dimensions of a rectangle with perimeter 100 m whosesarea is as
large as possible.

5. Find the dimensions of a rectangle with area 1000 m> whose perimeter is as
small as possible.

6. A box with a square base and open top must have a volume of 32000 cm’.
Find the dimensions of the box that minimize the amount of the material used.

7. If 1200 cm® of the material is available to makes boxwith a square base and
an open top, find the largest possible volume of the box.

8. Find the dimensions of the rectangle of the largest area that can be inscribed
in an equilateral triangle of side L if one side of the rectangle lies on the base of the
triangle.

9. Find the area of the largest rectangle that'ean be inscribed in a right triangle
with legs of lengths 3 cm and 4 cm if two sides of the rectangle lie along the legs.

10. A right circular cylinder is inscribed in @ sphere of radius R. Find the largest
possible volume of such a cylinder.

11. Show that of all the isosceles.triangles with a given perimeter, the one with
the greatest area is equilateral.

12. Find the maximum area of a rectangle that can be circumscribed about a given
rectangle with length L and widthy /" .

Individual Tasks 1.12

L.

1. Find two_positive numbers whose product is 100 and whose sum is a
minimum.

2. Findathendimensions of the rectangle of the largest area that can be
inscribed in awcircle of radius R.

3. Auright circular cylinder is inscribed in a cone with height H and base
radius R . Find the largest possible volume of such a cylinder.
II.

1. Find a positive number such that the sum of the number and its reciprocal
1svas small as possible.

2. Find the dimensions of the isosceles triangle of the largest area that can
be inscribed in a circle of radius R.

3. A right circular cylinder is inscribed in a sphere of radius R. Find the
largest possible surface area of such a cylinder.
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ITI FUNCTIONS OF SEVERAL VARIABLES

2.1 Functions of Two Variables. Partial Derivatives. Directional Derivatives
and the Gradient Vector.
Definition A function of two variables is a rule that assigns to each ordered pair
of real numbers (x;y) in a set D a unique real number denoted by f(x,y). The set D

is the domain of f and its range is the set of the values that f takes on, that is
{f(x,»):(x,y)eD}.

Example 1 Find the domain and the range of z=1/9—x" - " .
Solution The domain of z is

D:{(x,y):9—x2 —y? 20} :{(x,y):x2 +y7 £9}
which is the disk with center (0;0) and radius 3.

The graph has equation z =+/9 —x* — y” . We square bothsidés of this equation to

>, or x>+ y>+z° =9, which we recognize as an equation of the

obtain zZ =9 —x" -y
sphere with center the origin and radius 3. But, sinee z >0 , the graph of z is just the

top half of this sphere.

Functions of any number of variables ¢an be considered. A function of n
variables is a rule that assigns a number z =,/ (x,,%,,...,x,) to an n-tuple (x,,x,,...,X,)
of real numbers. We denote R" by the set ofiall'such n-tuples.

Definition Let /' be a function of two variables whose domain D includes the
points arbitrarily close to (a;b). Then weusay that the limit of f(x,y) as (x;y)

approaches (a;b) is L and we/write : l)m(l ) f(x,y)=L if for every number & >0
x;3)(a;

there is a corresponding number 6 >0 such that if(x;y)eD and
0<+/(x—a)* +(y—b).<Inthen | f(x,3) - L|<&.
Other notations for'the limit in Definition are
limyf(x,y)=L and f(x,y) > L as (x;y) > (a;b).
y—b
If f is adunction of two variables x and y, suppose we let only x vary while

keeping y fixed,say y =b, where number b is a constant. Then we really consider a
function of.a single variable x, namely g(x)= f(x,D).
Definition If g has a derivative at x = a, then we call it the partial derivative of

f with_respect to x at (a;b) and denote it by f. (a;b). By the definition of a

derivative, we have
hm£: lim f(x-l—Ax,y)—f(x,y) :%ZZ; :f;(x,y)
A0 Ax A0 Ax ox
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Similarly, the partial derivative of [ with respect to y at(a;b), denoted by

fy'(a;b) , 1s obtained by keeping x fixed (x=a) and finding the ordinary derivative
at b of the function f(a,y):

A . _ .
Ay—0 Ay Ay—0 Ay ay y y

For a differentiable function of two variables z= f(x,y), we_define the

differentials dx and dy to be independent variables; that is, they can be given any
values. Then the differential dz, also called the total differential, is{defined by
dz=zdx+z dy= fl!(x,y)dx+ f(x,y)dy, Ax = dx, Ay=dy.
The differential du is defined in terms of the differentials d%, dy and dz of the
independent variables by
u=f(x,y,2): du = f(x,y,2)dx + f (x4, 2)dya f1(x, y,z)dz
Figure 2.1 shows the geometric interpretation of the differential dz and the
increment Az : represents the change in height of the tangent plane, whereas Az
represents the change in height of the surface’z = fi(x,y) when (x;y)changes from
(a;b) to (a+Ax,b+Ay).
If we take x = x, + Ax and y = y, + Ay 1n the formula of total differential, then the
differential of z is dz = f](x,y)(x — X)) 4f €, ¥)(V — ,) -

So, in the notation of differentials, the linear approximation can be written as
S(esy) = f () + K (s0) - vt £ (05, ) - Ay

: (a+Ax,b+ Ay, fla+Ax,b+Ay))

surface z = f(x, y)

i .

s

(@b, fla,b)) __|

/

(@+ Ax,b+Ay,0)

tangent plane
z = fla,b)=fi(a,b)(x —a) + f,(a, b)(y — D)

Figure 2.1
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Definition The directional derivative of u= f(x,y,z) at M (x,;y,;z,) in the

direction of a vector @ =(/,m,n) is lim AuM,) _ 8u(]£40)
MM, ‘MOM‘ da

, a=MM, if this limit

exists.
This derivative is found by the formula
ouM,) : :
T: u (M) -cosa +u (M) -cos f+u.(M;)-cosy,
a
cosazé, cosﬂ:@, cosy:4
@ @ g

The directional derivative shows the rate of change infthe function at the
particular point in this direction.
Definition If / is a function of two variables x and y, thenithe gradient of [ is

the vector function defined by Vf'(x,y) = grad f = ( fof ) .

The derivative in the direction of its gradient takes the'maximum value.
Example 2 Find the directional derivative of the function u =x+y* -z’ at the

given point M (1;2;—1) in the direction of thevector a= (2;— 6;3). Find the gradient

of u(x,y,z).

Solution We find particular derivatives at the point of M .
u =1, u (g2, 1) =1.
u, =2y, W', 2,21)=2-2=4.
u =-32°, ul@, 21)=-3-(-1)" =-3.

al =2’ +(~6) +3 =J4F36+0 =49 =7.

2 — 6 3 3
cosa =—==—; cosff=—=——; CoOSy =r=—.

a 7 a 7 ‘a‘ 7

Then the desired derivative is equal

&‘(_{40):1.&4(_%_33:%:_2
6/7] 7 7 7

Vu(x,y,z) = gradu = (u,,u,,u.) = (1,2y,-32%);

gradu(M,) = (ul, (M), u,(M,),u.(M,)) = (1,4,-3).

Exercise Set 2.1
Inexercise 1 to 6 find and sketch the domain of the function.

—+/1=x? 2 _ 2. z=arccos 3. z=arcsin(2x—
1. z \/1 X +\/y 1 ity ( »)

4. z=+y" —2x+4 5. z=Inx+Incosy 6. z:\/x2—4+\/4—y2
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In exercise 7 to 17 find the particular derivatives and total differential.

7. z=2xX —6x"y+y’ 8 z=xy-yx 9. z=In(x"+y%)
10. Z=arctg(y/x) 11. z=x" 12. 7= esin(4x2—3y)
13. z=xy+cosx—3tgx-Iny+5 14. z=lntgl 15. U=%
6x NESE S
x_
16. z=In(x* + y*) 17. z=cos—; y2
X +y

In exercise 18 to 20 find the directional derivative of the function‘at the given
point M in the direction of the vector a (M M ). Find the gradient of the function.

18. z=x-2x"y+xp° +1, M,1;2),a=(3;-4)

z
20. u=8-3x’+y* +z, M,(3;2;1), M,(5;8;4)

In exercise 21 to 24 calculate.

21. 3,122 +3,98 22 5,862 +8,11> 023.05,182 +11,97> 24. {/3,03* +3,87>

Individual Tasks 2.1
1. Find and sketch the domain of the function.
2-3. Find the particular derivatiyes and the total differential.
4. Find the directional derivative of the function at the given point M, in the

direction of the vector a (M M ). Find the gradient of the function.

5. Calculate.
I. I1.

1. z=arcsin(p7x)

. z=arccos(x+ )
z= 1n(3x2 —y4)

1
2. Zzarcctg(xyz) j ( ) . |
Cu=(x-y)y—z)(z—x
4

2Z
3. (xy) y oz ox
y Cu=—+———,M,1;1; 2),
4. u=1n(x+—j, M,(1;2;1), Xy z
22 M (8~ 1;—4)
M, (-2;3;5)

. 46,122 +7,98

n

5. {5,137 +11,91°

2.2 Chain Rule. Implicit Differentiation
For functions of more than one variable, the Chain Rule has several versions,
each of them giving a rule for differentiating a composite function. The first version

52



deals with the case where z= f(u,v) and each of the variables u and v is, in turn, a
function of a wvariable x. This means thatz is indirectly a function of x,

z=f (u(x),v(x)) and the Chain Rule gives a formula for differentiating z as a
function of x. We assume that it is differentiable.

Chain Rule (Case 1)
Suppose that z= f(u,v) is a differentiable function ofu and v, where
u=u(x), v=v(x) and are both differentiable functions of x.
dz 0z du 0z dv

Then z is a differentiable function of x and — = — - — + —+—,
dc oOu dx 0ov dx

Chain Rule (Case 2)
Suppose that z = f(u,V) is a differentiable function of u andw. , where u =u(x, y)

and v=v(x,y) are differentiable functions of x and y. Then

Implicit Differentiation
The Chain Rule can be used to give a mor¢.complete description of the process of
the implicit differentiation. We suppose that anyequation of the form F(x,y)=0

defines implicitly as a differentiable”function of x, that is, y= f(x), where
F (x, f (x)) =0 for all x in the domainyof f . If I is differentiable, we can apply

Case 1 of the Chain Rule to differentiate both sides of the equation F'(x,y)=0 with
respect to x. Since both x and y‘are functions of x, we obtain

dy _ Fi(xy)
dx Fl(x,y)
Now we suppose sthat_it is given implicitly as a function z= f(x,y) by an
equation of the form.#(x,y,z)=0.1If F and f are differentiable, then we can use the

Chain Rule to differentiate the equation F'(x,y,z) =0 as follows:
0z _ Fl(x,y,2) oz Fi(x,,2)

ox Fl(x,y,2) o F'(x,y,2)
The equation z = f(x, y) represents a surface S (the graph of /). Suppose f has
continuous partial derivatives. An equation of the tangent plane to the surface

z=,f(x,y) at the point P(x,,y,,z,) can be written as follows:
272 = f;c,(x09y0) (x _xo) + fy,(anyo) ’ (y _yo) .
The canonical equations of normal line to this surface, carried out through the
point P(x,,,,z,) Will be written down thus

X=X, V=Y, _Z—2Z

fx,(xoayo)_fy,(xoayo) -1

53



An equation of the tangent plane to the surface F(x,y,z)=0 at the point
P(x,,y,,2,) can be written as follows:
Fx,(xoayovzo) ) (x - xo) + Fy,(xoayo’zo) ) (y B yo) + F;,(xo’yoazo) ) (Z - Zo) =0.
The canonical equations of normal line to this surface, carried out through the
point P(x,,y,,z,) Will be written down thus
X=X VTV _ 275
F/(P) F(R) F.(B)

Exercise Set 2.2
In exercise 1 to 12 find the particular derivatives of the function.

22 . 2 u
1. z=¢""",x=acost, y=asint 2. z=3" arctgy, Xx=, y=uv
A4
3. z=tg’(x" +4y), y:sin\/; 4. Z=arctg1, ¥ =Xxcos’ x
X

5 z=x"4+2xy—-y",

e

1
— 2_ = —_— =
x=cos2t, y=arctgt 6. [z =cosQggftx"—y), x t’y Int
2
7. z:x_,x:u—2v,y:2u+v 8. Z:,/xz—yz,x:uv’y:ulnv
y
9. Z:ElI‘CCOSz, u=x+Iny, v:—2e‘x2 10. 2:3“2_3Sinv’ U =XCOSY, v:x/y
v
2 2
11 z="1 u=In(x>—y%), v=uxp 12. z=v—,u=x2—4\/;, v=xe’
% u
In exercise 13 to 16 checkaf the function satisfies the given equation.
Xy 0z 0z 2x+3y 0z 0Oz
13. z = , X—+y—=z M z=—"—, x—+y—+2=0
x+y ox oy X +y ox Oy
y 1 0z 1 0z =z
15. z=xlnz, x@er@:z 16. = v  ox _'a_:_z
X ox "7 Oy (x +y) X ox y oy

In exercise 47 t0,21 find an equation of the tangent plane and the normal line to
the given surface atithe specified point.

17. Swz=%"+2y>+4xy-5y-10, M (-7;1;8)
18. "S:z=4y’ +4xy—x, M,(1;-2;7)

19 S:z=x"-y>—4x+2y, M,(3;1;—2)

20. S:Z=x2+y2—4xy+3x—15,Ml(—1;3;4)

21. z =%(x2 -y%), M,(3;1; 4)

Individual Tasks 2.2
1-2. Find the particular derivatives of the function.
3. Check if the function satisfies the given equation.
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4. Find an equation of the tangent plane and the normal line to the given surface
at the specified point.
I. IL.

Loz=e"In(x+y),x=t,y=1-0" | | ;= Y412 x=usinv, y=vsinu
2. 2x2=3y* +5xy— y’x+x° =37=0

2. sin(xy)—x"—y»*—=5=0

Xy (92 0z 1% 8
3. z=—"—, x_—+y_—=z =xln=, x4y
X+ y Y ox oy 3,z—xlny, x8x+ (3y —
4. S:x* -y’ +2° —4x+2y=14, 4. S: xyz> +2y* +3y2+4=0,
M(3;1; 4) M, (0; 2; —2)

2.3 Higher Derivatives
If f is a function of two variables, then its partial derivatives f(x,y) and

f7(x,y) are also functions of two variables, so we canconsider their partial
derivatives (f),, (f)),, (/). and (f]),, whichare «alled the second partial

derivatives of f .If z= f(x,y), we use the following notation:

0 0z, 0z o\ ez 0’z ' e
_(_)_ _(Z ) = x_x’ & (Z_x)y :nyﬁ
ox Ox oy ox 8x8y

0 82 82 0 0z, 0z 'y

- =(z ) PYAYW :_2:(Zy)y:
ox 8y 8y8x oy oy 0Oy

2
Thus the notation £ (x,y) (or 0z
! ax0

) means that we first differentiate with respect

to x and then with respect to y ,Wheteas'in computing /7 (x,) the order is reversed.
Clairaut’s Theorem Supposc'z, is defined on a disk D that contains the point
(a;). If the functions z] 4and 2, are both continuous on D, then
4 . - .
z,(a;b) =z} (a;D).
Partial derivatives.of order 3 or higher can also be defined. For instance,

A
w=(23), =
8y dyox )

Then the differential d*z of z= f(x,y), also called the total differential order by
two, 1s defined by

2 2 2
d’z :8_ dx’ +2 0z dxdy+a— dy’.
oy

ox’ Ox0y

Exercise Set 2.3
In exercise 1 to 12 find the differential d°z of the given function.

1. z=arctg(x—3y) 2. Z=ln(5x2—3y4)
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3. Z=cz‘gl3 4 z=x"+xy+y —4Inx-10lny
X
5. Z=ln(x+«/x2+y2) 6. z=f(t),t=x"+y"
7. z=x"+y -3xy—4x+6y—7 8 z=x+y —6xy—39x+18y+20
9. z=¢e" 10. z=2x"-3y" +xy+3x+1
11. z=xnZ 12. z=x"+8y’ —6xy +5
X
In exercise 13 to 15 check if the function satisfies the given equation:
_ : o'u "o'u
_ (x+3y) " "o o :2 _
13. u=e """ sin(x+3y), Suy, +u), =0 14 u=sin"(x—2y), 4E—$
I5. x*-ul +2xy-ul +y*-ul =0, u =§

Individual Tasks 2.3
1-2. Find the differential d*z of the given function.
3. Check if the function satisfies the given equation.

L 1I.
1. z=2x"+xy—3y" +3x+1 Iz =x"+2y"+32" —2xy+4x+2yz
2. Zzarctgx+y 2 z=e'(siny+cosx)
I—-xy 3. z=In(x+e™),
et b 0z o
X'zl +2xy-zy + Yz =0 ox xdy dy o

2.4 Maximum and Minimum Values
Definition A function fof two variables has a local maximum at the point (a;b)

if f(x,y)< f(a;b), when (%;y) is near (a;b). The number f(a;b) is called a local
maximum value. It f(x;9)> f(a;b) and (x;y) is near (a;b), then f has a local
minimum at the.point (@;b) and f(a;b) is called a local minimum value.

If the inequalities in Definition are used for all points (x;y) in the domain of 1,
then f has‘an absolute maximum (or absolute minimum) at (a;b).

Theorem If / has a local maximum or minimum at (a;b) and the first-order
partial derivatives of f* exist there, then f(a;b) =0and f(a;b)=0.

Thus the geometric interpretation of Theorem is that if the graph of [ has a

tangent plane at a local maximum or minimum, then the tangent plane must be
horizontal.

Definition A point (a;b) is called a critical point (or stationary point) of f if
fi(a;b)=0 and f(a;b) =0, or if one of these partial derivatives does not exist.
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The theorem says that if f has a local maximum or minimum at (a;b), then
(a;b) is a critical point of /. However, as in the single-variable calculus, not all

critical points give rise to maxima or minima. At a critical point, a function could
have a local maximum or a local minimum or neither.

The following test, which is proved at the end of this section, is analogous to the
Second Derivative Test for functions of single variable.

Second Derivatives Test Suppose the second partial derivatives of f are

continuous on a disk with center (x;y,), and suppose that f'(x,;y,)=0 and
S (x5 ,) =0 (that is, (x,;y,) is a critical point of f*). Let
_ S (xg5 o) fx’;(xo;yo)
- fy,;,c(xo;yo) fy,;(xo;yo) .
(a) If A>0 and £ (x,;y,) >0, then f(x,;,) is a local minimum.
(b) If A>0 and 1 (x,;y,) <0, then f(x,;y,) is adocalmaximum.
(c) If A<O, then f(x,;y,) is not a local maximum or'minimum.
Note 1 In case (c) the point (x,;y,) 1s called @ saddle point of f and the graph of

f crosses its tangent plane at (x,;,).
Note 2 If A =0, the test gives no information: " could have a local maximum or

local minimum at (x,;,), or (x,;y,) could be a saddle point of /.
Note 3 If fis a function of three/variables, Second Derivatives Test has the

following form. Let M  be a critical pointoff . We will compose the so-called Hesse
matrix
Ja®y)  fo(My)  fo(My)
H(Mo) = fy’;(Mo) fy’),/(MO) fy,;(MO) .
faMy) (M) f2(M)

The basic minors of the matrix can be denoted by
SfaMy)  fo(M)
Fn(My) £, (M)
(a) If A, >0, A,;>0, A,>0,then f(M,) is a local minimum.

(b) If (A, <0, A, >0, A, <0, then f(M,) is a local maximum.

Example 1 'Find the local maximum and minimum values and saddle points of
z(x,y)=2x"—12xy +3y° —18x -6y +3.

Solution We first locate the critical points:

2, =(2x" —12xy+3y” —18x—6y+3) =6x"~12y-18;

: A, =det H(M,).

Alzfx_,:c(MO)’ A, =

=—12x+6y—6.

’
y

z) =(2x" ~12xy + 3y’ —18x— 6y +3)
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z

~ =~

0
0

z =

<

Setting these partial derivatives equal to 0, we obtain the equations{

6x>—12y-18=0 x'=2y-3=0 x*=2(2x+1)=-3=0 x'—4x-5=0,
& S &
—-12x+6y—-6=0 —2x+y-1=0 y=2x+1 y=2x+1.

A 4.5 _4£16+20 436 _4+6,

2 2 2 9)
xzﬂ:—l xzﬂzi

2 or 2
y=2-(-D+1=-1 y=2-5+1=11

The two critical points are M, (—1;— 1) and M, (5;1 1).

Next we calculate the second partial derivatives and'A :
Z),c,x = (Z;),x = (6x2 —12_)/ —18), = 6(x2), —-0-0= 12x,

637 ~12y-18) =0-12(y)~~0=2-12;

y V.

=—12(x) $0=0=-12;

~  ~— ~—
=
I
—_ —_—
L
[\
=
+
(@)
<
I
(@)
~ ~—"

zi,=(2)), =(-12x+6y-6) =046(y), —0=6
_ | Xl __r " " " o _
A_ Z" Z" _Zxx.Zyy—ny.Zyx_12'x'6_(_12)'(_12)_72x_144-
yx Yy

Since A(Ml(—l;—l)) =72:(-1)=144=-216<0, it follows from case (c) of the
Second Derivatives Test that the point A (-1;-1) is a saddle point; that is, z(x, y) has
no local maximum or minimum at M, (-1;-1).

Since A(M,(541))=72-5-144=216>0 and
zl (M,)=2z (5:11)=12-5=60>0, we see from case (a) of the test that

Zpin (133) = 2(8;11)= =200 is a local minimum.
Definition (The extremum of a function z = f(x, y) found under a condition
@(x,y)=0wis called a conditional extremum. An equation ¢(x,y)=0 is called

constraint (side) equation.

If the constraint equation ¢(x,))=0 is solvable with respect to x or y, then the
problem of finding the conditional extremum is reduced to finding the extremum of a
function of single variable.

If the constraint equation is not solvable with respect to its variables, then they
form the so-called Lagrange function, which is investigated for an extremum.
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Theorem Let fand ¢ be functions of two variables with continuous partial
derivatives at every point of some open set containing the smooth curve ¢(x,y)=0.
Suppose that ', when restricted to points on the curve ¢(x,y)=0, has a local
extremum at the point (x,;y,)and that grad ¢(x,, y,)# 0. Then there is a number A
called a Lagrange multiplier, for which

gradf(xo, yo) = ﬂ,-gmdgo(xo, yo).

If we introduce a Lagrange function F(x,y,A)=f (x, y)+ﬂ,(p(x, y) then the
vector equation grad f(x, y)=A-grad p(x, y) in terms of its compenents ¢an be
rewritten by a system of three equations in the three unknowns:

Fl(x,y,A4)=0,
Fy’(x,y,ﬂ.) =0, (1)
F(x,y,4)=0.

Theorem Let M (x,,y,,4,) be a solution of the system (1) and
d*F(x,y) = FL.(x,y,A)dx" + 2F}, (x, y, L) dxdp F, (x, y, A)dy’

(a) Ifd’F(M,)<0, then the function z ="f (x, y) has a local maximum at the
point (x,;¥,).

(b) Ifd’F(M,)>0, then the functiontz = f (x, y) has a local minimum at the
point (x,;¥,).

(c) Ifd’F(M,)=0, then the testgivesno information.

Example 2 Find the extreme (values of'the function z=16—-10x—-24y on the
circle x* + 3> =169.

Solution We form the Lagrange function

F(x,A) =16 —-10x —24y + A(x* + y* —169).
Setting partial deriyatives equal to 0, we obtain the equations

F!(x,y,A4)=0, -10+2x1 =0, x=5/4,
Fi(x,y,4) =0, 1-24+2y1=0, <iy=12/4, SN
FryA)=0. [ +y7-169=0. |25 144 0
AN
AP =1,

Sx=5/1,
y=12/A.
We find a differential of the second order:
d’F(x,y) = Fu(x,y,A)dx* + 2F) (x,y, A)dxdy + F) (x,y,A)dy*;
" " " 2 2 2
Fo=22, F,=0, F, =24 = d°F(x,y)=2A(dx" +dy").

A ==1,x=-5y =-12.
A=1x,=5y,=12.
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We determine the sign of the second differential at the stationary points

M, (=5;-12) and M,(5;12).
d’F(M,))=-2(dx’ +dy*)<0 = z__ =z(M,)=354.
d’F(M,))=2(dx* +dy*)>0 = z_ =z(M,)=-322.

If / is continuous on a closed, bounded set D in R*, then f attains an, absolute
maximum value f(x;;y,) and an absolute minimum value f(x,;y,) at some points
(x;33,) and (x,;y,) In D.

We have the following extension of the Closed Interval Method.

To find the absolute maximum and minimum values of a continuous‘function f
on a closed bounded set D :

1. Find the values of f at the critical points of f in D.

2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is'the absolute maximum value;
the smallest of these values is the absolute minimum value.
Example 3 Find the absolute maximum and minimum values of the function

f(x,y)=x"—2xy+2y on the rectangle D:{(x,y): 0<x<3, 0Sy£2}.
Solution Since f is a polynomial, it is continuous on the closed, bounded
rectangle D, so the last theorem tells us there ‘are,both an absolute maximum and an

absolute minimum. According to step 1,.we fitst find the critical points. These occur
when

o, =2x -2y,
{ fy=-2x+2,
so the only critical point is (1;1) , and the value of'itis f(L;1)=1.
In step 2 we look at the values of /' on the boundary of D, which consists of four
line segments L, L, , L, 4, shown in Figure 2.2.

On L, we have y=0"and f(x,0)=x",0<x<3.

0,2) . 2 (3,2)
Ly L,
(0,0) L, (3,0) e
Figure 2.2 Figure 2.3 2

This is an increasing function of x, so its minimum value is f(0;0) =0 and its
maximum value is f(3;0)=9.0n L, we have x=3 and f(3,y)=9-4y, 0<y<2.
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This is a decreasing function of y, so its maximum value is /(3;0)=9 and its
minimum value is 1(3;2)=1.0n L, we have y=2 and f(x,0)=x" —4x+4,0<x<3.
By observing that f(x,0)=(x—2)>, we see that the minimum value of this
function is f(2;2) =0 and the maximum value is f(0;2) =4. Finally, on L, we have
x=0 and f(0,y)=2y,0<y<2 with maximum value f(0;2)=4 and minimum
value f(0;0)=0. Thus, on the boundary, the minimum value of / is 0'and the

maximum is 9.
In step 3 we compare these values with the value f(1;1) =1 atthe critical point

and conclude that the absolute maximum value of / on D is{f(3;0)=9 and the
absolute minimum value is f(0;0) = f(2;2) =0. Figure 2.3 shows the graph of f .

Exercise Set 2.4
In exercise 1 to 8 Find the local maximum and minimum values and saddle points
of the given function.

1. z=x"+y"—6xy—39x+18y+20 z=x ¥3xy7 —15x—-12y+3

2.
3. u=x"+y" +z2-4x+6y-2z 4, 025> +2y"+22+8yz—z+8=0
5. z=yx -2y  —x+14y-2 6. %z=xyy —x’—y+6x-3
7. 8.

X+ +z —4x-2y—-4z-7=0 z=x"+2xy -y’ —4x+2

In exercise 9 to 12 use Lagrange multipliers to find the maximum and minimum
values of the function subject to the given,constraint.

9. z=2x+y"-(1-x), x+y=2 10. z=16-10x-24y x*+y> =169
11.z=l+l,X+y=2 12 z=x"+xp+y° —5x—4y+10,
Xy x+y=4

In exercise 13 to 15 find the absolute maximum and minimum values of f on the
set D.

13. z=x"-29%+4xp—6x+5; D:x=0,y=0,x+y=3

14, z=4(x<p)-x"—y*; D:ix+2y=4,x-2y=4,x=0

15. z=&" -9 +2xy—4x; D:ix—y+1=0,y=0,x=3

Individual Tasks 2.4
1. Find the local maximum and minimum values and saddle points of the given
function.
2..Use Lagrange multipliers to find the maximum and minimum values of the
function subject to the given constraint.
3. Find the absolute maximum and minimum values of f on the set D.
L. I1.
l. z=3x+3y" - 9xy+6 l. z=x"+8)—6xy+5
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2.z=x"—y " dx—y=1 2. z=x+2y,x*+y*=5

3. z=x"+2xy—y* —4x+2; 3. z=x"+2xy—4x+8y;

l_):y:x+2,x=4,y=0 l_):x:0,y=0,x:1,y:2
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