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The use of the recursive Kalman filter for restoring missed values and time series
frequency unification is discussed for the use case of biometric data collected from
the user-grade devices to monitor the mental and physical load on the user while
working with some software or hardware product. Specifics of applying filter to the
biometric data is considered, as well as simplifying the implementation with the high-
level pykalman software library.

Working with a computer, whether it is interacting with a specific application or
simply with a graphical shell, involves cognitive, visual and motor processes. Catego-
ries of the same name can be distinguished for the loads experienced by the operator
in the course of work.

A promising approach to determining the effectiveness of the user's work is to
measure the user's body parameters associated with physical and cognitive load (for
example, heart rate, blood pressure, skin electrical conductivity, B-rhythms of the
brain, etc.) during work. Until recently, the use of this approach was limited by the
low prevalence and high cost of the required equipment, but recently a significant
number of devices with biometric sensors have appeared in the area of fitness and en-
tertainment (photoplethysmographic heart rate sensors in fitness trackers and smart
watches, consumer devices that register gaze direction or brain electric activity, etc.).

All these devices have the following advantages from the researcher’s point of
view [1, 2]:

e they are capable of continuous monitoring,

e they allow transmitting data to a personal computer,

e they widely available on the market due to mass production.

However, given that biometric measurements are indirect and are affected by ex-
traneous external and internal factors [2], at least paired measurements are appropri-
ate (for example, galvanic skin response measured in pair with heart rate). Therefore,
the use of a heterogeneous set of biometric data obtained from several unrelated
sources, aimed at building a model from the most complete set, creates additional
problems, since it usually turns out that some time series have a higher sampling rate
than others do.

Diftferent-frequency time series of data require preliminary transformation. In this
case, either the data of lower frequencies are interpolated to the upper frequency [3],
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or the data of higher frequencies are aggregated to the lower one. Depending on the
parameter type, a higher frequency is aggregated into a lower frequency by either av-
eraging, summing, or taking a representative value.

Time aggregation leads to the loss of information originally present in the sample,
and the loss of information, in turn, reduces the accuracy and efficiency of the fore-
cast [4]. In addition, frequently used interpolation methods do not fully utilize all
available information about the sample. Interpolation requires reducing a low fre-
quency variable to a higher frequency by recovering some missing measurements.
The formation of missing data can be performed either immediately in the process of
comparing and analyzing the measurement results (using a model that reflects the be-
havior of the corresponding biometric parameter), or in two stages, when the missing
data are first interpolated (based on the existing model or statistically), and then the
comparison and analysis of the results use the resulting time series [4]. Obviously, no
method can be called universal.

To unify the time series of biometric data, we tested the use of the recursive Kal-
man filter (KF). This recursive filter calculates an estimate of the state of the indica-
tor for the current cycle of work, using the estimate of the state (in the form of an es-
timate of the state of the indicator and an estimate of the error in determining this
state) on the previous cycle of work, as well as measurements on the current cycle.

Each iteration of KF includes two phases: extrapolation and correction. During
extrapolation, the filter obtains a preliminary estimate of the state of the system
xk|k—1 for the current step according to the final assessment of the state from the
previous step (or a preliminary assessment for the next step according to the final as-
sessment of the current step, depending on the interpretation). This preliminary esti-
mate is also referred to as the prior state estimate, since observations of the corre-
sponding step are not used to obtain it. In the correction phase, the a priori extrapola-
tion is supplemented with relevant current measurements to correct the estimate. The
corrected estimate is also called the posterior state estimate, or simply the estimate of
the state vector x’k. Usually, these two phases alternate: extrapolation is performed
based on the results of the correction until the next observation, and the correction is
performed together with the observations available at the next step, etc. However, if
for some reason the observation turned out to be unavailable, then the correction
stage can be skipped and extrapolation uses the unadjusted estimate, (a priori extrapo-
lation). Similarly, if independent measurements are available only in separate cycles
of work, corrections are still possible (usually using a different observation matrix
Hk).

To test the effectiveness of unification of biometric data time series using the
Kalman filter, the Python library pykalman was used, which contains the implementa-
tion of KF as a smoothing filter.
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Figure I - The result-(;f applying the filter

Both KF and its smoothing implementation are often used with parameters al-
ready set. In the case of the pykalman library, the KalmanFilter class can be initial-
1zed with any subset of the normal model parameters and used without fitting. All un-
defined parameters are set to their default values.

A smoothing implementation can include "future" measurements as well as past
ones at the same computational cost O(Td’®), where T is the number of time steps and
d 1s the dimension of the state space.

In addition, the KalmanFilter class of the library implements the expectation max-
imization (EM) algorithm. This iterative algorithm is a way to maximize the probabil-
ity of observed measurements.

In real biometric equipment, a temporary failure of one of the sensors occurs (for
example, a short-term loss of contact), and the use of KF and EM allows you to han-
dle this scenario.

An example of the application of KF on the time series of the galvanic skin re-
sponse of the user [5] is available in fig. 1. Note that the use of KF is more effective
for slowly changing biometric indicators, such as skin electrical conductivity and
heart rate, and the least effective for such time series that are difficult to predict, such
as electroencephalogram rhythms, which are the summed electrical noise of a subset
of neurons in areas of the cerebral cortex.

Thus, it can be said that the use of frequency unification of the biometric data
time series 1s appropriate when conducting complex biometric testing to assess the
loads experienced by a human operator due to the heterogeneity of available bio-
metric equipment and the need to use a set of available biometric indicators, and the
Kalman filter is one of effective methods for solving this problem.
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The article highlights the problem of diabetes. Existing methods for determining
the level of glucose in blood are considered. Much attention is paid to non-invasive
methods for determining blood glucose. The method of near infrared spectroscopy
was applied in practice. Based on the results obtained, this method has a place to ex-
ist, and it is also necessary to be improved to create a universal non-invasive glu-
cometer.

B Mupe coxpansieTcss TEHAECHIMS pOCTa YMCIIa JIOAEH, CTPAalolUuX CaxapHbIM
nuadbetoM. B cpegHem 3TOT mokasatens 3a roa cocrasisieT S %. OdununanpHas cra-
THUCTHKA TIOKa3asna, 4yTo 3a nepuos ¢ 1980 r. mo 2014 r. yucno mroaei, 6oeromux ca-
XapHBIM TUA0ETOM, YBETUYHIOCH 0 422 mmuinoHoB. 3a 20 et B benapycu konuye-
CTBO OOJIBHBIX C CaXapHbIM TuabeToM BbIpociio B 3 pasa. [lo cocrosHuto Ha 1 sHBaps
2019 r. Ha yuére Haxomunock 336 teicsay yenoBek. K 2030 roay caxapHelil guader
CTaHET 7-il IPUYMHON CMEPTHU BO BCEM mupe [1].

VYxon 3a OonbHbIMU U JieueHue nuadera (DCCT) nmokaszanu, uto Oojee 4acThiid
KOHTPOJIb TJIFOKO3bl M MHCYJIMHA B KPOBH MOXKET MPEAOTBPATUTh MHOTHE U3 JIOJTO-
CPOUYHBIX OCIIOKHEHUM caxapHoro auadera [2].

Kak BbICOKMH, TaK U HU3KHWW YPOBEHb Caxapa B KPOBHU HETATUBHO BO3IACHUCTBYIOT
Ha OpraHu3M uyesjoBeka. HemocTaTouHblid KOHTPOJIb TUNEPTIIMKEMUN (YPOBEHb TIIIO-
KO3bl B KPOBH CJIMIIKOM BBICOK) MPUBOJUT K MHOXECTBY OCJIOXHEHUH, CBSI3aHHBIX
IJIaBHBIM 00pa30M C MOPAXKEHUEM MENKUX W/ MM KPYMHBIX COCYI0B (MUKpPO- U MaK-
poanruonatuu). Jlojaroe HaXOXKIECHUE YEJIOBEKAa B COCTOSSHUM THIOTIMKEMUU (CHU-
’KEHHE YpOBHS TJIIOKO3bl HUXKE 3,3 MMOJIb/JI) B KOHEYHOM HUTOTe MOKET MPUBECTU K
TUIIOTJIMKEMHUYECKO KoMe. J[JTenbHasi TUIIOTJIMKEMUS IPUBOAUT K OTEKY BEILIECTBA
TOJIOBHOTO MO3T'a, MOSIBJICHUIO MEIKOTOYEYHBIX T'€MOpPpPAruii B MO3roBbl€ TKaHH, YTO
B KOHEUYHOM MTOTE SIBISCTCS] MIPUYMHON CTPYKTYPHBIX HApYIICHHUH B KJIETKaX KOPBI
Mo3ra, ux ruoenm [3].

MeTton onpeneneHus: ypoBHs INIFOKO3bl B OPraHUYECKHUX KUJIKOCTAX (KPOBb, JIMK-
BOD U T.II.) HA3bIBAETCS TJIFOKOMETPHS, & YCTPOUCTBO — TIIFOKOMETP.

Ha cerognsitiHuii IeHb CYIIECTBYIOT TAKHE TUIIBI TTTFOKOMETPOB:

— (poTOMETPUYECKUE — YPOBEHB IJIIOKO3bI B KPOBU YEJIOBEKA OTNpEAeIseTcs B 3a-
BUCHMOCTHU OT OKPACKH TE€CT-30HbI. T€XHOJIOTUs 3TUX MPUOOPOB, pa3pabOTaHHBIX J10-
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