Онищук Д. А.

Научные руководители: к. т. н., доцент Савчук С. В.; к. т. н. Парфиевич А. Н.

СИСТЕМА АКТИВНОГО РЕГУЛИРОВАНИЯ ЭЛЕКТРОГИДРАВЛИЧЕСКОГО ПРИВОДА НАВЕСНОЙ СИСТЕМЫ ПОСЕВНОГО АГРЕГАТА

В процессе выполнения рабочего процесса посевного агрегата электрогидравлическому приводу навесной системы сельскохозяйственной машины необходимо поддерживать при работе плоскопараллельное движение относительно почвы и обеспечивать горизонтальное положение несущей рамы относительно обрабатываемого горизонта. Соблюдение данного параметра без дополнительных решений проблематично, т. к. при движении и выполнении заданного технологического процесса в полевых условиях незначительное отклонение плоскопараллельного состояния несущей рамы дает значительное изменение глубины посева на противоположном конце машины, что может привести к снижению урожайности до 40 %.

Для нивелирования данного аспекта работы посевного агрегата современные мировые производители в конструкцию машины вводят дополнительные передние опорные колеса, что позволяет укоротить рабочую базу и, как следствие, существенно сократить погрешность и отклонения от регламентированных значений посева (риунок 1)

Рисунок 1 — Агрегат комбинированный почвообрабатывающее-посевной модели АППМ-4 с передним опорным колесом

Существуют конструкции, обеспечивающие копирование рельефа поверхности поля опорным колесом при регулировании минимально возможного давления подпора в гидравлических цилиндрах навесного устройства трактора

(рисунок 2). Используя данную конструкцию, усложняется не только гидронавесная система трактора, но и вся конструкция агрегатируемой машины, что в свою очередь отражается на увеличении ее итоговой стоимости.

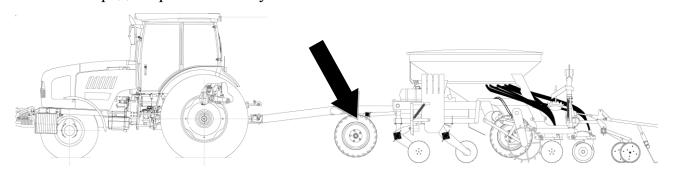


Рисунок 2 — Схема агрегата почвообрабатывающе-посевного модели АППМ-6 с передним опорным колесом

Ряд производителей для сокращения влияния имеющихся погрешностей при выполнении сева не предусматривают передних опорных колес (не во всех случаях), а используют навесную машину с короткой базой (рисунок 3). Применение такой конструкции функционально ограничено несколькими функциями, как правило, не более одной.

Рисунок 3 – Сеялка пневматическая универсальная модели СПУ-6 навесная

На протяжении ряда последних лет использование в сельском хозяйстве энергонасыщенных тракторов только увеличивается, что позволяет развивать данное направление. Проектируются и работают на полях сельскохозяйственные машины большой массой или грузоподъёмностью (свыше 10 000–15 000 кг), ши-180

риной захвата от 6 до 18 метров, с габаритными размерами до 10–15 метров в длину. При использовании особенно таких машин необходимо предусматривать наличие устройства, отвечающего за сохранение оптимальной глубины посевов, но при этом оно не должно значительно увеличивать себестоимости машины и сохранять ее конкурентоспособность на рынке.

Для упрощения конструкции, снижения издержек и повышения конкурентоспособности сельскохозяйственных машин необходимо проведение работ, делающих возможным решение данной задачи другими методами.

В этой связи весьма актуальным является применение способа бесконтактного копирования рельефа поверхности поля с использованием акустических методов измерения расстояния, реализованном на почвообратывающем посевном многофункциональном агрегате модели АПП-6М «Берестье» с тракторами тягового класса 5 («БЕЛАРУС–2522», «БЕЛАРУС–3022» и др.). В рамках полевых испытаний поведена проверка функционирования электрогидравлической системы высотного позиционирования в составе посевного агрегата и дана оценка качества заделки семян.

Экспериментальные данные, полученные при сравнительных испытаниях почвообратывающего посевного многофункционального агрегата АПП-6М «Берестье» с трактором «БЕЛАРУС-3022», приведены в таблице 1 [1].

Таблица 1 – Результаты сравнительных испытаний посевного агрегата

таолица т тезультаты еравнительных испытании посевного агрегата		
Наименование показателя	Значение показателя	
	по результатам испытаний	
	Позиционное	Высотное регули-
	регулирование	рование навесного
	навесного устройства	устройства
Глубина взрыхленного слоя, см	4,6	3,9
Глубина заделки семян (среднее значение), см	4,5	3,5
Расстояние между растениями в ряду, см	21,4	19,6
Количество растений на 1 м. п., шт.	4,9	5,5
Количество семян, заделанных в рабочем слое и двух смежных с ним слоях толщиной 110 см., %	67,8	72,3
Ширина междурядий (расстояние между сошниками), см	62,4	62,4
Ширина ленты, см	12,5	12,5
Количество рядов в ленте, шт.	2	2
Неравномерность по глубине почвообработки, см	± 3,9	± 2,1

В результате сравнительных полевых испытаний установлено, что посевным агрегатом, оснащённым системой бесконтактного высотного регулирования, заделывание семян в рабочем слое увеличивается на 4,5 % по сравнению с позиционным регулированием навесного устройства. Это позволило уменьшить до 2 раз неравномерность заделки семян сельскохозяйственных культур и повысить их урожайность.

Список цитированных источников

1. Бесконтактное копирование рельефа поверхности поля рабочими органами сельхозмашин с использованием акустических методов / Е. Я. Строк [и др.] // Тракторы и сельскохозяйственные машины. $-2012. - \mathbb{N} \cdot 6. - C. 35-40.$