и создания геологического разреза и модели грунта использован инструмент «ГРУНТ» в программном комплексе «ЛИРА-САПР».

Научная новизна. При расчёте в программном комплексе имеется возможность учёта различных конструктивных особенностей элемента, а также особенностей строительных материалов, использование актуальных норм, применяемых в современном строительстве. Работа с инструментом «ГРУНТ» позволяет учитывать особенности природного грунта, а также позволяет учитывать взаимное влияние примыкающих зданий.

Полученные научные результаты и выводы. В ходе работы были получены результаты расчёта осадки фундаментной плиты с учётом нагрузки самой конструкции, примыкающих зданий и особенностей грунта. Разработана методика выполнения расчёта и создания моделей строительных элементов и грунтов.

Практическое значение полученных результатов. Разработанных алгоритм помогает определять и анализировать напряженно-деформированное состояние фундаментной плиты и может быть использован в строительстве при проектировании и расчёте фундаментных плит на упругом основании.

РАСЧЁТ ПРОСТРАНСТВЕННОЙ СТЕРЖНЕВОЙ СИСТЕМЫ ПОКРЫТИЯ ИЗ СТАЛЬНЫХ ТОНКОСТЕННЫХ ЭЛЕМЕНТОВ

М. В. Самута (студент II курса)

Проблематика. Расчёта и анализ конструкции, как твердое тело, на статические и динамические нагрузки из стальных тонкостенных холодноформованных профилей; оптимизация параметров полученных результатов. Вывод о пригодности пространственной стержневой системы из стальных тонкостенных холодноформованных профилей в строительных целях.

Цель работы. Разработать методику расчета пространственных конструкций из стальных тонкостенных холодноформованных профилей, с учетом особенностей работы профилей под нагрузкой.

Объект исследования. Объектом исследования является пространственная стержневая система (купол) размерами R = 6,07 м; r = 0,5 м; с заданными конструктивными особенностями, который используется в современном строительстве, в основном для перекрытия больших пролетов с целью уменьшения расхода применяемых материалов и облегчения конструкций.

Использованные методики. Для расчета применяется программный комплекс SolidWorks. Инструмент — программа SOLIDWORKS для создания эскиза детали и её трёхмерной модели, интегрированный в неё модуль SIMULATION для выполнения статических исследований.

Научная новизна. При расчётах в программном комплексе SOLIDWORKS имеется возможность расчета и анализа конструкции как твердое тело. С учетом всех видов нагрузок строятся эпюры напряжений, перемещений и коэффициента запаса прочности, по которым можно оценить несущую способность конструкции. Есть возможность изменения характеристики деталей купола на стадии проектирования без затрат на изготовление и испытание опытных образцов.

Полученные научные результаты и выводы. В ходе работы были получены результаты расчёта продольных усилий в стержнях системы и перемещения узлов. Выполнен частотный анализ стержневой системы, определены собственные частоты и формы колебаний. В автоматическом режиме получены основные виды модели и спецификация элементов.

Практическое применение полученных результатов. Разработанный алгоритм может быть использован в строительстве при расчёте стержневых систем. В исследовании были определены расчетные усилия и по их результатам выбрали оптимальное поперечное сечение элементов конструкции купола.

О РАСЧЕТАХ КРУГОВЫХ ТРЕХШАРНИРНЫХ АРОК НА СНЕГОВЫЕ НАГРУЗКИ, РАСПРЕДЕЛЕННЫЕ ПО ПАРАБОЛИЧЕСКОЙ ЗАВИСИМОСТИ

Е. О. Бекиш (студент II курса), А. В. Крук (студент II курса)

Проблематика. Разработка методик расчета и анализ работы строительных конструкций и сооружений на внешние воздействия.

Цель работы. Разработка методики расчета трехшарнирных арок кругового очертания постоянной жесткости на снеговые нагрузки, которые для таких арок могут распределяться по параболической зависимости.

Объект исследования. Трехшарнирные арки кругового очертания постоянной жесткости, находящиеся под статическим воздействием снеговых нагрузок, распределенных по параболической зависимости.

Использованные методики. Статический метод расчета статически определимых систем, основанный на использовании уравнений равновесия системы в целом и отдельных ее частей. Формула Мора для определения перемещений, учитывающая влияние изгибающих моментов, поперечных и продольных сил.

Научная новизна. Разработанная методика позволяет выполнять расчет трехшарнирных арок, арочных покрытий кругового очертания постоянной жесткости и покрытий цилиндрической формы на снеговые нагрузки, которые для таких арок могут распределяться по параболической зависимости, находить усилия в таких системах и определять их деформированный вид.

Полученные научные результаты и выводы. Разработана методика расчета трехшарнирных арок кругового очертания постоянной жесткости на снеговые нагрузки, которые распределяются по параболической зависимости, позволяющая определять внутренние силы и перемещения точек в такого вида сооружениях.

Практическое значение полученных результатов. Разработанная методика позволяет определять и анализировать напряженно-деформированное состояние трехшарнирных арок, арочных покрытий кругового очертания постоянной жесткости и покрытий цилиндрической формы при действии на них снеговых нагрузок, распределенных по параболической зависимости; может использоваться в расчетной практике проектных организаций.