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GENERALREGULATIONS
When designing buildings and constructions of different purposes specialists 

have to possess fundamental knowledge of basic technical disciplines. Resistance of 
materials also belongs to such disciplines. The ability to create calculated schemes 
(models) of construction elements, to define reactions o f construction supporting 
devices and also to evaluate their strength and rigidity characteristics is gained by 
students after studying the main sections o f resistance of materials.

The standard plan for training students provides a small amount of school hours 
that makes possible to examine only elementary sections of resistance o f materials. 
Each student performs the calculated graphic works (CGW) on the main sections of 
the discipline.

Methodical instructions allow to study, taking into account the reference list, the 
main sections of a course and to apply theoretical material when performing a CGW. 
It is necessary to answer questions on the CGW’s subject and to be able to. solve test 
problems on its subject when defending the work. An exam in a course is held after 
the CGW are defended.

1 .REQUIREMENTS FOR WRITING CALCULATED 
GRAPHIC WORKS

1. CGW are carried out on separate sheets of A4 format.
2. The order of writing the CGW is: a title page; a task with the indication o f ini­

tial data and the schemes of structures; the text of calculations with necessary expla­
nations and calculated schemes; conclusions; references list.

3. Drawings and schemes are carried out following the rules of graphics and 
scales according to the standard of «BrSTU».

4. A text part is carried out in accordance with the requirements for text docu­
ments presentation. Pages are numbered. The calculations are carried out in a general 
way, size values are substituted. Numerical results with the Indication of, obtained 
values dimensions are written down. All the calculations are made with an accuracy 
o f one-hundredths of a unit.

5. Diagrams should be built on the same sheet of paper with the rated scheme, numeri­
cal values of ordinates and units of the calculated values should be indicated on the diagrams.

2. BRIEF THEORETICAL INFORMATION 
2.1. Short theoretical data

Internal forces at axial stretching-compression. Stress. Strength calculation
At stretching (compression) a direct bar (rod) in its cross-sections there is only 

one internal force factor - the longitudinal force which is defined by the method of 
sections. This force is equal to the algebraic sum o f projections to a longitudinal axle 
o f all external loadings applied to one of the cut parts o f the bar:

£ Z  = 0 ; F - N  = 0 ; N - F .
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In case of action of several loads, internal force is calculated: N  = Sif. Stretching (i.e. 
acting from a section) force is considered positive, compressing -  negative.

The law of longitudinal force change along the bar length is convenient to be 
presented graphically in a form of longitudinal forces N  diagram. When distributed 
axial loads with the intensity q acton a bar it is possible to use differential dependence 

dNq = ---- for checking the correct construction of N  diagram. The diagram allows to
dz

find out the greatest value of longitudinal force N  and the location of section in 
which it arises in cases when longitudinal forces in different lateral sections of a bar 
are not identical.

At stretching (compression) a bar in its cross-sections there are only normal 
stresses. To define them (when the value of longitudinal load is known) it is neces­
sary to know the distribution law of normal stresses in a bar cross-section. The prob­
lem is solved using a hypothesis of plain sections (Ja. Bernoulli's hypothesis): bar 
sections, plain and normal to an axis before deformation, remain plain and normal to 
an axis during the deformation too. This hypothesis suggests that all fibers in the lon­
gitudinal direction are deformed equally. Therefore we consider that at stretching 
(compression) a bar normal stresses are distributed on its cross-sections evenly. Con­
sidering that <7 on all cross-sectional area A  are constant, we obtain

N  = fodA=crfdA = cr-A,cr = — . (2.1)
A A A

At stretching stress is considered positive, under compression - negative.
When normal stresses in different cross-sections of a bar are not identical, it is 

reasonable to show the law of their change along the bar length graphically in a form 
o f a diagram of normal stresses.

Strength condition must be respected for all points of the calculated (rated) ele­
ment:

a < [a ] , (2.2)
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where: <T is calculated stress which arises in a constructional element under the in­
fluence of applied loads; M  is allowable stress that ensures safe, reliable and long- 
lasting work of a construction.

Strength condition at stretching (compression) looks like:
N  r ncr = — <[cr], (2.3)
A

where: A is cross-sectional area; N -longitudinal force in the specified section. 
Deformations and displacements. Stiffness calculation
The ability to calculate defonnations and displacements is necessary for stifness calcu­

lations and also for forces (reactions) determination in statically indeterminate systems.
Let’s consider longitudinal deformation of a bar.

Figure 2.2 -  Longitudinal deformation of a bar

We will allocate from a bar (figure 2.2) an infinitesimal element with d z  length. 
We will designate an element length increment as a result of deformation A {dz). The 
element length increment ratio to its initial length is called relative elongation or lon­
gitudinal deformation:

A( dz 
£  = — — 

dz
Experiments proved that there exists directly proportional dependence between 

longitudinal deformation and the normal stress acting in its direction for the majority 
of materials within elastic work. This situation carries the name of Hooke's law and is 
written down like this: <7 =  E e , where E  is the module of longitudinal elasticity (or 
Jung's module) - the physical constant of material characterizing its rigidity (it is 
measured in Pa or MPa).

For stretching (compression) of an element of infinitesimal length Hooke's law 
looks like:

(2.4)

A {dz) =
Ndz 
~ E A ’

where EA  is the magnitude called rigidity of a bar at stretching (compression). 
Change of length of a bar:

A/ = J
/

Ndz
~EA

(2.5)

If the bar rigidity and longitudinal force are constant along the bar length, from 
(2.5) we obtain:

N l
EA

(2.6)
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Generally, if laws of N , E  or ^change are different for certain sites of a bar, 
integration of expression (2.5) is made within every site and the results are algebrai­
cally summarized:

” (Ndz
^  = I J —  ■ (2.7)

f=i /. EA
Displacement of any bar section is equal to length change of the site concluded 

between this section and rigidly fixed support. Mutual displacement of two sections is 
equal to length change of the bar part concluded between these sections.

The function 8  — /(z ) th a t shows displacement S  of cross sections as their dis­
tance a from the motionless bar end (or the section which is conditionally taken for 
motionless) is graphically represented by a displacement diagram which is checked

by differential dependence^ =
da
d z

Bar rigidity calculation must implement a rigidity condition;
3 < [d l (2 .8)

where8  — ^  A/ is length charge of a bar (absolute deformation), \8] is allowable

value of displacement(it is usually set as some part o f full bar length).
Internal force factors determ ination under a direct cross (transvers) bending.

Strength calculations
The sections method allows to find shearing forces and the bending moments in any 

beam section under any load action. In strength calculation sit is required to know the lo­
cation of dangerous sections, i.e. sections where the internal forces or their adverse com­
binations, maximum in values, work. Therefore it is convenient to present graphically the 
distribution law of force factors along tire bar length using the diagrams.

Shearing force o f Q and bending moment of M are calculated as the algebraic 
sum of external forces projections or the moments of the external forces acting on 
one of the bar parts (left or right).

Rule of signs:
a) Shearing force of Q is positive if it is directed clockwise concerning section 

and is negative if it acts counterclockwise (figure 2,3).

Figure 2.3 -  Rule o f signs for determination of shearing force

b) Bending moment of M is considered positive if the bar element is bent by 
convex down, i.e. the stretched fibers are below. Negative bending moment bends an 
element convex (figure 2.4) up.
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Figure 2.4 -  Rule of signs for determinat ion of bending moment

Positive values of shearing forces lay above (postpone) from the basic line. The 
diagram of bending moments is drawn on the stretched fibers (positive values lay be­
low the basic line).

In most cases beams strength calculation is carried out on the greatest normal 
stresses that arise in dangerous cross section. Strength condition for beams which ma­
terial equally resists stretching and compression ['ey, ] = [<rc ] = [cr], looks like:

<2-9).t
where: Mmax is the bending moment, maximum on an absolute value, in dangerous 
section; Wx— axial section module with respect to (w.r.t) neutral axis of a beam; \o}~ 
the allowable normal stress.

The necessary value of axial section module is determined to select a beam cross 
section from a strength condition (2.9).

| M  I

M
According to the calculated Wx, a form of cross section is chosen (a rectangle, a 

square, a channel, a I-section) and its sizes are found.
For the beams which are strongly loaded close to the supporting structures and 

thin-walled sections where shearing stresses have big value, the calculation should be 
done not only on the greatest normal, but also on the largest shearing stresses. 
Strength condition on shearing stresses looks like (D.I. Zhuravsky’s formula):

(2.11)

where: \QmJ{ is the maximum shearing force (is accepted from a diagram of shearing 
forces); Sx is static moment with respect to neutral axis of the cut part of cross sec­
tion located on one side from the level at which shearing stresses are defined; Iris the 
inertia moment of the entire cross section with respect to axis: b is beam section 
width at the level where shearing stresses are defined t ;  [? ]-  the allowable shearing 
stress. It is usually accepted [r] = (0,5 + 0,6)[cr] for steel beams.

3. EXAMPLES OF THE TASKS SOLUTION
Example 1
For the step bar loaded by longitudinal axial loads as shown in the figure 3.1, a) 

it is required:
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1) to construct a diagram of longitudinal forces N;
2) to construct a diagram, of normal stresses a;
3) to construct a diagram of displacement 8;
4) to do a check of bar strength and rigidity.

It is given: « = 1,4 m; Fj = 70 kN; = 55 kN; q} = 40 icN/m; qj ~ 29 icN/m;

[< | = 130 MPa; [nc] -  160 MPa; E = 0,8-lO5MPa; A = 2500 mm2; k  = — ,
1000

Solution:
We draw a bar in scale with the necessary loads and sizes indication.

Figure 3.1 -  The scheme o f a step bar (a) and N (b), o (c), 8 (d) diagrams

1. We divide a bar into 3 sectors, beginning from the free end.
We designate sections in the chosen sectors.
We compose(constitute) expressions for longitudinal forces and stresses in the 

respective sections.
Sector i ; 0 < 2 7 < 1,5a.
„  N,

——q2 ■ z \>
A

whereA; = A -  area of section 1 
Withzj =0, N x — —q2 - Zj = —29 - 0 - 0  kN; ■

c r .~ ~  = 0 MPa.
1 A

With zt = 1,5a, N \ = -q2 -z, = -29-(1,5-1,4) = -6 0 ,9&V;
N \  _ -60,9-10* 
A ~  2500

= —24,36 MPa.

Sector 2; 0 < z? < 1,5a.
N2 = ~q2 • 1,5a -  F2 = -29 • (1,5 • 1,4) -  55 = -115,9 kN;

cr, = — whereri ? — 24 — area of section 2.
A
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n 2 -4 1 5 ,9 -Hr
2A  2-2500

Sector 3: 0 < z>, < 2a.

-23,18 MPa.

^3 F2 + Pj +^[ ' Zj, O', — ,
A i

where A} = 4A -  area of section 3.
Withz3=0,
N3 =■- q 2 • 1,5a- F2 + PJ 4- qt ■ z, = -29■ ( l,5-1 ,4)-55 + 70+ 40-0 = -45,9kN;

^3 =
—45,9-103 

4-2500
= —4,59 MPa;

Withz3 = la ,
N \  = ~q2 ■ \,5a - F2 + Fx + q1 • z, =  - 2 9 - ( 1,5■ 1,4) -  55 +  70 +  40 - (2 • 1,4) =  66,1 kN;

o 3™E x
4A

66,1-103
4-2500

= 6,61 MPa.

According to the calculations of longitudinal forces and normal stresses the dia­
grams are constructed (figure 3.1, b and 3,1, c).

2. We define absolute change of rod length.
Sector 1:

A/,
E-A,

= ^ d s , = -
E -A

-<h'1
2 E -A

zl = 1.5(2
Zj = 0

_ 1 -29-103-(1,5-1,4 f
2 0,8-i0u -2500-10^ 

Sector!:

— -0,32 -10 3 m (compression).

N 2 -1,5a N2-l,5a -115,9-103-(l,5-l,4)
2 ~ E -A 2 ~ E-2A ~ 0,8-10” -(2-2500-10-6)

= -0,608-10 3 m (compression). 
Sector 3:

Al, = f  N1 dz = f a~<h-l15 a - F2+Fl + qi-Z-: 
A E -A , 3 ■» E-AAE-4A

■dz,

( - ^ ■ i ,5 a - F 2+ p ;)-z3 + *?i ' z i

E -4A
z,= 2a

z3=0

(-29-103-(l,5 -l,4 )-55-103 + 70-103)-(2-1 .4)-f4 0 ' 1°

0,8-10“ -2500-10"1
= 0,035 -10 3 m (stretching).
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Absolute length change:
A/ = A/, + A12 + A/3 = (-0,32) + (-0,608) + 0,035 = -0,893 mm. 
Extreme value of deformation in sector III:

e -A
where OX- area of a diagram o f IV.
We find the extremum location in sector III from rigidly fixed support:

N \  66,M 0

<h
1

40-103 
1

'2

= 1,653 m,

<oN = ■~ • N \- z  = ~  ■ 66,1 • 103 - 1,653 = 54,62• 103 N ■ m.

All...,,
54,62.103

: 0,068-10 3 m (stretching).
E-4A  0 ,8’10u ■(4-2500-10~s)

We define displacement.
Section A displacement:
8a = 0 because the bar is rigidly fixed;
Section E displacement:
SE = A h extr =  0,068 mm;
Sr -  Ah  = 0,035 mm;
Sc = Als+ A lf= 0,035 + (-0,608) =-0,573 mm;
SD = Ah  + Ah + A/,= 0,035 + (-0,608) + (-0,32) = -0,893 mm.
According to the calculation the diagram of cross sections displacements is con­

structed (figure 3.1, d).
3, Checking the bar strength.
The diagram o  analysis shows that dangerous sections ■ are section! in 

p. C (in compressed bar area) and section in p. A (in the stretched bar area):
<yc = |<7’,j = 24,36 MPa < [<rc ] = 160 MPa,

<r* = cr\ =6,61 MPa < [aP\ = 130 MPa.
Both conditions of strength are implemented.
4. Checking bar rigidity.
Rigidity condition: S < [8],

fel
l,5a + l,5« + 2a

|-0,893 -10 3| 

1,54,4 + 1,5-1,4 + 24 ,4
= 0,128 ■10"3< k  =1-10^.

Example 2
Absolutely rigid bar that is suspended on two steel rods and has not movably 

hinged support is loaded by the concentrated force o fF  = 610kN. The linear bar

dimensions a, b , and height h are respectively 1,2 m; 1,8 m; 0,6 m. Areas ratio—  of
A

rods cross sections n=2, allowable stress is[cr] = 160MPa, material yielding limit is 
a T =240 MPa.
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It is required to choose rods sections from two equal lag angles and also to de­
termine value of coefficient of safety factor by the value of a rupture load.

Solution:
1. We construct die rated scheme of rods system (figure 3.2) in scale:

2. We establish the static indefinabilitv degree. We consider bar balance. The 
bar is in balance under the influence of force F  and four unknown reactions: 
N lt N 2> X a, Ya . But for the arbitrary forces plane system we can work out only three 
statics equations. It means that the static mdefinability degree is S  = 4 “ 3 - 1 .  The 
system is once statically undefinable.

a) In our case it is required to define only JV, and N 2, therefore we use one o f the 
three statics equations (of moments):

ZM a = 0; N t • a + N2 ■ b - F { a  +b)  = 0 ,
1 ,2 ^ + 1 ,8 ^  = 1830.

b) We work out the deformation scheme (figure 3.3).

Figure 3.3 -  Deformation scheme of rod system

From the deformation scheme we work out the additional deformation equation 
using the triangles similarity:

A/j _  a

l ,8A/j ~l,2Al2.
c) We express A/j and A/2 using Hooke's law through efforts in rods, their length 

and rigidity:



Taking into account ^ = /2 = hand —  = » the deformations equation takes the
A

form ofr
Nl = anMNz, 
jV, =1,337V2.

d) We compose the equations system which includes the static equation and the 
deformation equation:

fiV, +l,52jV2 =1525

From here:
iVj -1,331V2 = 0

jV>718 kN, 
N = S 4 0  kN.

3. We define the most stressed rod. For this purpose we compare stresses er, and <r2:
Ns N, a !- = —
Ax n-
N2

er, = — .
A

We compose the ratio:
(Tj N x 718-103 __—  = ----— = ----------- r = 0,7 =>£T <<T,.
cr2 n -N l 2'540 TO3 ' 2

The second rod is more stressed.
4. We determine rod cross-section area.
As tr2 > er, , we determine cross-section area A2:

N-, 540 TO3 fiAiio 2 I* n 2= 0,00338 m =33,8 cm .A ^ - ^ -
'[er] 160 TO6

Where[<7] =160 MPa.
5. In accordance with GOST 8509-72 we select the rod section that consists of 

two equal lag angles. We use a condition:
, A2 33,8 2

A, >■—*■ =------= 16,9 cm .
^ 2 2

hi our case4>* & 16,9 cm2.
The area o f an equal lag angle No 110x110x8, i.e. A  = 17,2cm2 is close. We 

define underload percent S :

M
For this purpose we determine stress er2:

100% .

<x, ,JA_
2a :

540 TO3
2 -17,2 TO3

= 157MPa
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Then
157-160

160
! 2 %,

what is admissible as|<5| =  2%<[<y] = 5%, where [5] = 5% is the allowable 
percent o f rod overload (underload). We accept an equal lag angle N® 110x110x8.

6. We find the cross-sectional area of the first equal lag angle Ay ,
Ay = n-At ,

A‘ > A  ̂ £ ^  = 33,8 cm\
1 2 2

In accordance with GOST 8509-72 we select the section o f an equal lag an- 
glehfol60xl60xll forw hich4‘ =34,4 cm2.

7. We determine the value o f a rupture load

a + b
We also calculate limit efforts in rods W,"”  and N : 

Nf“““ = 2 -Ay -<7T = 2-34,4• 10-4 
JVf“ = 2 -4 * -a r = 2 - \ l ,2-10'

240 -10 - 
1-4 240-106;

0651,2 m ,  
= 825,6 kN.

We substitute values IVf" and IVJ™ in a calculation formula o f a rupture load 
andwe obtain:

F  1651,2-1,2 + 820,8-1,8 n f 2  ^

We find the safety factor:
1,2 + 1, 8

Fp 1153-103 
' F  ~ 610-103

= 1,89.

Example 3
It is given: Compound section.
To define:
1) gravity center position of a section respectively to any axesX, y ;
2) inertia sections moment T^and I ¥crespectively to central axes xc and y c ;
3) principal central axes disposition U  saidV ;
4) principal central inertia moments;
5) to do checks l Xc + IYc = /„ + /„;/„„ = 0;
6) to construct an inertia ellipse.
To accept: channel No. 24; sheet:£>=2 cm; h = 18 cm ,

Figure 3 .4 -  Initial scheme
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Solution:
1. We write out all data required in further calculations from an assortment of 

rolling profiles tables:
Channel:

Sheet:

h — 24 cm ; 
b — 9cm;
4* =30,6 cm2; 
I x =  2900 cm4; 
7f =208 cm4; 
za = 2,42cm; 
7 ^ = 0 .

b ~  2cm ;
& = 18 cm;
As)=b-h = 2-U  = 36cm2 

k-b 3 18-237

Iy =

7,

12
b-h3
12

= 0 .

12
2-183

12

12 cm4

■-912 cm4

We draw section in scale 1:2. We denote the random (accidental) axes, and we 
define the gravity center o f the set section.

a) total area of section:
A = Acfi + Asll =30,6 + 36 —66,6 cm2.

b) coordinates of the gravity center of each section element in axes x  an A y  ;
%x = z0 =2 ,42  cm ;

h ,, 24= - aa- = —  = 12 cm; 
2 2

A
2

18 o = —  = y cm ;
2

y t= K .+ -£ -- --24 + --- 
2

25 cm.

c) the section static moments relating to axes x a n d y  :
Sx = Ach • y t +Ash -y2 =30,6-12 + 36-25 = 1267,2cm3; 
Sr = Ach -X, + Ash -x2 =30,6-2,42 + 36-9 = 398 cm3. 

d) gravity center section:
Sr 398 
A  66,6

= 5,98 cm;
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Sx = 1267,2 
A 6 6,6

= 19 cm.

Through the gravity center we draw axes xc and yc parallel to axesx,, y, andx2,
3V

2. We calculate inertia section moments about axes xc , y c .
a) The position o f the gravity center (GC) o f  each section element with respect 

to central axes:
mi = x, -  xc ~ 2,42 -  5,98 = -3,56 cm ;
«, =yt ~ y c = 12-19 ' = -7  cnr, 
m2 =x2 ~ xc = 9 -5 ,9 8  = 3,02 cm; 
n2 = y2 -  yc = 2 5 -1 9  = 6 cm.
b) using fee rule o f parallel axes translation, we define axial moments and cen­

trifugal inertia moment:
7V, = / A,t + - Ach + IXm + nl • Ask = 2900 + (-7 )2 • 30,6 +12 + 62 • 36 = 5707,4 cm4
7^ = 7 ^  +m,z -Ach + / r- + t4 -A sh = 208+(-3,56)2 -30,6+972 + 3,02z -36 = 1896 cm4 

■fxcYc ~ X̂Yj, mi 'Th ‘ Ach +X0-5j + m2 ' ni ' -4^ = 0 + (—3,56) • (—7) • 30,6 + 0 + 3,02x

x6- 36 = 1414,87 cm4
3. We determine the principal axes location using a formula:

tgKx = -
fjf;- “  A;

2-1414,87
5707,4-1896

-0,742;

ff= iare*g(-0 ,742) = -1 8 ,3 \

We draw the principal axes o f £7,-m̂  and
4. We calculate the principal inertia moments:

7” l 5707’4 i1 896 + 1 ^ 5707;4 _ ,  8%y- + 4 : (i 4 ]4, s?)2 = 380i ;7 ± 2373,5
A>J 2 2
/„ =6175,2 cm4 - two* value;
/„ = 1428,2 cm '-m in  value.
5. We check the calculations:
*0  l  Xc ^  ’C — ^ K J r ^ V

5707,4+1896 = 6175,2+1428,2;
7603,4 = 7603,4.

6) / „ = 0 :

Im=lxc~ lyc ■ sm2ff+7rrl, -cos2af=— ’y  —  • (-0,596)+1414,87■ 0,803 =0,34 = 0.

6. We build inertia ellipse. 
We calculate inertia radiuses:

i
6175,2
66,6

= 9,63 cm;
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P 7 = /l428,2
\ A  f  66,6

= 4,63 cm.

We draw obtained values on the principal axes and we build a momental ellipse 
(figure 3.5).

Example 4
The double-support beam is loaded by external loadings. It is required:
1. To construct diagrams of shearing forces Q and bending moments M;
2. To specify the position o f dangerous section of a beam.
3. For a I-shaped beam choose number of a rolling profile from strength condi­

tion and also to make check o f strength on shearing stresses. When calculating to ac­
cept for steel: [<?] =160 MPa, [r] = 100 MPa.

4. To. define geometrical characteristics of rectangular section, on condition of a 
ratio of the sides: h -=2b, where h -  height, b -  section width.

5. To calculate the weight o f both beams and to compare results. To reflect the 
reason of the choice of a beam with, this or that section in a conclusion (criterion -  a 
material consumption).

It is given: a= 2 m, b = 2 m, c — 2 m, F=  26 N, q = 30 kN/m, M - 38 kN*m.
Solution:

We work out (constitute) the equation of the moments with respect to a support A: 

- q : b ^ a + ^ - M  + RB-{a + b + c )~ F -a  = Q;

also we find reaction of the RB support:

M  + F -a + q -b -{a  + 38+ 26-2 4-30-2-^2+■

* a+ b + c  2 + 2 + 2
= 45 kN.
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We work out the equation o f the moments about a support B:

=  q - b ' \ c + ^ - M - R A'(a  + b + c) + F -(b  + c )^ 0 \

also we find reaction of the RA support:

F -{b  + c ) - M  + q ' b i c  + - \  2 6 ’(2-f-2>—38 + 3G-2-f 2+' ™]
Ra =— ------ ---------— = — ------ _ ----- .------ L ^ i  = 41kN .

ci •̂ ‘b'+c 2 + 2 + 2
Verification:
2 ^ = 0 ,  - ? - h - F  + ̂ + i ? s = -3 0 -2 -2 6  + 41 + 45 = 0, 0 = 0,
We break a beam into 3 forces sites (sectors).
We draw airy section on each of sites at distance of z and we consider a condi­

tion of balance of the cut part: .
Sector I, 0 < z; < a.
Qi = Ra =41 kN, M 1=Ra - z,;
Withz, = 0, M 1 = Ra -z1 = 41-0 = 0.
Withz, = a ~  2 m, M  = Ra ■ z, = 41 - 2 = 82 kN  - m.

Sector n , (i< z2<b.
z1

Q i~  R-a ~~ F  — M i — R j • (u  + z2) — F  • z2 — q •

Withz2 =0, 0 2= ^ - F - t f - z 2 = 4 1 -2 6 -3 O -Q  = 15fcV,
z2 02

M 2 ~ R a •(a + z2) - F - z 2” q'-“  = 41-(2 + 0 )-"26-0-30  -^ -  = 82 kN-m; 

Withz2 = h  = 2 m , 6 2  ~&a ~ ^  — q -z2 =41 — 26 — 30-2 =  -45 kN-m,
z.
-  . .  , , — 2 

Q2> 0, Q ’i< 0, therefore site 2 is an extremum. We find its location:
.Ql J I

q 30
We find value of the extreme moment:

M ^ R A a  + z ^ - F - z ^ - q ^ =  41-(2 + 0 ,5 )-2 6 -0 ,5 -3 0 -

M ’, = / f j '( a  + z2) - F - z 2- ? - ^ -  = 41-(2 + 2 ) - 2 6 - 2 - 3 0 - + -  = 52foV-m.

0,52

= 85,75 kN-m.

Sector III, 0 < zj < c.
Q ^ R s = -45 kN, Mi =^Rs -zix
Withz3 =0, . M 3= Rg-z3 = 45-0  = 0.
Withz, ~ c ~ 2 m , M \  =RS -z, =45-2  = 90 kN-m.



Figure 3.6  -  Scheme beam cm two supports and diagram of internal force factors 

Dangerous section: sector 3 at Z3 ~  2 m.

Find required moment of resistance::

%  =  = -9° : 10l  = 562,5 10r6 m3 = 562,5 cm3.
0 [<j ] 160 106

We select a I-section with the closest section module of Wx̂  597 cm3 for a range 
(assortment) of rolling steel (No. 33).

Since the accepted Wx = 597 cm3 is more than required 562,3 cm3, we don't car­
ry out check of strength on normal stresses.

Figure 3 .7 — Section of a I-shaped beam
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Tangent bending stresses are determined according to the Zhuravsky's formula:
Q-st 

r = — —
I x ■b{y)

where: Q -  shearing force in the considered section; Sx -  static moment of the cut 
part of cross section; Ix -  moment of inertia of all section about neutral axis; b -  width of 
lateral section of a beam at that level at which tangent (shearing) stresses is defined.

We will find
6 . c

max
max j  -i

*  x mubi
The static moment of the cut part of cross section is maximum for semi-section 

and on a range for a I-shaped section No. 33 is equal Sxm̂  339 cm3. At the same 
time section width at this level, is minimum and equal to bmp,=d=0,7 cm. Moment of 
inertia of I-shaped section w.r.t. neutral axis of A = 9840 c m . The maximum shearing 
force acts on sector!:

g U  = 0 3 =45 AN.
Then:

45T 0  ■ 339-10'"'
: 22,147 • 106 Pa < [r] =  100 MPa.

“ * I x - d  9840-Ur8 -0,7-10^
Strength condition on shearing stresses is satisfied.
5. We select a beam o f rectangular section with h 2b ratio. We consider that 

axial section module of rectangular section

w = » L .
x 6

From strength condition on normal stresses:
M

h
From here:

b>
2[er]

3-63,3-103
= 0,084 m = 8,4 cm.

2-160-106
Then h= 2b — 16.8 sm.
We calculate the weight o f a beam of standard (I-shaped) section and a beam of 

rectangular section ( p  = 7800-—-):

-4u = 33,9-4-1 =135,6 kg, 
where m0 -  weight (specific weight) is 1 m of a profile;

/j = hb ■ p  ■ 4a = 0,084• 0,168 • 7800 • 4 • 1 = 440,3 kg , 
i> 440,3

P, 135,6
= 3,25.

It is obvious that use of rolling I-shapid section allows to save considerably ma­
terial when ensuring necessary strength.
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Example 5
To construct, diagrams O , M  and N  for the flat frame represented in the figure 3.8,

Solution:
Frames, are the systems consisting of rigidly connected rectilinear rods. A frame 

axis -  the broken line. It is convenient to consider each straight section as a beam, 
however, in a frame, except bending moments M  and shearing forces Q , also 
longitudinal forces N  acts. Rules of signs for N  and Q also remain earlier accepted. 
For bending moments M  the rule of signs is usually not established and at creation of 
diagrams M  of ordinate draw on that side where the stretched fiber from a bend, 
(Note, Some authors consider convenient to build diagrams M from compressed 
fiber). For convenience any moment can be taken for positive.

DiagramsN„Q,M for frames build by a method of sections, applying, brought 
earlier for beams, rules.

Analytical expressions o f functions N ,Q ,M  write down seldom (for example, 
for determination of extreme values on curvilinear sites of diagrams). Usually 
diagramsN , 0 , M  build on points, calculating values in characteristic sections.

We define reactions o f support:

0 ; 0 ;

Tr — q • 2■ 1 +?n+F- 1 —6‘2*1+8+10-1 A
> = ----------------- — ------------------ — ------------------ — ---------------- =  4
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2 H = 0 ;  , . 2 i . 2 - B - H t r , . | , 5 = 0 ;

. ~ct • 2 • 1 + m + F -1 ~ 6 -2*1 + 8 + 10 1  .
F ,=  —--------------------= ----------------------- - 4  AA .
4 1,5 1,5

2 >  = 0; - X A- F  + q>2 = 0;
= “T7 + <7-2 = -1 0  + 6- 2 = 2 AW,

Check: V m k = 0; F ^ -2- F *■ 0 , 5 - ^ - 2 - - - 2 - m  + X A - 2 + f M = 0  ;
^  2 

4 - 2 - 4 - 0 , 5 - 6 - 2 - 1 - 8  + 2- 2 + 10 -1 = 0.
Reactions are found truly.
We choose characteristic sections at borders of sites and we determine in them 

values N , Q, M :
N ^ -Y a^ -4  kN; N2 ~-Ya -~ 4  wV; N3 =N4 = XA-q>2=  -10 kN;- 
^ = ^ = ^ = ^ = ^ = 4  kN;  W9=7V,0 = 0.
Building diagram (figure 3.8, b).
& = X A = 2 kN; 0 2 = X A~ q - 2 ~ 2 ~ 6 - 2 - ~ lO  kN; 
a = a = ^ = 4  kN ;Q 5=Q6 = F ~ 1 0  kN ; Q ^ Q ^ Q ^ Q ^ O .
Building diagram0 (figure 3.8, c). On the site 1 -2 the diagram crosses an axis.. 

We will determine the coordinate of a point o f intersection:
Q 220 = ^- = — = 0,33 m . 
q 6

Afj = 0 ; M 2 —X a ■ 2 - £ - 2 ~ - 2  = 2 - 2 —6 ' 2  = -8  kN - m;

M atr = X A>z1l- q ~ ^ -  = 2 - 0 , 3 3 - 6 - ^ ^ * = 0 , 3 3  AW-w; = M 2 = -8/ tW-m;

M5 = -F-1 = —10 kN-m;M6= M 7 = M g= 0 ;
M 9 = M J0 = »t = 8 AW-m..
We build a diagram A/ (figure 3.8, d).
At the correct creation of diagrams static balance of each node has to be ob­

served. We check balance o f nodes C and D (figure 3.9).

Figure 3,9 ~  Check of nodes 
The balance o f the nodes is observed.

21



4. THE TASKS FOR PERFORMANCE IS CALCULATED GRAPHIC
WORKS

CGW include tasks 1-5. Room diagrams and numerical data are selected in ac­
cordance with the instructions of the lecturer.

TASK 1.
CALCULATION OF STATICALLY DETERMINATE STEP BAR

It is necessary for the vertical or horizontal rod having rigidly fixed support on 
one of the ends:
1) to draw the scheme in any scale;
2) to define values of normal force on each sect or o f a rod;
3) to construct a diagram of normal force;
4) to construct a diagram of displacement;
5) to check bar strength;
6) to check rigidity of a bar.

Schemes of rods are provided on the figure 6. Lengths of sites of a rod and 
loading attached to it are specified in table 1, the cross-sectional area of narrow site A 
™ 0,2 m\_ wide site 2A. When calculating to accept: permissible stresses on stretching 
[<7 ] = 20 Mila ; on compression [ o j  = 80 Mila ; the allowed (permissible)

deformation \3} = ——, the module of elasticity of E = 2 • 105 MPa. 
500

Table /  - Numerical data to calculation of step bars________ _̂___
Number a, qj=<i3, <12, Fi, f 2, Fj,

lines m kN/rn kN/m kN kN k N
0 1,2 20 15 20 25 20
1 0,8 5 30 10 35 10
2 1 10 25 15 30 20
3 1,2. 15 20 20 25 30
4 1.4 20 15 25 20 40
5 1,6 25 10 30 15 10
6 1,8 30 5 35 10 20
7 2 5 30 40 5 30
8 0,8 10 25 10 35 40
9 1 15 20 15 30 10
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TASK 2.
CALCULATION OF STATICALLY INDETERMINATE ROD SYSTEM

Absolutely rigid beam suspended on 2 steel rods fixed binged fixed bearing. 
Beam loaded with a concentrated force F ,

It is required:
1. To disclose static indefinability of system for what:
a) to establish degree of static indefinability;
b) to write down the necessary equations of static balance;
c) to compose the plan of deformations;
d) from the plan of deformations to work out the additional equation of deforma­

tions;
e) to solve jointly the statics equation with the equation of deformations and to 

define efforts in rods A,m d N 2 ■
2. In accordance with GOST 8509-72 to choose sections of rods from two equi­

lateral lag angles for what:
a) to determine stresses in rods and to establish the most stressed rod;
b) from a condition of strength for more stressed rod to determine necessary 

cross-secti onal area and to choose in accordance with GOST number of a profile;
c) to check percent of underload or an overload of more stressed rod; -

d) from a ratio —-~  nto  find the cross-sectional area of less loaded rod and to
4

choose a profile in accordance with GOST 8509-72.
3. To determine the value of a  rupture load and to compare it to the set loading 
To accept basic data according to schemes (figure 4.2) and table 2.

Table 2 - Numerical data to calculation of rod systems
M  lines a, m b.y m h, m a, deg A /A i F ,k N

0 2,9 2,0 1,5 70 4 600
1 2 < L2 1,5 20 2 200
2 2,1 1,4 1 40 4 300
3 2,2 1,6 2 50 1,5 400
4 2.3 1,8 1,5 60 3 500
5 2,4 2,0 1 70 2 600
6 2.5 1,2 2 20 4 200
7 2,6 1,4 1,5 40 1,5 300
8 2,7 1,6 1 50 3 400
9 . 2,8 1,8 2 60 2 500

( 0  <2 J C3)

Figure 4.2 -  Schemes of statically indeterminate rod systems
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Continuation of the figure 4.2 
(4 {J 6 >

TASK 3.
GEOMETRICAL CHARACTERISTICS OF PLAIN FIGURES 

It is given: the compound section consisting of three simple elements of certain 
geometrical sizes. It is required to define:

1) center o f gravity position of compound section;
2) momen ts o f inertia of section about central axes;
3) disposition of the principal central axes of inertia;
4) values of the principal central moments of inertia;
5) values of the principal radiuses of inertia;
6) to construct an momenta! ellipse.
Schemes of compound sections are accepted on the figure 4.3, numerical data -  

table 3.

25



Table 3 - Numerical parameters to compound sections
M l-secthn Channel Equal lag Unequal lag Sheet

lines angle, mm angle, mm h, cm b, cm
0 36 20 100x100x16 20 LS
1 24 14a - 125x80x12 20 2.2
2 27 24a 80x80x8 26 1.8
3 30 16a 100x63x64 22 1.8
4 16 20a 100x100x16 24 2.4
5 22 18a 110x70x7 18 2.0
6 20 16 90x90x9 19 2.6
7 30 22a 160x100x10 20 1.8
8 27a 18 110x110x8 22 2.0
9 33 24 100x63x10 24 2.6

i 1---- 1 @
i

L <g) r  H
(§5

Figure 4 3  -  Schemes of compound sections
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TASK 4,
DIRECT TRANSVERSE BENDING

The beam is fixed in a different way, loaded with external loads (concentrated 
force, couple of forces, distributed load).

Required:
1. To construct diagrams o f shearing forces o f Q and bending moments o f M  for 

what follows, which requires:
a) to write down in a general view analytical expressions for shearing forces of 

0(z) and bending moments o f M(z):
ri i}

S  = t,F „ M = ±
!—I l~\

b) to calculate values o f shearing force g and bending moment m for characteris­
tic sections of a bar (on borders of force sites);

c) on the received values to construct on the scale of a diagram (graphics) of 
shearing forces gand  bending moments M  ;

d) to verify the correctness of building of diagrams on differential dependences:
_ dQ _ d 2M  

q ~ dZ ”  dZ2 '
2. To specify the location of dangerous section of beams.
3. For a (timber) wooden beam (a) to choose the sizes of square lateral section 

from strength condition if  [<fj =  10 MPa.
4. For a steel I-shaped beam (b) to choose number of a rolling profile from 

strength condition and also to make check of strength on shearing stresses.
When calculating to accept for steel: module of elasticity of E ~  2- 10s MPa, 

[er] = 16GMPa, [r]-100  MPa.

Figured. 4 -  Schemes o f beams
27
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Table 4 - Numerical data to calculation of beams and frames (tasks 4, 5)
M

lines F, kN M, kN-m q, kN/m m
by
m

0 50 60 15 1 3
1 40 40 10 1 2
2 50 60 15 2 2
3 60 80 20 3 2
4 70 100 25 2 3
5 80 40 10 1 3
6 70 60 15 3 1
7 60 80 20 2 2
8 50 100 25 1 2
9 40 40 10 2 1
0 50 60 15 1 3

TASK 5.
CREATION OF DIAGRAMS OF Q, M, N IN FRAMES 

For the set frame to construct diagrams of internal force factors, To accept nu­
merical data on table 4, schemes are accepted on the figure 4.5.
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Figure 4 ,5 -  Schemes of frames

BIBLIOGRAPHY
1. Belyaev N. M  Strength of material. Translated from the Russian by NX. Mehta. 

Revised from the 1976 Russian edition. -  M r Publishers Moscow. 1979. -  608 p.
2. Darkov A.V., Spiro G. S. Resistance of materials. -  M.: Higher school, 1975. -  

654 p. (in russian).
3. Aleksandrov A.V., Potapov V.D., Derzhavin B.P. Strength of materials. -  M.: 

Higher school of 2009. — 560 p. (in russian).
4. Feodosiev V. I. Resistance of materials. -  M.; Naufca, 1986. -  560 p. (in russian).
5. Mirolubov I. N. A guide to the solution of problems in strength of materials. -  

M.: Higher school, 1985. -  400 p. (in russian).
6. Kachurin V. K., Belyaev N. M. Bielawski, L. A., Kipnis, Y. I. Collection of 

problems in strength of materials. -  M.: Nauka, 1970. -  432 p. (in russian).

30



EDUCATIONAL EDITION

Authors: A. Zheltkovich, associate professor 
A. Veremeichik, associate professor 
V. Molosh, associate professor

TASKS AND METHODICAL INSTRUCTIONS
to performance calculated graphic works on a course

«Resistance of materials»
for students of specialty I -  70 02 01 (industrial and civil engmesring»

Responsible for release: A. Zheltkovich 
Editor: E. Borovikova 

Computer imposition: K. Kolb

It is passed for the press 13.11.2017, Paper writing No. 1.
Font of Times New Roman. Condisli. print, page 1,86. Ed. edit. 1. 2. 

Order No. 1134. Circulation 30 piece.
It is printed on risograph educational institutions Brest state technical university. 

224017, Brest, Moskovskaya St., 267.


