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1 FOURIER SERIES
1.1 Trigonometric Polynomials and Series

Many phenomena in the applications of the natural and engineering sciences are periodic in
nature. Examples are the vibrations of strings, springs and other objects, rotating parts in ma-
chines, the movement of the planets around the sun, the tides of the sea, the movement of a
pendulum in a clock, the voltages and currents in electrical networks, electromagnetic signals
emitted by transmitters in satellites, light signals transmitted through glass fibers, etc. Seem-
ingly, all these systems operate in complicated ways; the phenomena that canbe.observed
often behave in an erratic way. In many cases, however, they do show somekind of repetition.
In order to analyse these systems, one can make use of elementary periodic functions or sig-
nals from mathematics, the sine and cosine functions. For many systems, the response or be-
haviour can be completely calculated or measured by exposing them'to influences or inputs
given by these elementary functions. When, moreover, these systems.are linear, then one can
also calculate the response to a linear combination of such influences, since this will result in
the same linear combination of responses.

Hence, for the study of the aforementioned phenomena, two matters are of importance.

On the one hand, one should look at how systems behave underinfluences that can be de-
scribed by elementary mathematical functions. Such an analysis will in general require specific
knowledge of the system being studied. This may involvesknowledge about how forces, re-
sistances, and inertias influence each other in mechanical systems, how fluids move under the
influence of external forces, or how voltages, currents and magnetic fields are mutually interre-
lated in electrical applications.

In this book we will not go into these analyses, but the results, mostly in terms of mathemat-
ical formulations, will often be chosen as.asstarting point for further considerations.

On the other hand, it is of importance to examine if and how an arbitrary periodic function
can be described as a linear combinationsof elementary sine and cosine functions. This is the
central theme of the theory of Fourier,series: determine the conditions under which periodic
functions can be represented as linear combinations of sine and cosine functions.

The central problem of the theory of Fourier series is how arbitrary periodic functions or sig-
nals might be written as @ series of sine and cosine functions. The sine and cosine functions
are also called sinusoidal functions. In this section we will first look at the functions that can be
constructed if we start from the sine and cosine functions. Next we will examine how, given
such a function, one cansrecover the sinusoidal functions from which it is build up. In the next
section this will lead us to the definition of the Fourier coefficients and the Fourier series for
arbitrary periodic functions.

The,period of periodic functions will always be denoted by 7" . We would like to approximate
arbitrary periodic functions with linear combinations of sine and cosine functions. These sine
andicosine functions must then have period 7 as well. One can easily check that the func-

tions sin 2t cos 2t sin ant cos axt sin bt coS bt and so on all have
T ) T ) T ) T ) T ) T

period T . The constant function also has period 7' . Jointly, these functions can be represent-

ed by sin(zz,m} and cos(@), where ne N . Instead of 27”one often writes @,,

which means that the functions can be denoted by sinnwyt and cosnwt, where ne N . All
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these functions are periodic with period 7' . In this context, the constant w, is called the fun-
damental frequency: sinwyt and cosw,t Will complete exactly one cycle on an interval of
length 7, while all functions sinnw,t and cosnwyt with n>1 will complete several cycles.
The frequencies of these functions are thus all integer multiples of @, .

-~ &

sin3ogt
sinZogt
sinasgt

421 14

cosugt
cos 2wyt
cosdugt

Fig.1

See Fig.1, where the functions sinnwyt and cosnwt are sketehedfor »=1,2,3. Line-
ar combinations, also called superpositions, of the functions sifi nwyt and cosnwt are again

periodic with period 7. If in such a combination we include a finite number of terms, then the
expression is called a trigonometric polynomial. BeSides the sinusoidal terms, a constant term
may also occur here. Hence, a trigonometric polynomial, f(¢) with period 7" can be written as
S ()= A+ a coswyt + b sinwyt + a, cos 2wyt 4= bysin 2wyt + ...+ a,, cos nwyt +
) 2
+ b, sinnwyt, w,= E

In Fig.2a some examples of trigonometric polynomials are shown with w, =1 and so
T = 27 . The polynomials shown are

f1(t) =2sint,
f,(t) =2(sint — %Sil’l 26),

()= 2[sint — %sinZt + %sin3t

1 1 1
t)=2|sint=—sin 2t + —sin 3t — —sin 4¢
J4(®) [ 5 3 2

AN, A,
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In Fig.2b the sawtooth function is drawn. It is defined as follows. On the interval
—gg] = (—7T,7r) one has f(t)=t, while elsewhere the function is extended periodically,
which means that it is defined by f (¢t +kT)= f(¢) forall k€ Z. The function 7(¢) is then
periodic with period 7 and is called the periodic extension of the function f(¢)= . The func-

tion values at the endpoints of the interval [—gg] are not of importance for the time being

and are thus not taken into account for the moment. Comparing the Fig.2a‘and 2b suggests
that the sawtooth function, a periodic function not resembling a sinusoidal.function at all, can in
this case be approximated by a linear combination of sine functions_ .only. The trigonometric

polynomials f,, 1>, f5, f,above are partial sums of the infinite series Z(—l)n_lzsinnt. It

n=1 h
turns out that as more terms are being included in the partial sums;, the approximations im-
prove. When an infinite number of terms is included, one‘no longer speaks of trigonometric
polynomials, but of trigonometric series. The most important. aspect of such series is, of
course, how well they can approximate an arbitrary periodic function. In the next chapter it will
be shown that for a piecewise smooth periodic function'it'is indeed possible to find a trigono-
metric series whose sum converges at the points of .continuity and is equal to the function.

At this point it suffices to observe that in this way aularge class of periodic functions can be
constructed, namely the trigonometric polynomials.and series, all based upon the functions

sinnwyt and cosnwyt . All functions 1'(¢)fwhich can be obtained as linear combinations or

superpositions of the constant function and.the;sinusoidal functions with period 7' can be rep-
resented as follows:

f()=A+F Z(an cos nwyt + b, sin nwt ) With wy = 2% (1).

n=l
This, of course, only holds,under-the assumption that the right-hand side actually exists,
that is, converges for all #. Let us now assume that a function from the previously described
class is given, but that the values of the coefficients are unknown. We thus assume that the
right-hand side of (1) exists for all z. It is then relatively easy to recover these coefficients. In
doing so, we will use the trigonometric identities

sincos 3 :%<sin(a —B)+sin(a+ 3)),
sinasin 8 = %(cos(a —B3)—cos(a+ 3)),

cosacos 3 = %(cos(a — 3)+ cos(a + ﬁ))

Using these formulas one can derive the following results for n,m € Z with n=0.

. T : T
cosnwytdt =0, [ sinnwytdt =0, | cos® nwytdt = 7 sin? nw,tdt = 7

m\lﬂka“‘”
o[ 1
o[ I
N\Iﬂgf\"ﬂ



T T

2 2

f cos mwyt sin nwytdt =0, f sin mwt sin nwytdt =0,
T T
2 2

cos mwyt cos nwytdt = 0,n = m .

N\I'ﬂSN‘\]

After this enumeration of results, we now return to (1) and try to determine the unknown co-
efficients 4,a,,b, for a given f(¢). To this end we multiply the left-hand and right-hand side

of (1) by cosmuwyt and then integrate over the interval [—g Z] It then,follows that

2

T T

2 . e

f f()cosmwytdt =a,—, a, == f (@) cosmw,tdt 2)
T 2 r T

2 2

This means that for a given f(¢), it is possible to determine a,, using (2). In an analogous
way an expression can be found for b,,. Multiplying (1) by sinmwyt and again integrating

over the interval [—gg] one obtains an expression for b,,

T T
2 52
f £(t)sin mw,ldt = by = f £(t)sin mw,tdt (3)
T T
2 =

A direct integration of (1) over [_%g] gives an expression for the constant A :

T T

r r

f f(t)dt = AT, A=— f ft)dt = (4)
T

) e

All coefficients in. (1) can thus be determined if f(¢) is a given trigonometric polynomial or

seriess. [ he calculations are summarized in the following two expressions, from which the coef-
ficients can befound for all functions in the class of trigonometric polynomials and series, in so
far-asthese coefficients exist and interchanging the order of summation and integration, men-
tioned above, is allowed:

’ﬂIN

T
2
f f(t)cosnwytdt, n=0,1,2,... (5)
_r
2



T
52
= [ r@sinnwydr, n=1,,... 6)
T
o

In these equations, the interval of integration is [—gg] This interval is precisely of length

one period. To determine the coefficients a,,b, , one can in general integrate .over any other
arbitrary interval of length 7". Sometimes the interval (0,7") is chosen.

1.2 Definition of Fourier Series

In the previous section we demonstrated how, starting from a collection of elementary peri-
odic functions, one can construct new periodic functions by taking linear,combinations. The
coefficients in this combination could be recovered using formulas (5) and. (6). These formulas
can in principle be applied to any arbitrary periodic functionwith period<7", provided that the
integrals exist. This is an important step: the starting point is now'an-arbitrary periodic function.
To it, we then apply formulas (5) and (6), which were originally-only intended for trigonometric
polynomials and series. The coefficients a, ,b, thus defined are called the Fourier coefficients.

The series in (1), which is determined by these coefficients, is.called the Fourier series.
Definition 1 (Fourier coefficients ) Let f(x) bea periodic function with period 7" and fun-

damental frequency w :2% , then the Fourier cogfficients a,,,b, of f(x), if they exist, are

defined by

fAx)cosmxdx (n=0,1, 2,...) (1)

n

S
I
N
sy o 1

f(x)sinnxdx (n=1, 2, 3,...) (2)

=B“
HIM
N\I’ﬂ\:'\"'ﬂ o

In fact, in definition1"a mapping or transformation is defined from functions to number se-
quences. This isialso denoted as a transformation pair:

f(x) = a,,b,.

One“should pronounce this as: "to the function f(x) belong the Fourier coefficients
d,sb, "¢ This mapping is the Fourier transform for periodic functions. The function f(x) can
be complex-valued. In that case, the coefficients a,,,b, will also be complex. Using definition 1
one can now define the Fourier series associated with a function f(x).

Definition 2 (Fourier series) When a,,,b, are the Fourier coefficients of the periodic func-

tion f(x) with period 7 and fundamental frequency w, :2%, then the Fourier series of

f(x) is defined by



a_zo + (a, cosnwyx + b, sin nwx) (3)
n=l
Example 1 Determine the Fourier coefficients of the sawtooth function given by f(x)=x

on the interval (—m, ) and extended periodically elsewhere, and sketch the graph.

Solution
In the present situation we have 7' =27, S0 w, = 2% =1. The definition of Fourier coeffi-

cients can immediately be applied to the function f(x). Using integrationby parts it follows

for n >1 that Fourier series
T
2 7 17 1 o INg
a, :—ff(x)cosnxdx:—fxcosmca’x:—[xsinnx]x:7r —— |isinnxdx =
T, T N S v/

-7

2

1 x=m
=— [cos nx]x:_ﬁ =0.
nom
For n =0 we have
T
2 ™ X=T
2 1|1 ,
ay =— X)dx=— | xdx=—|—x =0.
onTf() f i
2
For the coefficients b, we have that
r
2 m s
b, zsz(x)sinnxdx: lfxsinnxdx: —L[)ccosnx]xi7r JrL cos nxdx =
r. T ™ =T 7 7
2
1 1 (. = 2 n—12
= ——(7r cosmn — (<) cos(—7rn)) — T[sm nx]x__ — T cosnm = (— 1) 'z
n°m - N n

™™
Here we used that cosqin = (—1)" for n € N. Hence, the Fourier coefficients an are all

(_ 1)1’1—1 . .
~ . The Fourier series of the

equal to zero, whilexthe coefficients b, are equal to 2
n

sawtooth function is'thus indeed equal to
(_ l)n—l

0
Z 2 sin nx .
n=1 n

Thatythe partial sums of the series are a good approximation of the sawtooth function can

10 1\l
be seen in figure 3, where 22( D sinnx is sketched.

n=1 n



10
Y <1 Zsin nt
n=1

A

Fig.3

1.3 Fourier Cosine and Fourier Sine Series

In section 1.2 we showed that the ordinary Fourier series of an eveniperiodic function con-
tains only cosine terms and that the Fourier series of an odd periodie.function contains only
sine terms. For the standard functions we have seen that the. periodic block function and the
periodic triangle function , which are even, do indeed contain cosine ‘terms only and that the
sawtooth function, which is odd, contains sine terms only. Semetimes it is desirable to obtain
for an arbitrary function on the interval (0,7") a Fourier seriesicontaining only sine terms or

containing only cosine terms. Such series are called-Fourier sine series and Fourier cosine se-
ries. In order to find a Fourier cosine series for a function defined on the interval (0,7), we

extend the function to an even function on the interval (=7',7') by defining f(—x)= f(x)

for —T'<x <0 and subsequently extending the, function periodically with period 27" .The
function thus created is now an even function and its ordinary Fourier series will contain only
cosine terms, while the function is equal to theoriginal function on the interval (0,7).

In a similar way one can construct a_Fourier sine series for a function by extending the func-
tion defined on the interval (0,7") to an oddfunction on the interval (—7,7") and subsequent-

ly extending it periodically with period27 . Such an odd function will have an ordinary Fourier
series containing only sine terms. Determining a Fourier sine series or a Fourier cosine series
in the way described above.is sometimes called a forced series development.

Example 2 Determine the Fourier coefficients of the sawtooth function given by 7(x) = x*
on the interval (—1,1).

Solution

Let the function  £(x) be given by f(x)=x* on the interval (0, 1). We wish to obtain a

Fourier sine series for this function. We then first extend it to an odd function on the interval
(-1, A)-and subsequently extend it periodically with period 2. The function and its odd and pe-
riodic extension are drawn in figure 4.




The ordinary Fourier coefficients of the function thus created can be calculated using (1)
and (2). Since the function is odd, all coefficients a, will equal 0. For b, we have
T

2 0 1 1
b, :%j;f(x)sinnxdx: £(—x2)sinnxdx+{x2 sin nxdx = 2»((x2 sin nxdx .
2
Applying integration by parts twice, it follows that
. -2 2 1 2 . 1 2 1
b, = w_n[[ cos an]o —E[x sin x|, — F[COS x|,

_i[w_(_l)n],

N 7T21’l2
The Fourier sine series of f(x)= x> on the interval (0, 1) is thus equal to
ZA[W —(— 1)”]sin7rnx :
n=0 TN Tn
Example 3 Determine the Fourier coefficients of the function given by f'(x) =sinx on the
interval (0,7).
Solution
In this final example we will show that one can evenrobtain a Fourier cosine series for the
sine function on the interval (0, 7). To this endwe first extend f'(x)=sinx to an even func-
tion on the interval (—m,7) and then extend.it periodically with period T"= 2 ; see figure 5.
The ordinary Fourier coefficients of the function thus created can be calculated using (1) and
(2). Since the function is even, all coefficients will be equal to 0.

B 4 tf e >
—25 = [ T 2n
Fig.5
For a, one'has

1 0 T ) s
a, == f(—sinx)cosnxdx—i—fsinxcosnxdx :—fsinxcosnxdx.

m -7 0 m 0

(N . 1 - - "
a, = —f(sm(l + n)x +sin(l + n)x)dx =— cos(l+n)x + cos(l—n)x| =

s m|l+n I—n 0

0
1—(—1""! 1<1>’“] 21— (-1
=— - = T
| 1+4mn l—n w(1—n")
If =0, then

1

10



_20=(=D"hH 4
O r1-0%) o«
The Fourier cosine series of the function 7(x) =sinx on the interval (0,7) is thus equal
to

00 n—1
2, $820-C0"

2 cosnx.
m n=0 Wof_n )

Exercise Set 1
In Exercises 1 to 4 determine the Fourier coefficients of the given functions on.the given in-
tervals:
1—|—£, if —m<x<0, 0, if —m<x<0,

Lfo=1 ° 2 f@=1mx of 09,
1—=, if 0<x<m. 7k NE
s

ax, if —m<x<O0,

3. f(x)=x", xe[-m7]. 4. f(x)={bx if 0<x<n

In Exercises 5 to 8 determine the Fourier sine series,of the given functions on the given in-
tervals:

5. yzl—%,xe[O;Z]. 6. F(x)=1—x, x€(0;2).

7. f(x)=x(1—x), x€(0;]). 8. f(x):%, x €(0;2).

In Exercises 9 to 10 determine.the Fourier cosine series of the given functions on the given
intervals:

9. f(x)=1—x, x€(0;2)al=2. 10. f(x)=x(1—x), xe(0;1), [ =1.
x, if 0Kx<2,

11. f(x)= . 12. y=cosx,x €[0;7]
2, if 2<x<4.

11



2 LAPLACE TRANSFORMS

In physical reality we usually study signals that have been switched on at a certain moment
in time. One then chooses this switch-on time as the origin of the time-scale. Hence, in such a
situation we are dealing with functions on R which are zero for ¢ <0, the so-called causal
functions. The Fourier transform of such a function £ (¢) is then given by

+o00
F(p)= [ fe ™ ar,
0

where p € C. A disadvantage of this integral is the fact that, even for very simple functions,
it often does not exist. For the unit step function 7(¢) for example, thedintegral does not exist
and in order to determine the spectrum of 7(#) we had to resort to distribution theory.

The function F'(p) is called the Laplace transform of the causalfunction f'(¢) and the
mapping assigning the function F'(p) to f(¢) is called the Laplace transform. When studying

phenomena where one has to deal with switched-on signals, the Laplace transform is often
given preference over the Fourier transform. In fact, the Laplace transform has a better way ‘1o
deal with the switch-on time #=0". Another advantage of the Laplace transform is the fact
that we do not need distributions very often, since“the ‘Laplace transform of ‘most’ functions
exists as an ordinary integral. For most applications it therefore suffices to use only a very lim-
ited part of the distribution theory. Although the fundamental theorem of the Laplace transform
can easily be derived from the one for the Fourierintegral. In order to recover a function ()

from its Laplace transform F (p) we will instead:use a table (see chapter 3.3, Table 1), the
properties of the Laplace transform and partial‘fraction expansions.
2.1 Definition and Existence of the Laplace Transform

Definition(causal function) A continuous-time signal f (¢), or a discrete-time signal 1 [n]
respectively, is called causal if

1) £(t)=0, where 1 <05

2) for each increasing z condition \ f (t)\gM e, M,a = const, will be determined.

Definition (Laplace transform) Let /() be a causal function, so f(#)=0,t<0. The
Laplace transform. F*(p) of f (¢) is the complex function defined for p € C by

+o00
F(p)= [ fe " dr (1)
0

provided theintegral exists.
We will see in a moment that for many functions f'(¢) the Laplace transform F'(p) exists

(on a certain subset of C). The mapping assigning the Laplace transform £ (p) to a function
f () in the time domain will also be called the Laplace transform. Furthermore, we will say
that F'(p) is defined in the p -domain; one sometimes calls this p -domain the ‘complex fre-
quency domain’ (although a physical interpretation can hardly be given for arbitrary p € C).
Besides the notation F'(p) we will also use L(f(¢)), so F(p)=L(f (¢)). Often the nota-

tion L(f (¢))(p) , although not very elegant, will be useful in the case of a concrete function.
12



Theorem 1 Let f(¢) be a causal function and consider the integral in (1). If the integral is
absolutely convergent for a certain value p =s, € R, then the integral is absolutely conver-
gentforall pcC with Rep=1s>3s,.

Note1If F(p)=L(f(¢)),then lim F(p)=0.

p—00

Example 1 Determine for the following functions the Laplace transform:

a) the shifted unit step function (1-7()) in figure 6 is defined by 7(¢) = {1’ N2\
0, if t<0;

b) f(t)=¢";

c) f()=t;

d) f()=1>.

Solution

a)

1(¢)

0[ t

Fig:6
b

+00 “+o0o .
F(p)= ff(t)e”’dt: fl-ep’dt: lim | e ?'dt= 1im_l[epf} _1

L) ="L.
P

+0o0 +00 b
b) F(p)= f f(te P dn= f e e dr=lim [e"" " dr =
0 0 o
b —(p—a)b
= — lim [e_(p_a)l] — lim I ¢ _ 1 .
b=oo'p —a 0 booo|l p—a p—a p—a
2 1
L(e"n())= .
p—a

c)For p= 0, the Laplace transform does not exist, while for p > 0 it follows from integra-

tion by parts that
b

“+00 —+00
F(p):ff(t)e—mdtzft-e—f”dt:hm te P! dt =
0 0

b—oo
b
. _ 17 _ 0 1
— lim —ie pt __2[6 p’] =—.
bosel [Py P °] p

13



L(t-n(0) =
P

d) For p =0 the Laplace transform does not exist, while for p > 0 it follows from integra-

tion by parts that
b

+00 +o00
Fip= [ foedi= [ Feria=lim [Ferd=
0 0

b—00

2 b

b b
— lim || e " —%[te‘p’]o ——3[6_1”} :%.
b—00 p 0 P p 0 p
2
2
2.2 Linearity, Shifting and Scaling
1. Linearity

As for the Fourier transform, the linearity of the Laplace transform follows immediately from
the linearity of integration (see section 2.4). For 4, B.€ € one thus has

L(Af@O)+Bo®)=AL( f(1))+BL(o®)=AF(p)+B2(p) (1)
in the half-plane where F'(p)=L(f (¢)) and ®(p)=L(p(¢)) both exist.

2. Shift in the time domain
The unit step function is often used to represent the switching on of a signal 7 '(¢) at time

t =0 (see figure 7a). When several signals.are:switched on at different moments in time, then
it is convenient to use the shifted unit step function n(z —5). In fact, when the signal f is

switched on at time r=b,b> 0,.then this can simply be represented by the function
f(t—Db)-n(—>b) (See figured.b). Using the functions n(z —b) it is also quite easy to rep-

resent combinations of shifted(switched on) signals.
a b

F' Y F 9

elt)ft) e(t— b)f(t- b}
> il > /\ Vil
0 \_/ t 0 b v t
Fig.7
Figure 8, for example, shows the graph of the causal function
f@O)=3-2(t—1nE—-1)+2(t—3)n—3).

In fact, f(@)=3 for 0<t<l, f(@)=3-20t—-1)=5-2¢t for 1<tr<3 and

f)=3-2t—-1)+2(t—3)=—1fort>3.

14



Fig.8
Let f(¢) be a function with Laplace transform F'(p) for Re p =is > s, andvlet b>0.
Then one has for Re p = s > s, that
L(f(t=byn(t—b)=e"""F(p) 2)

3. Shift in the p-domain
Let f(¢) be a function with Laplace transform F(p) for Rep= s>.5, and let beC.

Then one has for Re p = s > s, + Reb that
L f(1)=F(p—b) 3)

4. Scaling
Let f(¢) be a function with Laplace transform £(p) for Rep =s>s, and let b>0.

Then one has for Re p = s > bs,, that

I (P
L(f(bt))==F|— 4
(rom =\ 2y @
Example 2 Determine the Laplace transform F'(p) of the following functions:
a) sin(wt), .
b) ch(awt), sh(wr); c) 7 (t)=(5cost —3sint) n(t);
cos(wt);

t, if 0<t<2,
d) f()=ecost; ) FO=14—1if2<t<4, f) f(t)=(t>—61)-n(t—3).
0, if t<0,t>4;

Solution
. eMM—e ™| 1 1 1 w
a) (sm(w >> 2i ] 2ilp—iw p+iw p2+wz’
iwt —iwt
2 2lp—iw  p+iw) p 4w
e +e™ | 1| 1 1 p
b) L(ch(wt))=L|———|=— — =
) (C (W )) 2 2 p—w p—|—W] p2_W2’
e 1 1 1 w
L(sh(wt))=L|&—& |== = .
(s (wt)) > 5 p—w+p—|—w] pz— 3
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: p 1 Sp—3

c) L(f(t))=L(5cost—3sint)n(t)=>5 -3 = :

) L(f (1) =L( ) n(2) CiE o i

—4 —4

d) L(f(£)) = L(e* costn(t)) = —2L P .

) L(f (1)) = L( () L 2 spil]

t, if 0<t<2,

e) Figure 9 shows the graph of the causal function f'(¢) =14 —t,if 2 <t < 4,

0, if t<0,t> 4.

f@®)
2 ______

Fig.9
Rewrite the casual function as analytic expression with help unit step function 7(z —b)
and 7 (1)
JS@O=tn@O)—t-nt=2)+@—10)-nt—2)— (4 _-1)-n—4),
SO=t-n)—t-2+2)-n(t—=2)—(—-2-2):nt=2)+(—4)-n(t—4),
S @O =t-n(t)—=2(—=2)-nt—=2)+(—4) -0t =4);
L(F () = Lit-n(t) = 20t = 2)- (e — 2) 4t~ Bt — 4)) = # 2 Loty Lo,

P’ P’

f) L(f (0) = L(26* —60)-7(t —3) =
t—3=a,t=a-43
126 — 6t = 2(@=3)"L 6(a—3) = 2a> —18a + 36
2 18,36
P’ op
Example 3 Determine afunction f'(¢) whose Laplace transform £ (p) is given by

P . p—2 3p—12
a) F(p)= b)) F(p)=—LE—= : o) F(p)=—t—= .
) F(p) Ry ) F(p) 7 ap5 ) F(p) Y

= L(2a* 418a +36)n(a) = e 7.

Solution
a) Using the properties of scaling we have

JO=L"(F(p)=L"|=~ £

p*—25 p*—5
b) Using the properties of shift in the p-domain, scaling we have

[NF(p))=L|—=2=2
( (p)) p2—4p—5

— 7!

=ch5t.

2
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p—2 p=2 p—2
p’=4p=5 (p=2'-9 (p-2'-3%
¢) Using the properties of linearity, shift in the p-domain, scaling we have

3p—2
I 'YF — 7! Pz
( (p)) p2—2p—8

—e?.ch3t.

3p—2 _3(p-D+1_ 3(p-D 1 3 ]_
p’=2p-8 (p=1’-9 (p-1’-3" 3 (p—1*-3

=3L" (_p_zlz 5 L — 32_ - :ef[3ch3z+lsh3r].
(p—1" -3 3 (p—1~ -3 3
Other way:
_ _ 3p—2
LY F(p))=L"—="L—""—|=
( (p)) p2—2p—8
3p—2 3p—2 A B

— — —|— =
p—2p—-8 (p+2(p—4) p+2 yp—4
_(A+B)p+2B-44

(p+2)(p—4)

A —I—EL_1 b :ie_zt—l—ée‘”.
37 \pr2) 37 | p-4) 3 3

= A+B=32B=44=-2= A=

4y 5
3 3

Exercise Set 2
In Exercises 1 to 17 determine the Laplace transform F'(p) of the following functions:

1. f(O)=0Ct" =28+ = Tm(0); 2. f(t)=(5cost —3sint) n(¢);
3. f()=(e ""+4sh7t—2ch7n(1); 4. f(t)=cos*8t-1(1);
5. f()=((t=1)*+4E =D 6))-n(t—1); 6. f(1)=(r"—41)-n(t—2);
7. f()= (£ — 624 4628)-n(t—1); 8. f(t)=sin2(t—3)-n(t—3);
9. £ ()= (3e'" 4dsint+ 7cost)-n(t); 10. f(t)=(4e*'+2sh3¢—6sh3t)-n(7);
M. f(t)=sin6z-cosdt-n(t); 12. f(¢t)=sin8¢-sin2t-n(t);
13. f()ZL (=14 2)nEt—1); 14, f()=(*+2t+5)-n(—73);
15. 16.
1 R0 | RL0)
1 I 1
1 2 3 ¢ 1 2 3 4 ¢

17



17.

2 4 6 8 10 ¢

In Exercises 18 to 27 determine a function f (¢#) whose Laplace transform F (@) is‘given by:

3 5
18. F(p)=——5——i 19. F(p)=—>_ £
(P—27%+9 (p—4)79
Sp
20. F(p)=—L2 21. F(p) = :
(p) 2136 () 7 a9
+1 <10
2. F(p)=—4——; 2. F(p) #E——;
p - +2p p+4p
+2 p—4
2. F(p)=—L"%2 . 25. F(p)= :
(») pr+4p—5 (P) pr—8p+17
5p—3 7p—3
26. F(p)=—; P ; 21.°E(p) = — P :
p - —4p—12 p-—6p+10

2.3 Differentiation in the Time.Domain and in the p-Domain.
Integration in the Time Domain. Convolution

Theorem 1 Let f(¢) be a causal function which, in addition, is differentiable on R . In a
half-plane where L(f'(¢)) and L( £(¢)).both exist one has

L/ ()= pF(p)— £(0) (1)

By repeatedly applying theorem™, one can obtain the Laplace transform of the higher de-

rivatives of a function. Of course; the conditions of theorem 1 should then be satisfied through-
out. Suppose, for example,‘that a causal function f(¢) is continuously differentiable on R

(so 7'(r) exists and'is continuous on R ) and that f”(¢) is differentiable on R . By applying
theorem 1 twice ima half-plane where all Laplace transforms exist, it then follows that

L{f"())=p*F(p)— f(0)p— 1(0)
L(f"(®)=p*F(p)— f(0)p*> — f'(0O)p— £"(0)

L(fP@)=p"F(p)= fO)p" = f0p" .= f" D0 ()

In a half-plane where all Laplace transforms exist and £ (0)= f'(0)=...= " (0)=0,
we then have the following differentiation rule in the time domain:
L(f"@®)=p"F(p) 3)

Theorem 2 Let f () be a function with Laplace transform F'(p) and let s, be the abscis-
sa of absolute convergence. Then F (p) is an analytic function of p for Re p = s > s, and
18



L(=0) /@) =F'(p), L(-0*f@O=F"(p), ... L=0"fO=F"(p) @
Theorem 3 Let f(¢) be a causal function which is continuous on R and has Laplace
transform F'(p). Then one has in a half-plane contained in the region Re p =5 >0

t
F
L([ f@ymyp =F2 5)
0 p
Theorem 4 Let /() be a function with Laplace transform £ (p) and f F(p)dp is.abso-
p
lutely convergent for a certain value Re p = s > s, then
| [ Fpydp|=L2 6
{ (p)dp| =+ (6)
Example 4 Determine for the following functions the Laplace transform:
a) f()="1, b) f()=1", c) il =1"e",
d) f(¢)=tsinwt, e) /(t)=e tsin wit
Solution
a) LetL(l-n(zf)):l and L(t-n(t))z%.
p p
Using (4)
!/
1 2
L gV =| =—=.
), »p
1 / 2!
L n0)=|—| ==5.
), p

b) The method from the example above can be used to determine L (z"-n(¢)) for every

n>2,nc N. In fact, “the=function ¢".n(¢) satisfies the conditions of theorem 2 for
n>2,n€ N and soit follows from (4) that
n!

c) Using the property of shift in the p-domain, we have

L") = —"
(e ﬁ())—m-

d) If L(sin(wt)) = = —|M—}w2 ;

L(—tsinwt-n(t)=|— 5
p-+w

)4 (pz—f'wz)z.

19



e) Using (d) and the property of shift in the p-domain, we have
2w(p —a)
5
(( p— a)2 + wz)
Example 5 Determine for the following functions the Laplace transform:

a) f(t)=1—cost, b) f(t):Sint.

t

L(e“tsinwt-n(t)) =—

Solution

t
a) The causal function f'(z) =sint is continuous on R and since f sin7dT =1— cost,

0
it then follows from theorem 3 that

L(1—cost)(p)=

L(sint)(p) _ 1
p p(p’ +1).

This result is easy to verify since we know, that Z(cos(we))= 4

p2+w2

and

L(-n())= l. Hence,
p

1
2

1 p
L(I—cost)(p)=—-— = .
P PHI p(pP+))

w

sinf? T T
—-n()|= dp=——arctg p=arcctg p.

; n()] [p2+1 P=3 gp gp
Example 6 Determine a function, /() whose Laplace transform F (p) is given by

4

F(p)=——F——.

p(p°+4)

Solution Let f'(#) be a function with Laplace transform F (p) = (
p\p

the factor l, then we are looking for a function g(#) having Laplace transform
P

G(p)= 24 4.This is easy: g(z) =2sin2t. Integrating g(¢) we find £ (¢):
P+

L

. If we ignore
‘14

t
g(t)= fzsin 27dT =|—cos 27-]; =1—cos2t.
Example 7 Determine for the following expression the Laplace transform:
X"()=2x"(t) =3x'(t) + 2x(t) +2 if x(0)=3,x'(0)=0,x"(0)=—-2.
Solution Let L(x(¢)) = X (p) = X . Using the property of linearity and (1)-(3) we have

20



L(x'(0)n(1))(p) = pX =3,
L(x"(On®))(p)=p’X —3p—0,
L(x"(tn®))(p)=p’X =3p> —0p+2,

2
L2-n@)=—.
P
Then
L((x"(6) = 2x"() = 3x(6) + 2x(1) + 2)(®) ) (p) =
2
=X =3p* +2-2p*X —3p)—3(pX —3)+2X +=.
P
When, moreover, f(¢) and o (¢) are both causal, then one has for 7,0 that

[ fap—wdu=fxg¢ 7
0

since the integrand is zero for both # <0 and t —u < 0.
Theorem 5 (Convolution theorem) Let f'(#) and ¢(¢) be piecewise smooth and causal

functions. Let the Laplace transforms for L(f(¢)) = F(p). and L(e(t))=®(p) exist as
absolutely convergent integrals in a half-plane Rep =w > s,. Then L(f (#)*¢(¢)) exists
for Re p = s>, and

L(f(@)*xp))=E(p) 2(p) (8)

Example 8 Determine a function f'(¢) whese Laplace transform F'(p) is given by
1
E(p)= R
(p?+47)
Solution Let
1 I S
(P°+w') (PP W) (PP wh)

L[lsin(wt)]: :

w pz—l—wz'

F(p)—=

Then 7!

t
0

-f(cos w(2u —t) — coswt)du L [L[sin w(2u — t)]; —coswt[u] |=
0

1
2w’ 2w? (2w 0

= %[lsin wt —tcos wt] = %(sin Wi — Wt - COS Wt ).
2w\ w 2w
1
(pZ + W2)2
Using the properties of linearity, shift in the p-domain, scaling, differentiation in the time do-

-1

] — 2;3 (sinwt — wt - coswt).
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main, differentiation in the p-domain, integration in the time domain, convolution summary ta-
ble (1) establishes a correspondence between some of the causal functions and their Laplace
transform

Table 1
No f(@) F(p)
1
1. 1-n() o
1
2 eat
p—a
1
3 t —
V4
4 in w d
. sInw —
pz ol
)4
5. cos wt — N
pz ol
6 hwt A
. shw
p2 02
P
7. chwt
p2 2
w
8. e®.sinwt ((p—a)2 —|—w2)
p—a
9_ at.
€ -coswrt (p—a)2 —|—W2
10 at w
: e” -shwt (p—a) —w?
p—a
11. iy
e “chwt (p—a)2 _Wz
n!
12. t" P
1 n!
at n
. e -t (p—a)n+1
2wp
14. t-sin wt 2
(p?+w)
pz w2
15. t-coswt 2
(7 +v7)

22



No f(@) F(p)
2wp
16. | t-shwt ( »  2\2
p’—w)
p2+w2
17 f'ChWt ( 5 2)2
p —w
(p—a)’ —w
18. | e*-t-coswt ((p—a)z—i—wz)z
2w(p —a)
19. e . t.sin wt ((p—a)2+w2)2

Exercise Set3

In Exercises 1 to 10 determine the Laplace transform F'(p) of the following functions:

1. f(t)=cht-sint.

3. f(t)=—tcos3t.

5. f(t)=t-e ',

7. f(t)=e*"Vcos3(t—1)-n(t—1).
9. f(t)=e "sin’¢.

2. f(¢t)=ch2t:sht.

4. #(t)=e" cost.

6. f (=t

8. f(#)=t-sint + cost.

10. (0 :%(cht-sint +sht-cost).

In Exercises 11 to 20 determine a function 7 (¢#) whose Laplace transform F'(p) is given

by:
1

3
13. F(p)=——— L.
(p—2)%+9
15. F(p)=—£ =
(p) 775
17. F(p) ¢
. F(p)&= .
(p1y
4
19.F (p) = :
P (p* +16)

]
12. F = .
(p) (b3
5
14. S —
F(p) (D79
4p
16. — .
Fir) p*+25
18. F e
4
20. F S
D=7 +9)

2.4 The Inverse Laplace Transform. Applications of the Laplace Transform

Theorem 1 (Fundamental theorem of the Laplace transform) Let f(¢) be a piecewise
smooth (and causal) function of exponential order o € R. Let F'(p) be the Laplace transform
of £(z). Thenone has for t >0 and p =s+ioc with o > « that
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a+i00
FO=L"F(p)=5— [ F(p)e"dp ()
2mi Wi

As for the Fourier transform, theorem 1 tells us precisely how we can recover the function
f () from F(p). Obtaining £ (¢) from F(p) is called the inverse problem and therefore
theorem 1 is also known as the inversion theorem and (1) as the inversion formula. We will call
the function £'(¢) the inverse Laplace transform of F'(p). Still, (1) will not be used for this
purpose. In fact, calculating the integral in (1) requires a thorough knowledge of the“integration
of complex functions over lines in C, an extensive subject which is outside the scope. of this
book. Hence, the fundamental theorem of the Laplace transform will not be used in the re-
mainder of this book, except in the form of the frequent (implicit) application of the fact that the
Laplace transform is one-to-one. Moreover, in practice it is often a lot easier to determine the
inverse Laplace transform of a function F(p) by using tables, applying the properties of the
Laplace transform, and using partial fraction expansions.

We will now describe in a number of steps how the inverse Laplace transform of such a ra-
tional function £ (p) can be determined.

Step 1 If the degree of the numerator is greater than or equalito the degree of the denomi-
nator, then we perform a division. The function F (@) isithen the sum of a polynomial and a
rational function for which the degree of the numerator is smaller than the degree of the de-
nominator. The polynomial gives rise to distributions in.the inverse Laplace transform since

" = (L™ @)(p).
Example 9 We want to determine the function/distribution 7'(z) having Laplace transform
3 2
~p +
Fp=£4——L.
p°+1
Solution Since the degree of the numerator is greater than the degree of the denominator,

= Now L(g)=1,L(g")= p and L(sint)=——,
p-+1 p-+1

we first divide: F(p)=p—-d+

SO f(t)=g'(t)—g(t) +sints
Step 2 From stept it follows that henceforth we may assume that F'(p) is a rational func-

tion for which the degree of the numerator is smaller than the degree of the denominator.
From the results of section 2.2 it then follows that F'(p) can be written as a sum of frac-
tions of the form

A and Bp+C

- 4
(p+a) (P +ap+c)
with k37 € N and where all constants are real and p* + gp + ¢ cannot be factorized into

factors with real coefficients. This latter fact means that the discriminant of p* +gp + ¢ is

negative. We will now determine the inverse Laplace transform for each of these fractions
separately.

Step 3 From table 1 we immediately obtain the inverse Laplace transform of

(p+a)
24



L<tk71 e”[n(f)) — ((;__;;L :

Step 4 In order to determine the inverse Laplace transform of Bp+C —, We com-
( p2 +qp + c)
2 2
plete the square in the denominator: p? +gp +c = [ p +%] +|c —% . For convenience

2
we write the positive constant [c% simply as ¢* (for some new.constant ¢), which

means that we want to determine the inverse Laplace transform of the“function
Bp+C )

) j
q 2
+=| +c
[p 2]

For j =1 we obtain the inverse Laplace transform of this function from (2) by taking a suit-
able linear combination of the following results from tablex1:

L(e‘”sinwt-n(t))z

w
((p =) + )
L{e“" coswt - ()= p—d (3)
| ) ((p—a) +v?)
Example 10 Determine a function f4(7) whose Laplace transform F (p) is given by

1 1
F(p)=—5+—; b) F(p)= ;

A FB= M= e e
1 —4r 1) +2
¢) F(p)=———; d) F(py=S (P p |
TP VEB) =505 T 20

Solution

a) A partial fraction expansion leads to F( p):l— P . From a very

p PP+l p(p>+))
simple case of(3) it then follows that f'(#) =1—cost.

b) Sincé F(p) is a function of p?, we put y = p* and apply partial fraction expansion to
1

12(y+4) 12(y+16)

the function ! , resulting in
(y+16)(y+4)

1
12(p* +4) 12(p* +16)
sin 2t B sin4t
24 48
c) A partial fraction expansion leads to

Hence, F(p)= and then it again follows from a simple case

of (3) that £ (t)=
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A B C N 1 1 1 1 1
F(p)=—+—+—=+ =3 = :
p p- p p-l p(p-) p p° p p-l
From a very simple case of table (1) it then follows that
2

f(t):—l—t—%Jret.

d) Since the discriminant of p>+2p+5 is negative, we complete the square:
(p +1)* + 4. To the first term we apply partial fraction expansion:

L, .4 4 p+1 1 |
5p*  25p 25(p+5)) (p+1*4+4 (p+1)° 4

Using table (1) and the shift property in the time domain we obtain
t

110 :%(5@ —4)+4—4e Dy —4) —|—%(2cos2t—|— sin 2t).

Using an elementary example we will illustrate how the Laplace.transform can be used to
obtain solutions to linear differential equations with constantcoefficients. Moreover, we will
show the difference between the method using the Laplace transform and the ‘classical’ solu-
tion method using the homogeneous and particular.solutions. This classical solution method
has already been explained in differential equation section and can also be found in many in-
troductions to this subject.

We will now use the Laplace transform to solve.the initial value problem for example 11

F(p)=¢e*

Example 11 Consider for the unknown function, y = y(¢) the initial value problem
V'—y=2t, W0)=)'(0)=0.
Solution Apply the Laplace transform to“both sides of the differential equation
y" —y=2t. Assume that L(y(2)).= Y(p) exists in a certain half-plane and that moreover
the differentiation rule in athe “time domain (table1) can be applied. Then

L(y" — y)(p)= p*Y —Y andsince L(r) = Lz the initial value problem transforms into
p

2
2

Note that instead,of adifferential equation for y = y(¢) we now have an algebraic equation
for Y(p). Solving.for Y(p) and applying a partial fraction expansion we obtain that

2 2 2
Y(p)= = ——-
p’(p°=1 p*-1 p
Thednverse Laplace transform y = y(z) of Y(p) follows from table 1:

y=y(t)=2sht —2t=e'—e'—2t.

We first summarize the most important steps of the solution method in example 11.
Step 1 The Laplace transform is applied to the differential equation for y = y(¢). Here we

assume that the Laplace transform Y(p) of the unknown function y = y(¢) exists and that
the differentiation rule in the time domain may be applied (either in the ordinary sense or in the
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sense of distributions). From the differential equation for y = y(¢#) we obtain an algebraic
equation for Y (p) which is much easier to solve.

Step 2 The algebraic equation in the p-domain is solved for Y (p).

Step 3 The solution we have found in the p-domain is then transformed back into the t-
domain. For this we use tables, the properties of the Laplace transform and partial fraction ex-
pansions. For the solution y = y(¢) found in this way, one can verify whether it satisfies the

differential equation and the initial conditions.
Example 12 Consider for the unknown function y = y(#) the initial value problem

%z, if0<t<2,

Y4y =131t if2<t<3,
0, ift<0,>3,

¥(0)='(0)=0.
Solution
Figure 10 shows the graph of the causal function

%z, if <t <2,

Yty =13 —mif 2<t <3,
0/ Nif t<0,t>3.

O

Q
PO bommend

3 t

Fig.10
Rewrite the causal function as an analytic expression with the help of unit step function
n(t—>b) and n(z)

f(t)Z%t-n(t)—%t-n(t—Z)+(3—t)-n(t—2)—(3—t)-n(t—3),

f(r)%r-n(r)—%(z—zm(r—z)+(z—3)-n(r—3>,

y”+4y:%I-n(t)—%(t—Z)-n(t—D+(t—3)'?7(t—3)-

The initial value problem transforms into
p2Y+4Y:l-%—é'%e_zl’—f—%e_”’.
2 p° 2p p

Solving for Y (p) and applying a partial fraction expansion we obtain that
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1 1 3 1 1

Y(p)=—————————e Pp——
2 pP(p*+4) 2 pr(p°+d p(p*+4)
LR § U S S T S IR T
pip*+4) 4lp? pP+4) 4lpt 2 pP427)

Using the properties of linearity, shift in the p-domain, scaling we have
y(t)= é (t —sin2r) —%[f -2 —%sin2(t — 2)]77(t —2)+

+i.[t_3 _%sinz(t—3)]n(t—3)-

Using the Laplace transform one can also solve systems of several coupled ordinary linear
differential equations with constant coefficients. We confine ourselves here to systems of two
such coupled differential equations, since these can still be solved relatively easy without using
techniques from matrix theory. Systems of more than two coupled differential equations will not
be considered in this book. We merely note that they can be solved. entirely analogously, alt-
hough matrix theory becomes indispensable.

In general, a system of two coupled ordinary linear differential'equations with constant coef-
ficients and of first order has the following form:

ayx' +apy' + byx + by = (1)

a3 X'+ Ay V' + byx + by = uy (1)
with initial conditions certain given values for-%(0) and y(0). Similarly, one can describe the
general system of second order with initial conditions x(0), x'(0), »(0) and »’(0) (for high-

er order and/or more differential equations the vector and matrix notation is much more con-
venient). The solution method basedson the Laplace transform again consists of Laplace trans-
forming all the functions that occur,and then solving the resulting system of linear equations
with polynomials in p as coefficients.

Example 13 Consider the system
7x' +3y 4+2x=0
{x' +3y'+y=0
with initial conditions x(0)=1 and y(0)=0.
Solution
Let X(p)=and*¥(p) be the Laplace transforms of x = x(¢) and y = y(¢). One then has
L(7x + Y +2x)(p) = 7(pX — x(0)) +(pY — 3(0)) +2X
and by/substituting the initial conditions one obtains that 7(pX —1)+ pY +2X =0, or
(7p+2)X + pY = 7. Transforming the second differential equation of the system in a simi-
lar way, we see that the Laplace transform turns the system into the algebraic system
{(719 +2)X + pY =7,
pX +Q@p+1Y =1.
Solving this system of two linear equations in the unknowns X = X(p) and Y =Y(p),
we find that
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X(p)= T8p+1)—p _ 20p +7

Gp+D(Tp+2)—p> @p+DGEp+2)

B Tp—(p+2) _ 2

Y(p) - 2 - ’
p —0Up+2)QBp+1) “@p+DGp+2)
(X = X(p) is found by multiplying the first and the second equation by, respectively, 3p +1
and p and subtracting; Y(p) follows similarly). Using partial fraction expansions we obtain
that

X(p)= 8 n 5 2 . 1
3(4p+D) 3(5p+2) 3[p+1] 3[p+2]
4 5
8 10 2 2
=300 36r12) N 2
P02 el o]
and by inverse transforming this we see that the solution toithe system is'given by
( t 2t
2 4, L%
N== 44 ¢ 5
x(2) 3 e “+ 2 e
t 2t
- 2 - 9
== 4 = 5
y(t)=—e N
Exercise Set 4
In Exercises 1 to 8 determine a function f(¢) whose Laplace transform F(p) is given by
+2 5p+38
1. F(p)= 4 — 2 F(p)=——L"2 .
(p+D(p—-2)(p" +4) p —13p~ +36
4p p2
3. F(p)= : 4. F(p)= :
(p* +16)(p” +25) (P> +4)(p* +9)
4p+5
5. F(p)= P . 6. F(p)= P .
(P —2) (Pt 4p+5) (p+D(p~+4p+5)
P p+3
7. F(p)= : 8. F(p)= :
plaspi 4 P +2p*+3p

In Exercises 9 1014 Consider for the unknown function y = y(z) the initial value problem
9. Yy e 2y=-2(t+1), y(0)=1,y"(0)=1;
10,04y —2y=e"', y(0)=-1, y'(0)=0;
1. y" 4y =sin2t, y(0)=0, »'(0)=1;
12. 3" + 23" +10y =2e cos3t, y(0)=5, y'(0)=1;
13. y” -9y =sint—cost, y(0)=-3, y'(0)=2
14, y"+y' —6y=t+3,y(0)=1,)'(0)=0.

In Exercises 15 to 19 consider the system with initial conditions
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x(0)=2, y(0)=1.

, x(0)=1, y(0)=1.

'=—2x+5y+1, |x(0)=0,
'=x+2y+1, y(0)=2.
/:x+4y, {X(O)Zl,

17, {x —y=es x(0)=1, y(0)=—1, x'(0)= y'(0) =0.
{ y(0)=0.

LITERATURE

1 R.J. Beerends, H.G. terMorsche, J.C. van der Berg Fourier and Laplace Transforms /
Cambridge university press. 2003. pp.447.
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