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1 FOURIER  SERIES 
1.1 Trigonometric Polynomials and Series 

Many phenomena in the applications of the natural and engineering sciences are periodic in 
nature. Examples are the vibrations of strings, springs and other objects, rotating parts in ma-
chines, the movement of the planets around the sun, the tides of the sea, the movement of a 
pendulum in a clock, the voltages and currents in electrical networks, electromagnetic signals 
emitted by transmitters in satellites, light signals transmitted through glass fibers, etc. Seem-
ingly, all these systems operate in complicated ways; the phenomena that can be observed 
often behave in an erratic way. In many cases, however, they do show some kind of repetition. 
In order to analyse these systems, one can make use of elementary periodic functions or sig-
nals from mathematics, the sine and cosine functions. For many systems, the response or be-
haviour can be completely calculated or measured by exposing them to influences or inputs 
given by these elementary functions. When, moreover, these systems are linear, then one can 
also calculate the response to a linear combination of such influences, since this will result in 
the same linear combination of responses. 

Hence, for the study of the aforementioned phenomena, two matters are of importance. 
On the one hand, one should look at how systems behave under influences that can be de-

scribed by elementary mathematical functions. Such an analysis will in general require specific 
knowledge of the system being studied. This may involve knowledge about how forces, re-
sistances, and inertias influence each other in mechanical systems, how fluids move under the 
influence of external forces, or how voltages, currents and magnetic fields are mutually interre-
lated in electrical applications. 

In this book we will not go into these analyses, but the results, mostly in terms of mathemat-
ical formulations, will often be chosen as a starting point for further considerations. 

On the other hand, it is of importance to examine if and how an arbitrary periodic function 
can be described as a linear combination of elementary sine and cosine functions. This is the 
central theme of the theory of Fourier series: determine the conditions under which periodic 
functions can be represented as linear combinations of sine and cosine functions. 

The central problem of the theory of Fourier series is how arbitrary periodic functions or sig-
nals might be written as a series of sine and cosine functions. The sine and cosine functions 
are also called sinusoidal functions. In this section we will first look at the functions that can be 
constructed if we start from the sine and cosine functions. Next we will examine how, given 
such a function, one can recover the sinusoidal functions from which it is build up. In the next 
section this will lead us to the definition of the Fourier coefficients and the Fourier series for 
arbitrary periodic functions. 

The period of periodic functions will always be denoted by T . We would like to approximate 
arbitrary periodic functions with linear combinations of sine and cosine functions. These sine 
and cosine functions must then have period T  as well. One can easily check that the func-

tions 2sin  
 
 

t
T
 , 2cos 

 
 

t
T


,
4sin  

 
 

t
T


,
4cos 

 
 

t
T


,
6sin  

 
 

t
T


,
6cos 

 
 

t
T


 and so on all have 

period T . The constant function also has period T . Jointly, these functions can be represent-

ed by 2sin  
 
 

nt
T
  and 2cos 

 
 

nt
T
 , where n N . Instead of 2

T
 one often writes 0 , 

which means that the functions can be denoted by 0sinn t  and 0cosn t , where n N . All 
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these functions are periodic with period T . In this context, the constant 0  is called the fun-
damental frequency: 0sin t  and 0cos t  will complete exactly one cycle on an interval of 
length T , while all functions 0sinn t  and 0cosn t  with 1n  will complete several cycles. 
The frequencies of these functions are thus all integer multiples of 0 . 

 
Fig.1 

See Fig.1, where the functions 0sinn t  and 0cosn t  are sketched for 1,2,3n . Line-
ar combinations, also called superpositions, of the functions 0sinn t  and 0cosn t  are again 
periodic with period T . If in such a combination we include a finite number of terms, then the 
expression is called a trigonometric polynomial. Besides the sinusoidal terms, a constant term 
may also occur here. Hence, a trigonometric polynomial ( )f t  with period T  can be written as 

1 0 1 0 2 0 2 0 0

0 0

( ) cos sin cos2 sin 2 ... cos

2
sin , .

n

n

f t A a t b t a t b t a n t

b n t
T

    
 

       

 
 

In Fig.2a some examples of trigonometric polynomials are shown with 0 1   and so 
2T  . The polynomials shown are 

1( ) 2sinf t t , 

2
1

( ) 2(sin sin 2 )
2

f t t t  , 

3
1 1

( ) 2 sin sin 2 sin3
2 3

f t t t t
      

, 

4
1 1 1

( ) 2 sin sin 2 sin 3 sin 4
2 3 4

f t t t t t
       

. 

 
 
 
 
 
 
 
 
 

Fig.2 
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In Fig.2b the sawtooth function is drawn. It is defined as follows. On the interval 

 , ,
2 2

T T  
     

 one has ( )f t t , while elsewhere the function is extended periodically, 

which means that it is defined by ( ) ( )f t kT f t   for all k Z . The function ( )f t  is then 
periodic with period T  and is called the periodic extension of the function ( )f t t . The func-

tion values at the endpoints of the interval ,
2 2

T T    
 are not of importance for the time being 

and are thus not taken into account for the moment. Comparing the Fig.2a and 2b suggests 
that the sawtooth function, a periodic function not resembling a sinusoidal function at all, can in 
this case be approximated by a linear combination of sine functions only. The trigonometric 

polynomials 1 2 3 4, , ,f f f f above are partial sums of the infinite series   1

1

2
1 sin

n

n

nt
n





 . It 

turns out that as more terms are being included in the partial sums, the approximations im-
prove. When an infinite number of terms is included, one no longer speaks of trigonometric 
polynomials, but of trigonometric series. The most important aspect of such series is, of 
course, how well they can approximate an arbitrary periodic function. In the next chapter it will 
be shown that for a piecewise smooth periodic function it is indeed possible to find a trigono-
metric series whose sum converges at the points of continuity and is equal to the function. 

At this point it suffices to observe that in this way a large class of periodic functions can be 
constructed, namely the trigonometric polynomials and series, all based upon the functions 

0sinn t  and 0cosn t . All functions ( )f t  which can be obtained as linear combinations or 
superpositions of the constant function and the sinusoidal functions with period T  can be rep-
resented as follows: 

 0 0
1

( ) cos sinn n
n

f t A a n t b n t 



    with 0

2

T

     (1). 

This, of course, only holds under the assumption that the right-hand side actually exists, 
that is, converges for all t . Let us now assume that a function from the previously described 
class is given, but that the values of the coefficients are unknown. We thus assume that the 
right-hand side of (1) exists for all t . It is then relatively easy to recover these coefficients. In 
doing so, we will use the trigonometric identities 

    1
sin cos sin sin

2
         , 

    1
sin sin cos cos

2
         , 

    1
cos cos cos cos

2
         . 

Using these formulas one can derive the following results for ,n m Z  with 0n . 

2

0

2

cos 0

T

T

n tdt


 ,  
2

0

2

sin 0

T

T

n tdt


 ,  
2

2
0

2

cos
2

T

T

T
n tdt



 ,  
2

2
0

2

sin
2

T

T

T
n tdt



 . 
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2

0 0

2

cos sin 0

T

T

m t n tdt 


 ,  
2

0 0

2

sin sin 0

T

T

m t n tdt 


 , 

2

0 0

2

cos cos 0,

T

T

m t n tdt n m 


  . 

After this enumeration of results, we now return to (1) and try to determine the unknown co-
efficients , ,n nA a b  for a given ( )f t . To this end we multiply the left-hand and right-hand side 

of (1) by 0cosm t  and then integrate over the interval ,
2 2

T T    
. It then follows that 

2

0

2

( )cos
2

T

m
T

T
f t m tdt a



 ,   
2

0

2

2
( )cos

T

m
T

a f t m tdt
T




       (2) 

This means that for a given ( )f t , it is possible to determine ma  using (2). In an analogous 
way an expression can be found for mb . Multiplying (1) by 0sinm t  and again integrating 

over the interval ,
2 2

T T    
, one obtains an expression for mb  

2

0

2

( )sin
2

T

m
T

T
f t m tdt b



 ,   
2

0

2

2
( )sin

T

m
T

b f t m tdt
T




      (3) 

A direct integration of (1) over ,
2 2

T T    
 gives an expression for the constant A : 

2

2

( )

T

T

f t dt AT



 ,   
2

0

2

1
( )

2

T

T

a
A f t dt

T


        (4) 

All coefficients in (1) can thus be determined if ( )f t  is a given trigonometric polynomial or 
series. The calculations are summarized in the following two expressions, from which the coef-
ficients can be found for all functions in the class of trigonometric polynomials and series, in so 
far as these coefficients exist and interchanging the order of summation and integration, men-
tioned above, is allowed: 

2

0

2

2
( )cos , 0,1,2,...

T

n
T

a f t n tdt n
T




          (5) 
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2

0

2

2
( )sin , 1,2,...

T

n
T

b f t n tdt n
T




         (6) 

In these equations, the interval of integration is ,
2 2

T T    
. This interval is precisely of length 

one period. To determine the coefficients ,n na b , one can in general integrate over any other 
arbitrary interval of length T . Sometimes the interval (0, )T  is chosen. 

1.2 Definition of Fourier Series 

In the previous section we demonstrated how, starting from a collection of elementary peri-
odic functions, one can construct new periodic functions by taking linear combinations. The 
coefficients in this combination could be recovered using formulas (5) and (6). These formulas 
can in principle be applied to any arbitrary periodic function with period T , provided that the 
integrals exist. This is an important step: the starting point is now an arbitrary periodic function. 
To it, we then apply formulas (5) and (6), which were originally only intended for trigonometric 
polynomials and series. The coefficients ,n na b  thus defined are called the Fourier coefficients. 
The series in (1), which is determined by these coefficients, is called the Fourier series. 

Definition 1 (Fourier coefficients ) Let ( )f x  be a periodic function with period T  and fun-

damental frequency 0
2

T

   , then the Fourier coefficients ,n na b  of ( )f x , if they exist, are 

defined by 

2

2

2
( )cos ( 0, 1, 2,...)

T

n
T

a f x n xdx n
T



          (1) 

2

2

2
( )sin ( 1, 2, 3,...)

T

n
T

b f x n xdx n
T



         (2) 

In fact, in definition1 a mapping or transformation is defined from functions to number se-
quences. This is also denoted as a transformation pair: 

( ) ,n nf x a b . 
One should pronounce this as: "to the function ( )f x  belong the Fourier coefficients 
,n na b ". This mapping is the Fourier transform for periodic functions. The function ( )f x  can 

be complex-valued. In that case, the coefficients ,n na b  will also be complex. Using definition 1 
one can now define the Fourier series associated with a function ( )f x . 

Definition 2 (Fourier series) When ,n na b  are the Fourier coefficients of the periodic func-

tion ( )f x  with period T  and fundamental frequency 0
2

T

  , then the Fourier series of 

( )f x  is defined by 
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 0
0 0

1

cos sin
2 n n

n

a
a n x b n x 




         (3) 

Example 1 Determine the Fourier coefficients of the sawtooth function given by ( )f x x  
on the interval ( , )   and extended periodically elsewhere, and sketch the graph. 

Solution 

In the present situation we have 2T  , so 0
2

1
T

   . The definition of Fourier coeffi-

cients can immediately be applied to the function ( )f x . Using integration by parts it follows 
for 1n  that Fourier series 

 
2

2

2 1 1 1
( )cos cos sin sin

T

x
n x

T

a f x n xdx x nxdx x nx nxdx
T n n

 



 
  




 

        

 2

1
cos 0

x

x
nx

n





  . 

For 0n  we have 

2
2

0

2

2 1 1 1
( ) 0

2

T
x

xT

a f x dx xdx x
T

 


 





 
    
    . 

For the coefficients nb  we have that 

 
2

2

2 1 1 1
( )sin sin cos cos

T

x
n x

T

b f x n xdx x nxdx x nx nxdx
T n n

 



 
  




 

        

      1
2

1 1 2 2
cos ( )cos( ) sin cos 1

x n

x
n n nx n

n n nn




    
 

 
        . 

Here we used that cos ( 1)nn    for n N . Hence, the Fourier coefficients an are all 

equal to zero, while the coefficients nb  are equal  to 
1( 1)

2
n

n


. The Fourier series of the 

sawtooth function is thus indeed equal to 
1

1

( 1)
2 sin

n

n

nx
n





 . 

That the partial sums of the series are a good approximation of the sawtooth function can 

be seen in figure 3, where 
110

1

( 1)
2 sin

n

n

nx
n





  is sketched. 
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Fig.3 

1.3 Fourier Cosine and Fourier Sine Series 

In section 1.2 we showed that the ordinary Fourier series of an even periodic function con-
tains only cosine terms and that the Fourier series of an odd periodic function contains only 
sine terms. For the standard functions we have seen that the periodic block function and the 
periodic triangle function , which are even, do indeed contain cosine terms only and that the 
sawtooth function, which is odd, contains sine terms only. Sometimes it is desirable to obtain 
for an arbitrary function on the interval (0, )T  a Fourier series containing only sine terms or 
containing only cosine terms. Such series are called Fourier sine series and Fourier cosine se-
ries. In order to find a Fourier cosine series for a function defined on the interval (0, )T , we 
extend the function to an even function on the interval ( , )T T  by defining ( ) ( )f x f x   
for 0T x    and subsequently extending the function periodically with period 2T .The 
function thus created is now an even function and its ordinary Fourier series will contain only 
cosine terms, while the function is equal to the original function on the interval (0, )T . 

In a similar way one can construct a Fourier sine series for a function by extending the func-
tion defined on the interval (0, )T  to an odd function on the interval ( , )T T  and subsequent-
ly extending it periodically with period 2T . Such an odd function will have an ordinary Fourier 
series containing only sine terms. Determining a Fourier sine series or a Fourier cosine series 
in the way described above is sometimes called a forced series development. 

Example 2 Determine the Fourier coefficients of the sawtooth function given by 2( )f x x  
on the interval ( 1,1) . 

Solution 
Let the function ( )f x  be given by 2( )f x x  on the interval (0, 1). We wish to obtain a 

Fourier sine series for this function. We then first extend it to an odd function on the interval 
(−1, 1) and subsequently extend it periodically with period 2. The function and its odd and pe-
riodic extension are drawn in figure 4. 

 
Fig.4 
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The ordinary Fourier coefficients of the function thus created can be calculated using (1) 
and (2). Since the function is odd, all coefficients na  will equal 0. For nb  we have 

0 1 12
2 2 2

1 0 0
2

2
( )sin ( )sin sin 2 sin

T

n
T

b f x n xdx x nxdx x nxdx x nxdx
T



        . 

Applying integration by parts twice, it follows that 

   1 1 12
2 20 00

2 2 2
cos sin cosnb x nx x nx nx

n n n
  

  
           

 

2 2

2 2(( 1) 1)
( 1)

n
n

n n 

         
. 

The Fourier sine series of 2( )f x x  on the interval (0, 1) is thus equal to 

2 2
0

2 2(( 1) 1)
( 1) sin

n
n

n

nx
n n


 





        
 . 

Example 3 Determine the Fourier coefficients of the function given by ( ) sinf x x  on the 
interval (0, ) . 

Solution 
In this final example we will show that one can even obtain a Fourier cosine series for the 

sine function on the interval (0, ) . To this end we first extend ( ) sinf x x  to an even func-
tion on the interval ( , )   and then extend it periodically with period 2T  ; see figure 5. 
The ordinary Fourier coefficients of the function thus created can be calculated using (1) and 
(2). Since the function is even, all coefficients will be equal to 0. 

 
Fig.5 

For na  one has 
0

0 0

1 2
( sin )cos sin cos sin cosna x nxdx x nxdx x nxdx

 


 



        
   . 

 
00

1 1 1 1
sin(1 ) sin(1 ) cos(1 ) cos(1 )

1 1na n x n x dx n x n x
n n

 

 
           
     

1 1 1

2

1 1 ( 1) 1 ( 1) 2(1 ( 1) )

1 1 (1 )

n n n

n n n 

                 
. 

If 0n , then 
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0 1

0 2

2(1 ( 1) ) 4

(1 0 )
a



  


. 

The Fourier cosine series of the function ( ) sinf x x  on the interval (0, )  is thus equal 
to 

1

2
0

2 2(1 ( 1) )
cos

(1 )

n

n

nx
n 





 
 . 

Exercise Set 1 
In Exercises 1 to 4 determine the Fourier coefficients of the given functions on the given in-

tervals: 

1. 
1 , 0,

( )

1 , 0 .

x
if x

f x
x

if x







       

 2.

 

0, 0,
( )

, 0 .
4

if x
f x x

if x


 

     
 

3. 2( ) , [ ; ].f x x x      4. 
, 0,

( )
, 0 .

a x if x
f x

b x if x




     
 

In Exercises 5 to 8 determine the Fourier sine series of the given functions on the given in-
tervals: 

5. 1
2

x
y  , [0;2].x  6. ( ) 1 , (0;2).f x x x    

7. ( ) (1 ), (0;1).f x x x x    8. 
1

( ) , (0;2).
2

f x x   

In Exercises 9 to 10 determine the Fourier cosine series of the given functions on the given 
intervals: 
9. ( ) 1 , (0;2), 2.f x x x l     10. ( ) (1 ), (0;1), 1.f x x x x l     

11. 
, 0 2,

( )
2, 2 4.

x if x
f x

if x

    
 12. cosy x , [0; ]x   
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2  LAPLACE  TRANSFORMS 
In physical reality we usually study signals that have been switched on at a certain moment 

in time. One then chooses this switch-on time as the origin of the time-scale. Hence, in such a 
situation we are dealing with functions on R  which are zero for 0t , the so-called causal 
functions. The Fourier transform of such a function ( )f t  is then given by 

0

( ) ( )e p tF p f t dt


  , 

where p . A disadvantage of this integral is the fact that, even for very simple functions, 
it often does not exist. For the unit step function ( )t  for example, the integral does not exist 
and in order to determine the spectrum of ( )t  we had to resort to distribution theory. 

The function ( )F p  is called the Laplace transform of the causal function ( )f t  and the 
mapping assigning the function ( )F p  to ( )f t  is called the Laplace transform. When studying 
phenomena where one has to deal with switched-on signals, the Laplace transform is often 
given preference over the Fourier transform. In fact, the Laplace transform has a better way ‘to 
deal with the switch-on time 0t ’. Another advantage of the Laplace transform is the fact 
that we do not need distributions very often, since the Laplace transform of ‘most’ functions 
exists as an ordinary integral. For most applications it therefore suffices to use only a very lim-
ited part of the distribution theory. Although the fundamental theorem of the Laplace transform 
can easily be derived from the one for the Fourier integral. In order to recover a function ( )f t  
from its Laplace transform ( )F p  we will instead use a table (see chapter 3.3, Table 1), the 
properties of the Laplace transform and partial fraction expansions. 

2.1 Definition and Existence of the Laplace Transform 
Definition(causal function) A continuous-time signal ( )f t , or a discrete-time signal  f n  

respectively, is called causal if  
1) ( ) 0f t  , where 0t ; 

2) for each increasing t  condition ( ) e tf t M  , ,M const , will be determined. 

Definition (Laplace transform) Let ( )f t  be a causal function, so ( ) 0, 0f t t  . The 
Laplace transform ( )F p  of ( )f t  is the complex function defined for p  by 

0

( ) ( )e p tF p f t dt


         (1) 

provided the integral exists. 
We will see in a moment that for many functions ( )f t  the Laplace transform ( )F p  exists 

(on a certain subset of  ). The mapping assigning the Laplace transform ( )F p  to a function 
( )f t  in the time domain will also be called the Laplace transform. Furthermore, we will say 

that ( )F p  is defined in the p -domain; one sometimes calls this p -domain the ‘complex fre-
quency domain’ (although a physical interpretation can hardly be given for arbitrary p ). 
Besides the notation ( )F p  we will also use ( ( ))L f t , so ( ) ( ( ))F p L f t . Often the nota-
tion ( ( ))( )L f t p  , although not very elegant, will be useful in the case of a concrete function. 
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Theorem 1 Let ( )f t  be a causal function and consider the integral in (1). If the integral is 
absolutely convergent for a certain value 0p s R  , then the integral is absolutely conver-
gent for all p  with 0Re p s s  . 

Note 1 If ( ) ( ( ))F p L f t , then lim ( ) 0
p

F p


 . 

Example 1 Determine for the following functions the Laplace transform: 

a) the shifted unit step function  1 ( )t  in figure 6 is defined by 
1, 0,

( )
0, 0;

if t
t

if t


  
 

b) ( ) eatf t  ; 
c) ( )f t t ; 

d) 2( )f t t . 

Solution 
a)  

 
Fig.6 

0
0 0 0

1 1
( ) ( )e 1 e lim e lim e

b
bp t p t p t pt

b b
F p f t dt dt dt

p p

 
   

 
            . 

1
(1 ( ))L t

p
  . 

b) ( )

0 0 0

( ) ( )e e lim e
b

p t at p t p a t

b
F p f t dt e dt dt

 
   


        

( )
( )

0

1 1 e 1
lim e lim

p a bbp a t

b bp a p a p a p a

 
 

 

               
. 

  1
e ( )atL t

p a
 


. 

c) For 0p  the Laplace transform does not exist, while for 0p  it follows from integra-
tion by parts that  

0 0 0

( ) ( )e e lim e
b

p t p t p t

b
F p f t dt t dt t dt

 
  


        

2 20
0

1 1
lim e e

b
bpt pt

b

t

p p p
 



                   
. 
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2

1
( ( ))L t t

p
  . 

d) For 0p  the Laplace transform does not exist, while for 0p  it follows from integra-
tion by parts that  

2 2

0 0 0

( ) ( )e e lim e
b

p t p t p t

b
F p f t dt t dt t dt

 
  


        

2

2 3 30 0
0

2 2 2
lim e e e

b
b bpt pt pt

b

t
t

p p p p
  



                            
. 

 2
3

2
( )L t t

p
  . 

 
2.2 Linearity, Shifting and Scaling 

1. Linearity 
As for the Fourier transform, the linearity of the Laplace transform follows immediately from 

the linearity of integration (see section 2.4). For ,A B   one thus has 

     ( ) ( ) ( ) ( ) ( ) ( )L A f t B t AL f t BL t AF p B p         (1) 

in the half-plane where ( ) ( ( ))F p L f t  and ( ) ( ( ))p L t   both exist. 
2. Shift in the time domain 
The unit step function is often used to represent the switching on of a signal ( )f t  at time 

0t  (see figure 7a). When several signals are switched on at different moments in time, then 
it is convenient to use the shifted unit step function ( )t b  . In fact, when the signal f is 
switched on at time , 0t b b  , then this can simply be represented by the function 

( ) ( )f t b t b    (See figure 7.b). Using the functions ( )t b   it is also quite easy to rep-
resent combinations of shifted (switched on) signals. 

 
Fig.7 

Figure 8, for example, shows the graph of the causal function  
( ) 3 2( 1) ( 1) 2( 3) ( 3)f t t t t t        . 

In fact, ( ) 3f t   for 0 1t  , ( ) 3 2( 1) 5 2f t t t      for 1 3t   and 
( ) 3 2( 1) 2( 3) 1f t t t       for 3t . 
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Fig.8 

Let ( )f t  be a function with Laplace transform ( )F p  for 0Re p s s   and let 0b . 
Then one has for 0Re p s s   that 

( ( ) ( )) e ( )pbL f t b t b F p         (2) 
3. Shift in the p-domain 
Let ( )f t  be a function with Laplace transform ( )F p  for 0Re p s s   and let b. 

Then one has for 0Re Rep s s b    that 

(e ( )) ( )btL f t F p b         (3) 
4. Scaling 
Let ( )f t  be a function with Laplace transform ( )F p  for 0Re p s s   and let 0b . 

Then one has for 0Re p s bs   that 

1
( ( ))

p
L f bt F

b b

    
       (4) 

Example 2 Determine the Laplace transform ( )F p  of the following functions: 

a)  sin wt , 

 cos wt ; 
b)  ch wt ,  sh wt ; c) ( ) (5cos 3sin ) ( )f t t t t  ; 

d) 4( ) e costf t t ; e) 

, 0 2,

( ) 4 , 2 4,

0, 0, 4;

t if t

f t t if t

if t t

       

 f) 2( ) (2 6 ) ( 3)f t t t t    . 

Solution 

a)    2 2

e e 1 1 1
sin

2 2

i wt i wt w
L wt L

i i p iw p iw p w

                 
, 

   2 2

e e 1 1 1
cos

2 2

i wt i wt p
L wt L

p iw p iw p w

                 
. 

b)    2 2

e e 1 1 1
ch

2 2

wt wt p
L wt L

p w p w p w

                 
, 

   2 2

1 1 1
sh

2 2

wt wte e w
L wt L

p w p w p w

                 
. 
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c) 
2 2 2 2 2

1 5 3
( ( )) (5cos 3sin ) ( ) 5 3

1 1 1

p p
L f t L t t t

p p p
     

  
. 

d) 4
2 2 2

4 4
( ( )) (e cos ( ))

( 4) 1 8 17
t p p

L f t L t t
p p p

    
   

. 

e) Figure 9 shows the graph of the causal function

, 0 2,

( ) 4 , 2 4,

0, 0, 4.

t if t

f t t if t

if t t

       

 

 
Fig.9 

Rewrite the casual function as analytic expression with help unit step function ( )t b   
and ( )t  

( ) ( ) ( 2) (4 ) ( 2) (4 ) ( 4)f t t t t t t t t t                , 
( ) ( ) ( 2 2) ( 2) ( 2 2) ( 2) ( 4) ( 4)f t t t t t t t t t                   , 
( ) ( ) 2( 2) ( 2) ( 4) ( 4)f t t t t t t t            , 

2 4
2 2 2

1 1 1
( ( )) ( ( ) 2( 2) ( 2) ( 4) ( 4)) 2 e ep pL f t L t t t t t t

p p p
                 . 

f) 2( ( )) ((2 6 ) ( 3))L f t L t t t      

2 2 2

3 , 3

2 6 2( 3) 6( 3) 2 18 36

t a t a

t t a a a a

               
 

2 3
3 2

2 18 36
(2 18 36) ( ) pL a a a e

pp p
           

. 

Example 3 Determine a function ( )f t  whose Laplace transform ( )F p  is given by 

a) 
2

( )
25

p
F p

p



;     b) 

2

2
( )

4 5

p
F p

p p


 

;     c) 
2

3 2
( )

2 8

p
F p

p p


 

. 

Solution 
a) Using the properties of scaling we have 

 1 1 1
2 2 2

( ) ( ) ch5
25 5

p p
f t L F p L L t

p p
                    

. 

b) Using the properties of shift in the p-domain, scaling we have 

 1 1
2

2
( )

4 5

p
L F p L

p p
           
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2
2 2 2 2

2 2 2
e ch3

4 5 ( 2) 9 ( 2) 3
tp p p

t
p p p p

               
. 

c) Using the properties of linearity, shift in the p-domain, scaling we have 

 1 1
2

3 2
( )

2 8

p
L F p L

p p
           

 

2 2 2 2 2 2

3 2 3( 1) 1 3( 1) 1 3

32 8 ( 1) 9 ( 1) 3 ( 1) 3

p p p

p p p p p

                   
 

1 1
2 2 2 2

( 1) 1 3 1
3 e 3ch3 sh3

3 3( 1) 3 ( 1) 3
tp

L L t t
p p

                              
. 

Other way: 

 1 1
2

3 2
( )

2 8

p
L F p L

p p
           

 

2

3 2 3 2

( 2)( 4) 2 42 8

( ) 2 4 4 5
3,2 4 2 ,

( 2)( 4) 3 3

p p A B

p p p pp p

A B p B A
A B B A A B

p p

      
                      

 

1 1 2 44 1 5 1 4 5
e e

3 2 3 4 3 3
t tL L

p p
                   

. 

Exercise Set 2 
In Exercises 1 to 17 determine the Laplace transform ( )F p  of the following functions: 

1. 4 3 2( ) (3 2 7) ( )f t t t t t    ; 2. ( ) (5cos 3sin ) ( )f t t t t  ; 

3. 7( ) (e 4sh 7 2ch 7 ) ( )tf t t t t   ; 4. 2( ) cos 8 ( )f t t t  ; 

5. 2( ) (( 1) 4( 1) 6)) ( 1)f t t t t       ; 6. 2( ) ( 4 ) ( 2)f t t t t    ; 

7. 3 2( ) ( 6 4 8) ( 1)f t t t t t      ; 8. ( ) sin 2( 3) ( 3)f t t t    ; 

9. ( ) (3e 4sin 7cos ) ( )i tf t t t t    ; 10. 3( ) (4e 2sh 3 6sh 3 ) ( )tf t t t t    ; 
11. ( ) sin 6 cos4 ( )f t t t t   ; 12. ( ) sin8 sin 2 ( )f t t t t   ; 

13. 2( ) ( 2) ( 1)f t t t t     ; 14. 2( ) ( 2 5) ( 3)f t t t t     ; 
15.  

 

16.  
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17. 

 
In Exercises 18 to 27 determine a function ( )f t  whose Laplace transform ( )F p  is given by: 

18. 
2

3
( )

( 2) 9
F p

p


 
; 19. 

2

5
( )

( 4) 9
F p

p


 
; 

20. 
2

( )
36

p
F p

p



; 21. 

2

5
( )

49

p
F p

p



; 

22. 
2

1
( )

2

p
F p

p p




; 23. 
2

10
( )

4

p
F p

p p




; 

24. 
2

2
( )

4 5

p
F p

p p


 

; 25. 
2

4
( )

8 17

p
F p

p p


 

; 

26. 
2

5 3
( )

4 12

p
F p

p p


 

; 27. 
2

7 3
( )

6 10

p
F p

p p


 

. 

2.3 Differentiation in the Time Domain and in the p-Domain.  
Integration in the Time Domain. Convolution 

Theorem 1 Let ( )f t  be a causal function which, in addition, is differentiable on  . In a 

half-plane where ( ( ))L f t  and  ( )L f t  both exist one has 

 ( ) ( ) (0)L f t pF p f         (1) 

By repeatedly applying theorem 1, one can obtain the Laplace transform of the higher de-
rivatives of a function. Of course, the conditions of theorem 1 should then be satisfied through-
out. Suppose, for example, that a causal function ( )f t  is continuously differentiable on   

(so ( )f t  exists and is continuous on  ) and that ( )f t  is differentiable on  . By applying 
theorem 1 twice in a half-plane where all Laplace transforms exist, it then follows that 

  2( ) ( ) (0) (0)L f t p F p f p f     

  2 2( ) ( ) (0) (0) (0)L f t p F p f p f p f       

… 

 ( ) 1 2 ( 1)( ) ( ) (0) (0) ... (0)n n n n nL f t p F p f p f p f              (2) 

In a half-plane where all Laplace transforms exist and ( )(0) (0) ... (0) 0nf f f    , 
we then have the following differentiation rule in the time domain: 

 ( )( ) ( )n nL f t p F p              (3) 

Theorem 2 Let ( )f t  be a function with Laplace transform ( )F p  and let 0s  be the abscis-
sa of absolute convergence. Then ( )F p  is an analytic function of p  for 0Re p s s   and 
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(( ) ( ) ( ),L t f t F p     2(( ) ( ) ( ),L t f t F p     …   ( )(( ) ( ) ( )n nL t f t F p           (4) 
Theorem 3 Let ( )f t  be a causal function which is continuous on   and has Laplace 

transform ( )F p . Then one has in a half-plane contained in the region Re 0p s   

0

( )
( ( ) )( )
t

F p
L f d p

p
                    (5) 

Theorem 4 Let ( )f t  be a function with Laplace transform ( )F p  and ( )
p

F d 


  is abso-

lutely convergent for a certain value 0Re p s s  , then  

1 ( )
( )

p

f t
L F d

t
 



       
               (6) 

Example 4 Determine for the following functions the Laplace transform: 
a) 3( )f t t , b) ( ) nf t t , c) ( ) en atf t t , 
d) ( ) sinf t t wt , e) ( ) e sinatf t t wt .  

Solution 

a) Let 
1

(1 ( ))L t
p

    and  
2

1
( ( ))L t t

p
  . 

Using (4)  

2
2 3

1 2
( ( ))

p

L t t
p p


        

, 

2
2 3

1 2!
( ( ))

p

L t t
p p


       

. 

b) The method from the example above can be used to determine ( ( ))nL t t  for every 

2,n n N  . In fact, the function ( )nt t  satisfies the conditions of theorem 2 for 
2,n n N   and so it follows from (4) that 

1

!
( ( ))n

n

n
L t t

p
   . 

c) Using the property of shift in the p-domain, we have 

1

!
( ( ))

( )
n at

n

n
L t e t

p a
 


. 

d) If    2 2
sin

w
L wt

p w



: 

 2 2 22 2

2
( sin ( ))

p

w wp
L t wt t

p w p w


          
. 
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e) Using (d) and the property of shift in the p-domain, we have 

 22 2

2 ( )
( sin ( ))

( )

at w p a
L e t wt t

p a w
  

 
. 

Example 5 Determine for the following functions the Laplace transform: 

a) ( ) 1 cosf t t  ,     b) 
sin

( )
t

f t
t

 . 

Solution 

a) The causal function ( ) sinf t t  is continuous on   and since 
0

sin 1 cos
t

d t    , 

it then follows from theorem 3 that 

2

(sin )( ) 1
(1 cos )( )

( 1)

L t p
L t p

p p p
  


. 

This result is easy to verify since we know, that    2 2
cos

p
L wt

p w



 and 

1
(1 ( ))L t

p
  . Hence, 

2 2

1 1
(1 cos )( )

1 ( 1)

p
L t p

p p p p
   

 
. 

b) If    2 2
sin

w
L wt

p w



: 

2

sin 1
( ) arctg arcctg

21
p

t
L t d p p

t

 


          . 

Example 6 Determine a function ( )f t  whose Laplace transform ( )F p  is given by 

2

4
( )

( 4)
F p

p p



. 

Solution Let ( )f t  be a function with Laplace transform 
2

4
( )

( 4)
F p

p p



. If we ignore 

the factor 
1

p
, then we are looking for a function ( )g t  having Laplace transform 

2

4
( )

4
G p

p



. This is easy: ( ) 2sin 2g t t . Integrating ( )g t  we find ( )f t : 

 0( ) 2sin 2 cos2 1 cos2
t

t

o

g t d t       . 

Example 7 Determine for the following expression the Laplace transform: 
( ) 2 ( ) 3 ( ) 2 ( ) 2x t x t x t x t         if   (0) 3, (0) 0, (0) 2x x x    . 

Solution Let ( ( )) ( )L x t X p X  . Using the property of linearity and (1)-(3) we have 
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 ( ) ( ) ( ) 3L x t t p pX   , 

  2( ) ( ) ( ) 3 0L x t t p p X p    , 

  3 2( ) ( ) ( ) 3 0 2L x t t p p X p p     , 

2
(2 ( ))L t

p
  . 

Then 
  ( ) 2 ( ) 3 ( ) 2 ( ) 2 ( ) ( )L x t x t x t x t t p        

3 2 2 2
3 2 2( 3 ) 3( 3) 2p X p p X p pX X

p
         . 

When, moreover, ( )f t  and ( )t  are both causal, then one has for 0t  that 

0

( ) ( )
t

f u t u du f            (7) 

since the integrand is zero for both 0u  and 0t u  . 
Theorem 5 (Convolution theorem) Let ( )f t  and ( )t  be piecewise smooth and causal 

functions. Let the Laplace transforms for ( ( )) ( )L f t F p  and ( ( )) ( )L t p   exist as 
absolutely convergent integrals in a half-plane 0Re p s s  . Then ( ( )* ( ))L f t t  exists 
for 0Re p s s   and 

( ( ) ( )) ( ) ( )L f t t F p p         (8) 
Example 8 Determine a function ( )f t  whose Laplace transform ( )F p  is given by 

 22 2

1
( )F p

p w



. 

Solution Let  

2 2 2 2 2 2 2

1 1 1
( )

( ) ( ) ( )
F p

p w p w p w
  

  
, 

  2 2

1 1
sinL wt

w p w

     
. 

Then 1
2 2 2

0

1 1 1
sin sin ( )

( )

t

L wu w t u du
w wp w

               

     2 2 0 0
0

1 1 1
cos (2 ) cos sin (2 ) cos

22 2

t
t t

w u t wt du w u t wt u
ww w

             

 2 3

1 1 1
sin cos sin cos

2 2
wt t wt wt wt wt

ww w

       
. 

 1
2 2 2 3

1 1
sin cos

( ) 2
L wt wt wt

p w w
         

. 

Using the properties of linearity, shift in the p-domain, scaling, differentiation in the time do-
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main, differentiation in the p-domain, integration in the time domain, convolution summary ta-
ble (1) establishes a correspondence between some of the causal functions and their Laplace 
transform 

Table 1 
№ ( )f t  ( )F p  

1. 1 ( )t  
1

p
 

2. eat  
1

p a
 

3. t  2

1

p
 

4. sinwt  2 2

w

p w
 

5. coswt  2 2

p

p w
 

6. shwt  2 2

w

p w
 

7. chwt  2 2

p

p w
 

8. e sinat wt   2 2( )

w

p a w 
 

9. e cosat wt  2 2( )

p a

p a w


 

 

10. e shat wt  2 2( )

w

p a w 
 

11. e chat wt  2 2( )

p a

p a w


 

 

12. nt  1

!
n

n

p   

13. eat nt  1

!

( )n
n

p a 
 

14. sint wt   22 2

2wp

p w
 

15. cost wt   
2 2

22 2

p w

p w




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№ ( )f t  ( )F p  

16. sht wt   22 2

2wp

p w
 

17. cht wt   
2 2

22 2

p w

p w




 

18. e cosat t wt    
2 2

22 2

( )

( )

p a w

p a w

 

 
 

19. e sinat t wt    22 2

2 ( )

( )

w p a

p a w



 
 

Exercise Set3 
In Exercises 1 to 10 determine the Laplace transform ( )F p  of the following functions: 

1. ( ) ch sinf t t t  . 2. ( ) ch 2 shf t t t  . 
3. ( ) cos3f t t t . 4. 4( ) e costf t t . 

5. 3( ) e tf t t   . 6. 2 5( ) e tf t t . 

7. 2( 1)( ) e cos3( 1) ( 1)tf t t t    . 8. ( ) sin cosf t t t t   . 

9. 2( ) e sintf t t . 10.  1
( ) ch sin sh cos

2
f t t t t t    . 

In Exercises 11 to 20 determine a function ( )f t  whose Laplace transform ( )F p  is given 
by: 

11. 
10

1
( )F p

p
 . 12.

 
5

1
( )

( 3)
F p

p



. 

13.
 

2

3
( )

( 2) 9
F p

p


 
. 14.

 
2

5
( )

( 1) 9
F p

p


 
. 

15.
 

2
( )

25

p
F p

p



. 16.

 
2

4
( )

25

p
F p

p



. 

17.
 

2

3

e
( )

( 1)

p

F p
p





. 18.

 

4

5

e
( )

( 7)

p

F p
p





. 

19.
 

2 2

4
( )

( 16)
F p

p p



. 20.

 
2

4
( )

( 9)
F p

p p



. 

2.4 The Inverse Laplace Transform. Applications of the Laplace Transform 

Theorem 1 (Fundamental theorem of the Laplace transform) Let ( )f t  be a piecewise 
smooth (and causal) function of exponential order  . Let ( )F p  be the Laplace transform 
of ( )f t . Then one has for 0t  and p s i   with    that 
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1 1
( ) ( ) ( )e

2

i
pt

i

f t L F p F p dp
i






 


 

           (1) 

As for the Fourier transform, theorem 1 tells us precisely how we can recover the function 
( )f t  from ( )F p . Obtaining ( )f t  from ( )F p  is called the inverse problem and therefore 

theorem 1 is also known as the inversion theorem and (1) as the inversion formula. We will call 
the function ( )f t  the inverse Laplace transform of ( )F p . Still, (1) will not be used for this 
purpose. In fact, calculating the integral in (1) requires a thorough knowledge of the integration 
of complex functions over lines in  , an extensive subject which is outside the scope of this 
book. Hence, the fundamental theorem of the Laplace transform will not be used in the re-
mainder of this book, except in the form of the frequent (implicit) application of the fact that the 
Laplace transform is one-to-one. Moreover, in practice it is often a lot easier to determine the 
inverse Laplace transform of a function ( )F p  by using tables, applying the properties of the 
Laplace transform, and using partial fraction expansions. 

We will now describe in a number of steps how the inverse Laplace transform of such a ra-
tional function ( )F p  can be determined. 

Step 1 If the degree of the numerator is greater than or equal to the degree of the denomi-
nator, then we perform a division. The function ( )F p  is then the sum of a polynomial and a 
rational function for which the degree of the numerator is smaller than the degree of the de-
nominator. The polynomial gives rise to distributions in the inverse Laplace transform since  

 ( ) ( ) ( )n np Lg t p . 

Example 9 We want to determine the function/distribution ( )f t  having Laplace transform 
3 2

2
( )

1

p p p
F p

p

 


. 

Solution Since the degree of the numerator is greater than the degree of the denominator, 

we first divide: 
2

1
( ) 1

1
F p p

p
  


. Now ( ) 1, ( )L g L g p   and   2

1
sin

1
L t

p



, 

so ( ) ( ) ( ) sinf t g t g t t   . 
Step 2 From step 1 it follows that henceforth we may assume that ( )F p  is a rational func-

tion for which the degree of the numerator is smaller than the degree of the denominator. 
From the results of section 2.2 it then follows that ( )F p  can be written as a sum of frac-

tions of the form 

( )k
A

p a
  and  

 2 j

Bp C

p qp c



 
 

with ,k j  and where all constants are real and 2p qp c   cannot be factorized into 

factors with real coefficients. This latter fact means that the discriminant of 2p qp c   is 
negative. We will now determine the inverse Laplace transform for each of these fractions 
separately. 

Step 3 From table 1 we immediately obtain the inverse Laplace transform of 
( )k

A

p a
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 1 ( 1)!
( )

( )
k at

k

k
L t e t

p a
 


. 

Step 4 In order to determine the inverse Laplace transform of 
 2 j

Bp C

p qp c



 
, we com-

plete the square in the denominator: 
2 2

2

2 4

q q
p qp c p c

              
. For convenience 

we write the positive constant 
2

4

q
c
     

 simply as 2c  (for some new constant c ), which 

means that we want to determine the inverse Laplace transform of the function 

2
2

2

j

Bp C

q
p c


             

           (2) 

For 1j  we obtain the inverse Laplace transform of this function from (2) by taking a suit-
able linear combination of the following results from table 1: 

   2 2
e sin ( )

( )
a t w

L wt t
p a w

 
 

, 

   2 2
e cos ( )

( )
a t p a

L wt t
p a w

  
 

    (3) 

Example 10 Determine a function ( )f t  whose Laplace transform ( )F p  is given by 

a) 
2

1
( )

( 1)
F p

p p



; b) 

2 2

1
( )

( 16)( 4)
F p

p p


 
; 

c) 
3

1
( )

( 1)
F p

p p



; d) 

4

2 2

e ( 1) 2
( )

( 5) 2 5

p p p
F p

p p p p

   
  

. 

Solution  

a) A partial fraction expansion leads to 
2 2

1 1
( )

1 ( 1)

p
F p

p p p p
  

 
. From a very 

simple case of (3) it then follows that ( ) 1 cosf t t  . 

b) Since ( )F p  is a function of 2p , we put 2y p  and apply partial fraction expansion to 

the function 
1

( 16)( 4)y y 
, resulting in 

1 1

12( 4) 12( 16)y y


 
. 

Hence, 
2 2

1 1
( )

12( 4) 12( 16)
F p

p p
 

 
 and then it again follows from a simple case 

of (3) that 
sin 2 sin4

( )
24 48

t t
f t   . 

c) A partial fraction expansion leads to  
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2 3 3 2 3

1 1 1 1 1
( )

1 1( 1)

A B C N
F p

p p p pp p p p p p
        

 
. 

From a very simple case of table (1) it then follows that 
2

( ) 1 e
2

tt
f t t    . 

d) Since the discriminant of 2 2 5p p   is negative, we complete the square: 
2( 1) 4p  . To the first term we apply partial fraction expansion: 

4
2 2 2

1 4 4 1 1
( ) e

25 25( 5)5 ( 1) 4 ( 1) 4
p p

F p
p pp p p

                
. 

Using table (1) and the shift property in the time domain we obtain 

   5( 4)1 e
( ) 5( 4) 4 4e ( 4) 2cos2 sin 2

25 2

t
tf t t t t t


        . 

Using an elementary example we will illustrate how the Laplace transform can be used to 
obtain solutions to linear differential equations with constant coefficients. Moreover, we will 
show the difference between the method using the Laplace transform and the ‘classical’ solu-
tion method using the homogeneous and particular solutions. This classical solution method 
has already been explained in differential equation section and can also be found in many in-
troductions to this subject. 

We will now use the Laplace transform to solve the initial value problem for example 11 

Example 11 Consider for the unknown function ( )y y t  the initial value problem 

2y y t  ,    (0) (0) 0y y  . 
Solution Apply the Laplace transform to both sides of the differential equation 

2y y t  . Assume that ( ( )) ( )L y t Y p  exists in a certain half-plane and that moreover 
the differentiation rule in the time domain (table 1) can be applied. Then 

2( )( )L y y p p Y Y    and since
2

1
( )L t

p
 , the initial value problem transforms into 

 2
2

2
1Y p

p
  . 

Note that instead of a differential equation for ( )y y t  we now have an algebraic equation 
for ( )Y p . Solving for ( )Y p  and applying a partial fraction expansion we obtain that 

2 2 2 2

2 2 2
( )

( 1) 1
Y p

p p p p
  

 
. 

The inverse Laplace transform ( )y y t  of ( )Y p  follows from table 1: 

( ) 2sh 2 e e 2t ty y t t t t      . 

We first summarize the most important steps of the solution method in example 11. 
Step 1 The Laplace transform is applied to the differential equation for ( )y y t . Here we 

assume that the Laplace transform ( )Y p  of the unknown function ( )y y t  exists and that 
the differentiation rule in the time domain may be applied (either in the ordinary sense or in the 
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sense of distributions). From the differential equation for ( )y y t  we obtain an algebraic 
equation for ( )Y p  which is much easier to solve. 

Step 2 The algebraic equation in the p-domain is solved for ( )Y p . 
Step 3 The solution we have found in the p-domain is then transformed back into the t-

domain. For this we use tables, the properties of the Laplace transform and partial fraction ex-
pansions. For the solution ( )y y t  found in this way, one can verify whether it satisfies the 
differential equation and the initial conditions. 

Example 12 Consider for the unknown function ( )y y t  the initial value problem 

1
, 0 2,

2
4 3 , 2 3,

0, 0, 3,

t if t

y y t if t

if t t

         

 

(0) (0) 0y y  . 
Solution 
Figure 10 shows the graph of the causal function  

1
, 0 2,

2
4 3 , 2 3,

0, 0, 3.

t if t

y y t if t

if t t

         

 

 
Fig.10 

Rewrite the causal function as an analytic expression with the help of unit step function 
( )t b   and ( )t  

1 1
( ) ( ) ( 2) (3 ) ( 2) (3 ) ( 3)

2 2
f t t t t t t t t t                , 

1 3
( ) ( ) ( 2) ( 2) ( 3) ( 3)

2 2
f t t t t t t t            , 

1 3
4 ( ) ( 2) ( 2) ( 3) ( 3)

2 2
y y t t t t t t              . 

The initial value problem transforms into 
2 2 3

2 2 2

1 1 3 1 1
4 e e

2 2
p pp Y Y

p p p
       . 

Solving for ( )Y p  and applying a partial fraction expansion we obtain that 
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2 3
2 2 2 2 2 2

1 1 3 1 1
( ) e e

2 2( 4) ( 4) ( 4)
p pY p

p p p p p p
     

  
, 

2 2 2 2 2 2 2

1 1 1 1 1 1 1 2

4 4 2( 4) 4 2p p p p p p

                    
. 

Using the properties of linearity, shift in the p-domain, scaling we have 

 1 3 1
( ) sin 2 2 sin 2( 2) ( 2)

8 8 2
y t t t t t t

            
 

1 1
3 sin 2( 3) ( 3)

4 2
t t t
        

. 

Using the Laplace transform one can also solve systems of several coupled ordinary linear 
differential equations with constant coefficients. We confine ourselves here to systems of two 
such coupled differential equations, since these can still be solved relatively easy without using 
techniques from matrix theory. Systems of more than two coupled differential equations will not 
be considered in this book. We merely note that they can be solved entirely analogously, alt-
hough matrix theory becomes indispensable. 

In general, a system of two coupled ordinary linear differential equations with constant coef-
ficients and of first order has the following form: 

11 12 11 12 1

21 22 21 22 2

( )

( )

a x a y b x b y u t

a x a y b x b y u t

          
 

with initial conditions certain given values for (0)x  and (0)y . Similarly, one can describe the 

general system of second order with initial conditions (0)x , (0)x , (0)y  and (0)y  (for high-
er order and/or more differential equations the vector and matrix notation is much more con-
venient). The solution method based on the Laplace transform again consists of Laplace trans-
forming all the functions that occur, and then solving the resulting system of linear equations 
with polynomials in p  as coefficients. 

Example 13 Consider the system 
7 2 0

3 0

x y x

x y y

        
 

with initial conditions (0) 1x   and (0) 0y  . 
Solution  
Let ( )X p  and ( )Y p  be the Laplace transforms of ( )x x t  and ( )y y t . One then has 

     7 2 ( ) 7 (0) (0) 2L x y x p pX x pY y X         

and by substituting the initial conditions one obtains that 7( 1) 2 0pX pY X    , or 
(7 2) 7p X pY   . Transforming the second differential equation of the system in a simi-
lar way, we see that the Laplace transform turns the system into the algebraic system 

(7 2) 7,

(3 1) 1.

p X pY

pX p Y

      
 

Solving this system of two linear equations in the unknowns ( )X X p  and ( )Y Y p , 
we find that 
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2

7(3 1) 20 7
( )

(4 1)(5 2)(3 1)(7 2)

p p p
X p

p pp p p

   
   

, 

2

7 (7 2) 2
( )

(4 1)(5 2)(7 2)(3 1)

p p
Y p

p pp p p

  
   

, 

( ( )X X p  is found by multiplying the first and the second equation by, respectively, 3 1p  
and p  and subtracting; ( )Y p  follows similarly). Using partial fraction expansions we obtain 
that 

8 5 2 1
( )

1 23(4 1) 3(5 2) 3 3
4 5

X p
p p p p

                  

, 

8 10 2 2
( )

1 23(4 1) 3(5 2) 3 3
4 5

Y p
p p p p

                  

 

and by inverse transforming this we see that the solution to the system is given by 
2
54

2

54

2 1
( ) e e

3 3

2 2
( ) e e

3 3

tt

tt

x t

y t





    

 

Exercise Set 4 
In Exercises 1 to 8 determine a function ( )f t  whose Laplace transform ( )F p  is given by 

1. 
2

2
( )

( 1)( 2)( 1)

p
F p

p p p


  

. 2. 
4 2

5 8
( )

13 36

p
F p

p p


 

. 

3. 
2 2

4
( )

( 16)( 25)

p
F p

p p


 
. 4. 

2

2 2
( )

( 4)( 9)

p
F p

p p


 
. 

5. 
2

4 5
( )

( 2) ( 4 5)

p
F p

p p p


  

. 6. 
2

( )
( 1) ( 4 5)

p
F p

p p p


  
. 

7. 
4 2

( )
5 4

p
F p

p p


 
. 8. 

3 2

3
( )

2 3

p
F p

p p p


 

. 

In Exercises 9 to 14 Consider for the unknown function ( )y y t  the initial value problem 
9. 2 2( 1), (0) 1, (0) 1y y y t y y        ; 

10. 2 e , (0) 1, (0) 0ty y y y y       ; 
11. 4 sin 2 , (0) 0, (0) 1y y t y y     ; 
12. 2 10 2e cos3ty y y t    ,  (0) 5, (0) 1y y  ; 
13. 9 sin cosy y t t   ,  (0) 3, (0) 2y y   
14. 6 3, (0) 1, (0) 0y y y t y y        . 

In Exercises 15 to 19 consider the system with initial conditions 
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15. 
2 2 2,

(0) 2, (0) 1.
4 1,

x x y
x y

y y

        
 

16. 
2 5 ,

(0) 1, (0) 1.
2 2,

x x y
x y

y x y

        
 

17. 
e ,

(0) 1, (0) 1, (0) (0) 0.
0,

tx y
x y x y

x y y

            
 

18. 
2 5 1,

2 1,

x x y

y x y

        
  

(0) 0,

(0) 2.

x

y

  
 

19. 
4 ,

2 9,

x x y

y x y

       
     

(0) 1,

(0) 0.

x

y

  
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