💫 Защита от окисления металла упрочняемой детали обеспечивается постановкой в плазмотроне дополнительного керамического сопла 4 с внутренним диаметром 18 мм, а между соплами 2 и 4 подается защитный газ азот с расходом 1.2...4.0 л/мин. Кроме того, за счет высокой скорости течения плазмы в дуге происходит эжекция азота в зону анодного пятна, что предположительно может привести к плазменному азотированию поверхностного слоя детали, что подтверждается исследованиями физических свойств этого слоя.

Выпрямитель 2 включен между катодом 1 и упрочняемой деталью 6. Для поджига основной дуги использован высокочастотный генератор 3 малой мощности, включенный между катодом и соплом 2 плазмотрона. После поджига дежурной дуги по ее проводящему каналу загорается основная дуга между катодом и деталью-анодом. Перед включением плазмотрона в зону катода для его защиты подается аргон с расходом 1.2...4.1 л/мин, а для защиты детали в зоне анодного пятна от окисления через дополнительное сопло 4 – азот с расходом 0,8 7.2.4 л/мин.

При закалке использовались аргон и азот высокой чистоты из баллонов. Измерение расходов газов производится при помощи ротаметров типа РМ-0,025 и РМ-0,63.

Проведенные эксперименты показали, что подача азота позволяет увеличить напряжение дуги и, соответственно, мощность плазмотрона почти в 2 раза и достичь плотности теплового потока в анодном пятне вплоть до 6×107 Вт/м² при диаметре пятна 2.0...2.4 мм.

Использование модернизированного плазмотрона позволяет повысить твердость и износостойкость сталей за счет воздействия плазменной струи в защитной среде аргона.

Список цитированных источников

1. Райцес, В.Б. Термическая обработка. – М.: Машиностроение, 1980. – 247 с.

2. Спиридонов, Н.В. Плазменные и лазерные методы упрочнения деталей машин / Н.В. Спиридонов, О.С. Кобяков, И.Л. Куприянов. – Мн.: Высшая школа, 1988. – 155 с.

3. Лещинский, Л.К. Плазменное поверхностное упрочнение / Л.К. Лещинский, С.С. Самотугин,

И.И. Пирч, В.И. Комаров. - Киев: Тэхника, 1990. - 109 с.

 Коротеев, А.С. Плазмотроны: конструкции, характеристики, расчет / А.С. Коротеев, В.М. Миронов, Ю.С. Свирчук. - М.: Машиностроение, 1993. - 296 с.

УДК 621.9.06 Кардаш Н.Н.

Научный руководитель: к.т.н., доцент Горбунов В.П.

АНАЛИЗ ВЛИЯНИЯ СИЛОВЫХ ФАКТОРОВ НА ТОЧНОСТЬ КООРДИНАТНЫХ ПЕРЕМЕЩЕНИЙ ПРИВОДА СТАНКА

Введение

В настоящее время одной из основных тенденций развития в технологии механической обработки является повышение точности изготавливаемых деталей: точность её размеров, формы, взаимного расположения и шероховатости поверхности. Ужесточение точности изготавливаемых деталей влечет за собой повышение требований к точности станка: геометрической точности, кинематической точности, точности позиционирования и жесткости.

В автоматизированном производстве наибольшее значение имеет использование станков с ЧПУ, где точность обработки должна обеспечиваться автоматически за счет: точного перемещения рабочих органов станка, использования систем автоматического управления и других факторов. Особенностью станков с ЧПУ является применение передачи винт-гайка качения в качестве тягового устройства рабочих органов станка.

Во время обработки, под воздействием сил резания, происходит деформация элементов привода подач станка, что приводит к нарушению первоначального положения режущего инструмента и в следствие к снижению точности обработки. В связи с этим необходимо выявить насколько значительны эти деформации.

Основная часть

Анализ литературных источников [1, 2] показал, что на привод подач действуют следующие силы:

- силы резания, со стороны перемещаемого узла;
- силы трения в подшипниках опоры;
- силы трения шариков внутри ШВП;
- силы, возникающие в результате погрешности изготовления;
- сила, действующая на резьбовую поверхность винта, которая образуется от натяга подшипников в опоре;
 - сила, от натяга внутри ШВП.

На практике при расчете деформаций невозможно учесть влияние всех сил, действующих на привод. Это обусловлено сложностью нахождения направления и величин этих сил. Поэтому производится компьютерное моделирование деформаций винта под действием изменяющихся нагрузок. В качестве силовых факторов для моделирования, нами были выбраны силы:

- составляющая силы резания Р_х;
- сила натяга внутри ШВП;
- сила от натяга подшипника.

Для моделирования влияния силовых воздействий, необходимо принять определенные допущения:

- пренебрегаем силами трения в узлах подшилника и внутри и ШВП;
- в расчете не будем учитывать силы, возникающие в результате погрешности изготовления;
- считаем, что сила от натяга подшипника действует вдоль оси винта и равномерно распределена по виткам резьбы;
 - из сил резания действует только одна составляющая Рх;
- считаем, что внутри ШВП составляющая силы резания действует на 3 витка, равномерно распределяясь по ним;
 - сила, действующая на виток, распределяется на весь оборот витка;
- сила натяга внутри ШВП действует на 6 витков, равномерно распределена по виткам, направлена в осевом направлении винта и действует в разные стороны, по 3 витка в каждую сторону;
 - будем учитывать деформации только винта ШВП, деформациями остальных эле-

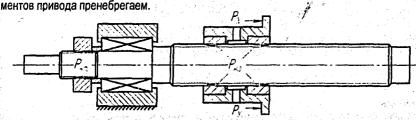


Рисунок 1 – Схема приложения нагрузок: Рх – составляющая силы резания, Рн.г. – силы от натяга внутри гайки, Рн.п. – силы от натяга подшипника

В приложении «КОМПАС 313 У13» была построена математическая модель, с учетом

принятых ранее допущений.

Перемещение гайки было имитировано поэтапным перемещением нагрузок вдоль оси винта с шагов 5 мм. Таким образом, мы получили ряд значений соответствующих величине удлинения винта под действием нагрузок на всей рабочей длине винта.

Рисунок 3 - Суммарное линейное перемещение

По результатам моделирования был построен график влияния перемещения гайки на

удлинение винта (см. рисунок 4).

Проанализировав график, можно придти к выводу, что величина деформации в зависимости от перемещения гайки, подчиняются линейному закону. Зная уравнение компенсирующей прямой, можно компенсировать данную погрешность. Уравнение компенсирующей прямой имеет следующий вид:

$$e_c = \alpha l + c$$
, (1)

где e_c – накопленное отклонение шага винта под действием сил резания, а – коэффициент наклона прямой, с – постоянная составляющая погрешности, 1 – величина перемещения.

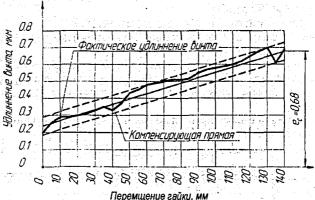


Рисунок 4 - Зависимость удлинения винта от перемещения гайки

Выводы

1. Выявлены основные силы, влияющие на точность координатных перемещений привода станка.

2. На стадии проектирования технологического оборудования рекомендуется проводить моделирование влияния силовых воздействии на привод подач с целью оптимизации его конструкции.

3. В период эксплуатации возможна коррекция деформаций привода подач по компенсирующей прямой (постоянной составляющей погрешности), получаемой от изгото-

вителя для данного оборудования.

Список цитированных источников

1. Проектирование металлорежущих станков и станочных систем: справочник-учебник: в 3-х т. / А.С. Проников [и др.]; под общ. ред. А.С. Проникова. — М: Изд-во МГТУ им. Н.Э. Баумана: Машиностроение, 1994. — Т.2: Расчет и конструирование узлов и элементов станков. — С. 372.

2. Кочергин, Ю.А. Конструирование и расчет метаплорежущих станков и станочных комплексов: кур-

совое проектирование; учеб. пособие для вузов / А.И. Кочергин. – Мн.: Выш. шк., 1991. – С. 382

УДК 621.9.06 **Кардаш Н.Н.**

Научный руководитель: к.т.н., доцент Горбунов В.П.

ОЦЕНКА ВЛИЯНИЯ СОСТАВЛЯЮЩИХ ПОГРЕШНОСТЕЙ ПЕРЕДАЧИ «ВИНТ-ГАЙКА» КАЧЕНИЯ НА ТОЧНОСТЬ КООРДИНАТНЫХ ПЕРЕМЕЩЕНИЙ ЗАТОЧНОГО СТАНКА МОДЕЛИ ВЗ-632Ф2

Введение

Заточной станок модели ВЗ-632Ф2 предназначен для заточки прямозубых долбяков, которые являются зуборезным инструментом и требуют высокой точности при изготовлении деталей. Высокие требования к долбяку накладывают высокие требования к точности оборудования, на котором деталь обрабатывается и затачивается. Причем при затачивании долбяка необходимо обеспечивать высокую точность координатных перемещений шлифовальной бабки.

Основная часть

Точность координатных перемещений на станках с ЧПУ характеризуется точностью позиционирования Дпоз, под которой понимают отклонение действительного положения рабочего органа станка Xi от запрограммированного Xпрог при его многократном двустороннем позиционировании в различных точках по пути его перемещения по одной из координатных осей [1]. Точность позиционирования формируется всем комплексом станка с ЧПУ (его механической частью и системой управления) и зависит от многих факторов: погрешности блоков и элементов устройства ЧПУ, погрешности привода подач, геометрических погрешностей станка, погрешностей измерительных преобразований и др.

В большей степени оказывают влияние погрешности привода подач, которые форми-

руются двигателем, передаточным механизмом, тяговым устройством.

Тяговым устройством заточного станка модели ВЗ-632Ф2 является передача «винтгайка качения».

На точность координатных перемещений исполнительных механизмов влияют следующие характеристики тягового устройства:

1. Точность изготовления составляющих передачи «винт-гайка качения».

2. Точность установки.

3. Жесткость конструкции.

Суммарная погрешность передачи «винт-гайка качения» Δ_{TY} представляет собой в общем виде функцию от всех перечисленных параметров и может быть записана следующим образом:

117