В качестве второго метода исследования уравнения (1) рассматривается процедура создания соответствующего объекта DifferentialRoot. Строится модуль с использованием функции Manipulate, позволяющий рассматривать полюсы как параметры визуализации.

Список цитированных источников

1. Чичурин, А.В. Решение системы Шази и интегрирование дифференциального уравнения Шази с шестью постоянными полюсами с помощью системы Mathematica // Веснік Брэсцкага універсітэта Серыя 4, Фізіка,Матэматыка. — 2010, № 2. — С. 134-141.

УДК 517.983+519.6

СХОДИМОСТЬ В ЭНЕРГЕТИЧЕСКОЙ НОРМЕ НЕЯВНОГО МЕТОДА ИТЕРАЦИЙ РЕШЕНИЯ НЕКОРРЕКТНЫХ ЗАДАЧ

Мороз Ю.А.

УО «Брестский государственный университет им. А.С. Пушкина», г. Брест Научный руководитель — Савчук В.Ф., к. ф.- м. н., доцент

1. Постановка задачи

В гильбертовом пространстве H решается уравнение І рода

$$Ax = y, (1)$$

где A — неограниченный линейный и самосопряжённый оператор, для которого нуль не является собственным значением, но нуль принадлежит спектру оператора A, поэтому задача неустойчива, и, значит, некорректна. Пусть при точной правой части y уравнение (1) имеет единственное решение x. Для отыскания этого решения применяется итерационный метод

$$x_{n+1} = (A^2 + B)^{-1} (Bx_n + Ay), x_0 = 0.$$
 (2)

Здесь B – ограниченный вспомогательный самосопряжённый оператор, который выбирается для улучшения обусловленности. В качестве B возьмём оператор B=bE, $b>0, \quad E$ – тождественный оператор. В случае приближённой правой части y_{δ} , $\|y-y_{\delta}\| \leq \delta$, итерационный процесс (2) запишется в виде

$$x_{n+1,\delta} = (A^2 + B)^{-1} (Bx_{n,\delta} + Ay_{\delta}), x_{0,\delta} = 0.$$
 (3)

2. Сходимость метода в энергетической норме

Изучим сходимость метода (3) в энергетической норме гильбертова пространства $\|x\|_A = \sqrt{(Ax,x)}$, где $x \in H$. При этом, как обычно, число итераций n нужно выбирать в зависимости от уровня погрешности \mathcal{S} . Полагаем $x_{0,\mathcal{S}} = 0$ и рассмотрим разность $x - x_{n,\mathcal{S}} = (x - x_n) + (x_n - x_{n,\mathcal{S}})$. Используя интегральное представление неограничен-

ного самосопряжённого оператора A , получим $\left\|x-x_n\right\|_A^2=\int\limits_{-\infty}^{+\infty}\lambda\!\left(\frac{b}{\lambda^2+b}\right)^{\!2n}d\!\left(E_\lambda x,x\right)$,

$$||x_n - x_{n,\delta}||_A^2 = \int_{-\infty}^{+\infty} \lambda^{-1} \left[1 - \frac{b^n}{(\lambda^2 + b)^n} \right]^2 d(E_\lambda(y - y_\delta), y - y_\delta).$$

Оценив подынтегральные функции, нетрудно показать, что при условии b > 0виде $\|x - x_{n,\delta}\|_A \le \left(\frac{b}{4n}\right)^{\frac{1}{4}} \|x\| + \left(\frac{n}{2b}\right)^{\frac{1}{4}} \delta$, $n \ge 1$. Следовательно, если в процессе (3) выбирать

число итераций $n=n(\delta)$, зависящим от δ так, чтобы $n^4\delta\to 0$, $n\to\infty$, $\delta\to 0$, то получим метод, обеспечивающий сходимость к точному решению в энергетической норме.

Теорема При условии b > 0 метод (3) сходится в энергетической норме гильбертова пространства, если число итераций n выбирать из условия $n^{\overline{4}}\delta o 0$, $n o \infty$, $\delta \rightarrow 0$. Для метода (3) справедлива оценка погрешности

$$||x - x_{n,\delta}||_A \le \left(\frac{b}{4n}\right)^{\frac{1}{4}} ||x|| + \left(\frac{n}{2b}\right)^{\frac{1}{4}} \delta, \ n \ge 1.$$

Для минимизации оценки погрешности вычислим её правую часть в точке, в которой производная от неё равна нулю; в результате получим $\left\|x-x_{n,\delta}\right\|_A^{onm} \leq 2^{\frac{3}{8}} \, \delta^{\frac{1}{2}} \|x\|^{\frac{1}{2}}$ и $n_{onm} = 2^{-\frac{1}{2}} b \delta^{-2} ||x||^2.$

Отметим, что для сходимости метода (3) в энергетической норме достаточно выбирать число итераций $n=n(\delta)$ так, чтобы $n^{\frac{1}{4}}\delta \to 0$, $n\to \infty$, $\delta \to 0$. Однако $n_{onm}=O\!\left(\delta^{-2}\right)$, т. е. n_{onm} относительно δ имеет порядок δ^{-2} , и такой порядок обеспечивает сходимость метода итераций (3).

Таким образом, использование энергетической нормы позволило получить априорную оценку погрешности для метода (3) и априорный момент останова n_{onm} без дополнительного требования истокообразной представимости точного решения, что делает метод (3) эффективным и тогда, когда нет сведений об истокопредставимости точного решения *х* уравнения (1).

Предложенный метод может быть успешно применён для решения следующих задач: обратной задачи теории гравиметрии, обратной задачи теории потенциала, задачи спектроскопии, задачи определения формы радиоимпульса, излучённого источником и т.д.

УДК 621.316

ВОЗМОЖНОСТИ СВОБОДНОЙ МАТЕМАТИЧЕСКОЙ ПРОГРАММЫ МАХІМА

Новикова Т.А., Мовчан В.О.

УО «Донецкий национальный технический университет», г. Донецк Научный руководитель – Алексеев Е.Р., к. т. н., доцент каф. ВМиП

В современном образовании растёт спрос на математические методы исследования и на развитие творческого мышления, опирающегося на соответствующий математический