Цыбулько В. А., Тышкевич А. А.

Научный руководитель: к. т. н., доцент Шурин А. Б.

СОПОСТАВЛЕНИЕ РАСЧЕТА ИЗГИБАЕМЫХ И ВНЕЦЕТРЕННО-СЖАТЫХ (СЖАТО-ИЗГИБАЕМЫХ) ЭЛЕМЕНТОВ СТАЛЬНЫХ КОНСТРУКЦИЙ ПО ТКП EN 1993 И СНИП II-23

Европейские нормы проектирования введены на территории Республики Беларусь с 01.01.2010 г. Принципы и требования к эксплуатационной надёжности и долговечности зданий и сооружений в Республике Беларусь обеспечиваются соблюдением требований ТКП EN 1990. В настоящее время в Республике Беларусь, в зависимости от задания на проектирование, расчёт стальных конструкций допускается выполнять как в соответствии с требованиями СНиП II-23 [1, так и по ТКП EN 1993-1 [3, 4].

Ниже приводятся сопоставление некоторых положений и методов расчета изгибаемых и внецетренно-сжатых (сжато-изгибаемых) элементов стальных конструкций по ТКП EN 1993 и СНиП II-23.

По ТКП EN 1993-1-1 для изгибаемых элементов характерным является расчет сечений 1-го и 2-го класса по образованию полного пластического шарнира при принятой в этом случае диаграмме Прандтля. Сечения 3-го класса считаются по обычной формуле с учетом треугольного распределения напряжений по сечению. В этом методика их расчета практически полностью совпадает со СНиП II-23. Сечения 4-го класса, в которых критические напряжения потери местной устойчивости меньше предела текучести стали, рассчитываются упрощенным методом так называемого «эффективного сечения». В СНиПе II-23 допускается использование эффективного (приведенного) сечения только для стенок центрально-сжатых и сжато-изгибаемых элементов. Следует отметить, что СНиП II-23 допускает расчет изгибаемых элементов с учетом ограниченного развития пластических деформаций, которые учитываются коэффициентом c. На рисунке 1 приведено отношение пластического момента сопротивления к упругому W_{pl} / W_{el} и коэффициента, учитывающего развитие пластических деформаций c для балочных двутавров по ГОСТ 26020-83.

Для сжатых элементов основное предельное состояние — потеря устойчивости по изгибной форме. Формулы для проверки устойчивости сходные. Коэффициенты снижения расчетной прочности получены по разным методикам. На рисунке 2 приведено сравнение понижающих коэффициентов потери устойчивости по ТКП EN 1993-1 и СНиП II-23 (коэффициенты соответственно χ и ф).

Кривые a_0 , b, c, d взяты из ТКП EN 1993-1-1, кривая «СНиП» построена по соответствующим формулам в зависимости от приведенной гибкости

$$\overline{\lambda} = \frac{\lambda}{\pi} \sqrt{\frac{R_y}{E}}$$
. Из рисунка 2 видно, что кривые очень близки, а также имеется практически полное совпадение с кривой b .

В таблице 1 приведено сравнение результатов расчета на устойчивость по ТКП EN 1993-1-1 и СНиП II-23 центрально-сжатого, внецентренно-сжатого, изгибаемого элементов, а также центрально-сжатой сквозной колонны. Расчеты

производились авторами по специально разработанным для этих целей программам.

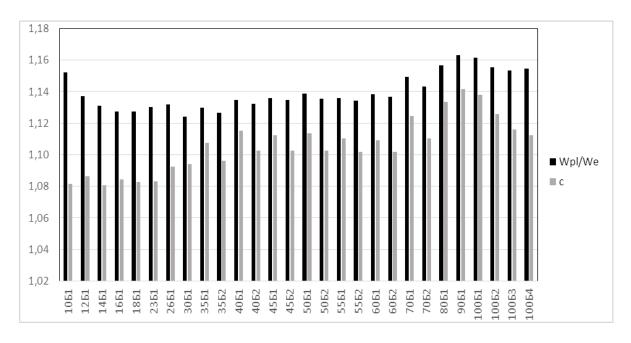


Рисунок 1 — Отношение пластического момента сопротивления к упругому W_{pl} / W_{el} , и коэффициента, учитывающего развитие пластических деформаций с для балочных двутавров по ΓOCT 26020-83

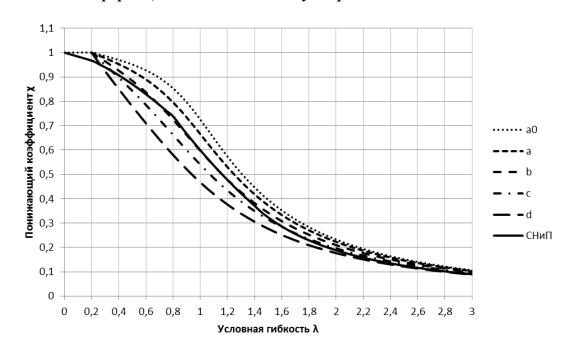


Рисунок 2 – Кривые понижающих коэффициентов потери устойчивости по ТКП EN 1993-1-1 и по СНиП II-23

Кривые a_0 , b, c, d взяты из ТКП EN 1993-1-1, кривая «СНиП» построена по соответствующим формулам в зависимости от приведенной гибкости $\bar{\lambda} = \frac{\lambda}{\pi} \sqrt{\frac{R_y}{E}}$. Из рисунка 2 видно, что кривые очень близки, а также имеется практически полное совпадение с кривой b.

В таблице 1 приведено сравнение результатов расчета на устойчивость по ТКП EN 1993-1-1 и СНиП II-23 центрально-сжатого, внецентренно-сжатого, изгибаемого элементов, а также центрально-сжатой сквозной колонны. Расчеты производились авторами по специально разработанным для этих целей программам.

Таблица 1 – Сравнение результатов расчета

	TITI EN 1002 1 1	СПП п 22
Параметры для сравнения	TKΠ EN 1993-1-1	СНиП II-23
Центральное сжатие (двутавр 35К2 по СТО АСЧМ 20-93)		
Площадь поперечного сечения	$A=173,87 \text{ cm}^2$	$A=173,87 \text{ cm}^2$
Расчетные длины	$l_{y,cr} = l_{z,cr} = 600 \text{ cm}$	$l_x = l_y = 600 \text{ cm}$
Предел текучести стали (расчетное сопротивление стали сжатию)	f_y =325 МПа	<i>R</i> _y =325 МПа
Величина понижающих	$\chi_{v}=0.887$	$\varphi_x = 0.878$
коэффициентов	$\chi_z = 0.887$	$\varphi_{v} = 0.716$
Расчетное сопротивление		
центрально-сжатого элемента при	$N_{b,Rd} = 3477,548 \text{ кH}$	$N_{b,Rd} = 3919,275 \text{ kH}$
потере устойчивости	,	
Внецентренное сжатие (двутавр –180х6/2х–200х10)		
Величина эксцентриситета в	<i>e</i> =31,25 см	
плоскости наибольшей жесткости		<i>e</i> =31,25 см
Площадь поперечного сечения	$A=50.8 \text{ cm}^2$	$A=50.8 \text{ cm}^2$
Расчетные длины	$l_{y,cr} = l_{z,cr} = 500 \text{ cm}$	$l_x = l_y = 500 \text{ cm}$
Предел текучести стали (расчетное	<i>f</i> _y =245 МПа	<i>R</i> _y =240 МПа
сопротивление стали)	0.827	$\varphi_e = 0,201$
Величина понижающих	$\chi_y = 0.827$ $\gamma_z = 0.505$	$\varphi_{e}=0,201$ $\varphi_{v}=0,559$
коэффициентов	,	
	$\chi_{LT} = 0.750$	c=0,224
Коэффициенты взаимодействия	$k_{yy}=1.205$ $k_{zy}=0.630$	
Расчетное сопротивление	$N_{b,Rd,y} = 170.28 \text{ кH}$	$N_{b,Rd,y}$ = 245.06 кН
внецентренно-сжатого элемента при	$N_{b,Rd,z}$ = 239.63 kH	$N_{b,Rd,z}$ = 152.67 kH
потере устойчивости*		
Устойчивость центрально-сжатой сквозной колонны (2х35Б1 по ГОСТ 26020)		
Площадь поперечного сечения одной	A_{ch} =49,53 cm ²	$A_1 = 49.53 \text{ cm}^2$
ветви	,	,
Высота колонны	<i>L</i> =850 см	<i>L</i> =850 см
Расстояние между планками	<i>a</i> =80 см	<i>l</i> =80 см
Расстояние между осями ветвей	<i>h</i> ₀ =31 см	<i>b</i> =31 см
Предел текучести стали (расчетное	f _y =245 МПа	<i>R</i> _y =245 МПа
сопротивление стали сжатию)		
Величина понижающих	$\chi_y = 0.871$	$\varphi_x = 0.807$
коэффициентов	$\chi_z = 0.976$	$\varphi_y = 0.866$
Расчетное сопротивление одной	$N_{b,Rd} = 1030,673 \text{ kH}$	$N_{b,Rd} = 978,677 \text{ kH}$
ветви при потере устойчивости		
* $N_{b,Rd,y}$ получено из уравнения 6.61 [3], $N_{b,Rd,z}$ — из уравнения 6.62 [3].		

Из таблицы видно, что расчетное сопротивление центрально-сжатого элемента, определенное по СНиП II-23, превышает расчетное сопротивление, определенное по ТКП EN 1993-1-1, но данное превышение невелико. Расчетное сопротивление внецентренно-сжатого элемента хоть в целом и сопостави-

мо, но в физическом смысле в терминах СНиП II-23 в плоскости изгиба и из плоскости изгиба сильно различаются.

Расчетное сопротивление изгибаемого элемента при потере устойчивости плоской формы изгиба, определенное по СНиП II-23, превышает расчетное сопротивление, определенное по ТКП EN 1993-1-1, примерно в 1,5 раза.

Расчетное сопротивление ветви центрально-сжатой сквозной колонны, определенное по ТКП EN 1993-1-1, превышает расчетное сопротивление, определенное по СНиП II-23, но данное превышение невелико.

Выводы

Основные расчетные «модели», принятые в ТКП EN 1993, базируются, в основном, на принципах механики твердого тела, как и в СНиП II-23. Разброс механических характеристик стали мал. Поэтому достигается хорошее совпадение правых частей основного неравенства метода предельных состояний по несущей способности. Исключение составляет устойчивость плоской формы изгиба балок и все, что касается изгибно-крутильной формы потери устойчивости элементов. Анализ причин этого достаточно сложен и упирается в труднодоступность зарубежных материалов 70–90 годов XX века, когда были разработаны принятые в ТКП EN 1993 методики проверки устойчивости. Причины этого расхождения требуют детального анализа.

Список цитированных источников

- 1. Строительные нормы и правила. Нормы проектирования. Стальные конструкции: СНиП II-23-81*. М.: Госстрой СССР: ЦНИТП, 1990. 96 с.
- 2. Пособие по проектированию стальных конструкций (к СНиП II-23-81*). Москва: ЦНИИСК им. Кучеренко Госстроя СССР, 1989. 214 с.
- 3. Технический кодекс установившейся практики. Еврокод 3. Проектирование стальных конструкций Ч. 1-1. Общие правила и правила для зданий: ТКП EN 1993-1-1-2009*. Минск.: Министерство архитектуры и строительства РБ, 2015. 88 с.
- 4. Технический кодекс установившейся практики. Еврокод 3. Проектирование стальных конструкций Ч. 1-3.Общие правила. Дополнительные правила для холодноформованных элементов и профилированных листов: ТКП EN 1993-1-3-2009. Минск: Министерство архитектуры и строительства РБ, 2010. 114 с.
- 5. Технический кодекс установившейся практики. Еврокод 3. Проектирование стальных конструкций Ч. 1-8. Расчет соединений: ТКП ЕН 1993-1-8-2014. Минск: Министерство архитектуры и строительства РБ, 2015. 128 с.

УДК 711.581

Чабурко Е. В., Синкевич К. О.

Научный руководитель: к. а. н., доцент Кароза А. И.

ВОПРОСЫ ИНФРАСТРУКТУРЫ ЖИЛЫХ КОМПЛЕКСОВ ГОРОДА БРЕСТА

Целью данной работы является проведение обследования дворовых пространств города Бреста для внесения предложений по улучшению их инфраструктуры и благоустройства.

Двор — внутренний участок земли, расположенный между жилыми домами. Он формирует переход между личным пространством квартиры и территорией общегородского пользования. Поэтому благоустройство является важной зада-