. Селласно происим нологической **футь, то на закыта болого прину". [3].** Колором показана на рис. 2, точновый мессив, располек**вый колором.** 1:**9д**

ordination of homographical and expendent $au_d = \Delta \sigma_d t g arphi_T$ when the property of the suppression of homographical and the suppression of the suppression

где: Дон — дилатантный распор, не сообщо Т. Nidon сел бонноподедно водтемомания

 $^{\circ 15}$ tg arphi — тангенс угла внутреннего трения грунта $^{\circ 25}$

На основе полученных данных можно построить зависимости сдвигающих напряжений и нормальных давлений, а также дилатантных составляющих и коэффициентов упругого отпора $\tau_d = f(K)$. Эти зависимости позволяют проследить влияние упругих свойств грунтового массива на прочностные характеристики испытуемого грунта. Основными недостатками при определении прочностных характеристик с использованием прибора BCB-25 являются:

1. Изменение площади поверхности сдвига в ходе всего опыта.

2. Искажения, из-за невозможности обеспечить плоскую поверхность сдвига, т.к. поверхность сдвига в срезном приборе приобретает линзовидную форму. Это объясняется наличием трения грунта о стенки обоймы прибора.

Но в целом, погрешности, которые могут дать испытания в ВСВ-25, являются допустимыми [3].

Предлагаемая методика испытаний на серийном приборе ВСВ-25 позволит внести существенные дополнения при испытаниях в условиях стесненной дилатансии. Эти дополнения не противоречат стандартным методикам при испытании песчаных грунтов на сдвиг. В вараментым и втарямод отсертния ответсен общественной дилагаем общественной дилагаем.

orecenny of follow white the property of the partypa series and the least property of the series of the property of the partype of the partyp

- 195Цытович Н.А. Механика грунтов М., 1983. В выпратных понтвых одно охом вычетия
- 2. Прибор сдвиговой ВСВ-25. Руководство по эксплуатаций ВСВ-25. Угличский ремонтно-механический завод института "Гидропроект" 1977.
- 3. Соболевский Д.Ю. Прочность и несущая способность дилатирующего грунта. Мо-ч нография. Минск, 1994. — Сотаванов должно выдоличения выпуска выдости и подагаться выдости и подагаться выдости по применя выпуска в положения выдости в подагаться в

er projudnie gane o lokt medialije eenkerjakel graterijaans, omitoel justo projekties endeloe.

cort(Eureigei) escolutation introduction de la compaction de la corte de la compaction de la compaction de la c

УДК 624.154.001.24/63

Чернюк В.П., Пчелин В.Н., Ивасюк П.П., Ивасюк Ю.П.

ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ ОТКАЗА ЗАБИВНЫХ СВАЙ С ИСПОЛЬЗОВАНИЕМ ДЛЯ ПОГРУЖЕНИЯ ОБМАЗОК, ПАСТ И СИНТЕТИЧЕСКИХ СМОЛ

В практике строительства известно применение для снижения энергоемкости погружения забивных свай в грунт обмазок из синтетических смол, глинистых паст, а также воды (гидроподмыв) [1, 2, 3, 5].

Известно, что доля сопротивления трению грунта со сваей может достигать 30..50 % и больше от общего сопротивления погружению в зависимости от длины, размеров поперечного сечения и конфигурации сваи. Поэтому использование в этих целях для снижения сопротивления в качестве обмазок материалов, обладающими высокими антифрикционными свойствами, способностью к тиксотропным изменениям и низким сопротивлением сдвигу может привести к ускорению процесса погружения, увеличению величины отказа свай и снижению затрат энергии на эту работу.

Практика и расчёты стоимости погружения свай производятся по формулам (1) - (2) [4] показывают, что использование обмазок повышает стоимость их погружения весьма незначительно: на 0.2; 0.4; 1.2; 3.1; 6.2 % соответственно при применении воды, пасты из бентонитовой глины, раствора полиакриламида, жидкого стекла и эпоксидной смолы, но при этом энергоёмкость погружения может быть снижена до 30 %, что даёт экономический эффект до 2..3 рублей на сваю (в ценах 1991 г.) и на столько же процентов (за исключением воды), может быть повышена несущая способность сваи по грунту основания, существенно уменьшено число поломанных и деформированных свай инцивантину и платненцифформилицион правод от 18. Х

выПолную плановую себестоимость погружения одной сваи можно определить как сумму прямых затрат и накладных расходов. вобо минокувено втоленные седую тнуст

Прямые денежные затраты равны

денежные затраты равны
$$C_{np} = (\sum C_{m c m} \cdot T_{m} \cdot \kappa_{1} + \sum 3_{\kappa} \cdot \kappa_{2}),$$

где: $C_{\text{м.см.}}$ — стоимость машино-смены копровой установки или агрегата, определённая согласно СНиП IV-3-82 «Правила определения сметной Странической стоимости эксплуатации строительных машин»; в заставость в строительных машин»; в заставость в ст

- продолжительность погружения одной сваи согласно EHuP,c6.12 ые или до совайные работы», см; инедаплоноровової емпедоходич 19.9 жді по-

 3_{κ} заработная плата (расценка) копровщиков за погружение одной тенова от эксваи, определяется согласно ЕНиР, сб.12, руб.; опрос

 $63.0 k_D = 1.92$ — коэффициент перехода к базовым ценам по стоимости эксплуатации на при ворий облартие при вечетной инструменто по со простоя области и по прунту вето

вын $k_2=2.97$ — то же, по заработной плате развеленения и вынив

-оэт Накладные расходы вычисляем по выражению дно или кратили

$$H_p = \kappa_3 \cdot C_{np}$$
 (2)

где: $\kappa_3 = 1.364$ — норма накладных расходов для промышленного и гражданского строительства; почит спределенный по табл. 1.

вине $\kappa_3 = 1.608$ — для строительства в сельских районах; посьмо вычевое вологи

хыяск₃ ≡ 2.2 кыты для крупнопанельного домостроения хыяные педоспо теудест йава

карбамидные, фурфуроланилиновые, полиакриламидные и эпоксидные смолы, а такжентиксотропные глинистые пасты инвода. Существует ряд модификаций этих смол и паст; однако преимущественное применение получили глинистые пасты, цементные растворы и вода. Так, например в г.Бресте, при строительстве моста через р.Мухавец по ул. 28 Июля использовалась вода при погружении свай и опор моста путём подмыва. Известно также широкое применение воды, глинистых паст, жидкого стекла и цементных растворов на Украине, в РБ и РФ для ускорения процесса погружения свай, при реконструкции свайных фундаментов и в других целях. За рубежом, например в бывшей ГДР, известно применение синтетических смол и паст для погружения свай.

Анализируя результаты существующих исследований можно отметить, что сваи с обмазками погружаются быстрее чистых, с меньшими затратами энергии, что заметно как по отдельным отказам, так и по общему количеству ударов, затраченных на их забивку. При этом оказалось, что энергоёмкость (работа) погружения свай, обмазанных жидким стеклом, уменьшилось на 18 %, раствором полиакриламида (ПАА) - до 27 %, бентонитовой пастой - до 32 % и эпоксидной смолой (ЭС) — на 35 %. Через 6 суток оказалось, что при обмазке свай жидким стеклом несущая способность по грунту основания существенно не повысилась, в то время как обмазка бентонитовой пастой, раствором ПАА и ЭС обусловили её увеличение на 27.4 и 23.7 %. В выбосной пастой, раствором паа и ЭС обусловили её увеличение на 27.4 и 23.7 %. В выбосной пастой пастой в пастой пастой в пастой пастой в пастой пастой в пастой в пастой в пастой пастой в Весьма эффективно и даже с большим экономическим эффектом погружение свай забивкой в тиксотропных рубашках, когда глинистая суспензия или цементный раствор подаются в зазор между сваями, имеющими выступы на боковой поверхности ствола, и грунтом. Энергоёмкость погружения обмазанных таким образом свай снижается в 3.14 раза, хотя несколько и уменьшается несущая способность сваи погрунту основания.

Для определения отказа свай, обмазанных антифрикционными материалами (пастами, смолами, водой) может быть использована известная методика авторов [6, 7, 8], но с повышающими коэффициентами К, учитывающими вид и свойства обмазок. Конечная формула для определения отказа обмазанных свай при погружении в грунт будет выглядеть следующим образом:

$$\delta = \frac{mgH}{m_{\rm M} + m_{\rm c} + m_{\rm H}}$$
(3)

где: т

 m_{M} = полная масса молота, $\mathsf{T};$ V^{L} S^{L} S^{L} S^{L} S^{L}

 m_c — масса свай, au, au, au и выстроине выструкто указана и водинальной выструктирующего выструктиру выстру выструктиру выстру выструктиру выстру выструктиру выстру выстру выстру выстру выстр

тин — масса наголовника, т; понежу отоп атоснате наподоца —

g = 9.81 — ускорение свободного падения, м/с;

Н высота падения (подскока) ударной части молота, м

F — сопротивление грунта перемещению сваи равное сумме его расчётных сопротивлений под нижним концом сваи и по боковой его поверхности, т.е. расчётной несущей способности сваи по грунту основания, и определяемое согласно СНиП 2.02.03-85 «Свайные фундаменты» или СНБ 5.01.01-99 «Основания и фундаменты зданий и сооружений», кН;

Коэффициент увеличения отказа обмазанных свай при погружении в грунт, определенный по табл. 1. В при погружении в

Использование обмазок из синтетических смол, глинистых паст для погружения свай требует определенных, хотя и небольших денежных, материальных и трудовых затрат. По этой причине в некоторых случаях (при погружении в лидерные скважины, болотистые и слабые грунты) может оказаться более приемлемым применение самосмазывающихся конструкций свай заводской готовности и свай, погружаемых с подмывом грунта водой, значительное количество конструкций которых разработаны БГТУ в разные годы. Тосто ман это заба доминальное и при в разные годы. Тосто ман это заба доминенов производения по в заба в доминенов при в заба в

Таблица 1: III satistical pos salivitation que con contra contra

্র ্র সম্বর্ণনাম коэффициентов увеличения отказа К обмазанных свай, ед ্র ্র

туп во живы митуод на возвежение. и топо и пом: Вид:обмазки но эпислеме	при 3начение коэффициента К
до повержена сер Водањерна жавастно н	日の40 / CHAO
	1.15 - 1.2
	10 radio 2001 100 1.4 - 1.45 hor washing
Жидкое стекло	1.2 = 1.25
Синтетические смолы	1.35 – 1.4
Эпоксидные смолы	1.3 –1.35

___ Использование обмазок и смол, совершенствование методики расчёта отказа обмазанных свай, применение прогрессивных конструкций и технических решение свай позволит повысить эффективность производства свайных работ.

ЛИТЕРАТУРА

- 1. Кречин А.С., Чернюк В.П., Шведовский П.Н. и др. Ресурсосберегающие фундаменты на сельских стройках: Кишинёв: Картя Молдовеняскэ, 1990: 247 с.
- 2. Чернюк В.П., Пчелин В.Н., Черноиван В.Н. Винтовые сваи и анкеры в строительстве.- Минск: Ураджай, 1993.-277 с.
- 3. Чернюк В.П., Пойта П.С. Расчет, проектирование и устройство свайных фундаментов.- Брест: Облтипография, 1998.-216 с.
- 4. Кульгавчук Л.В., Пчелин В.Н. Методические указания по технико-экономическому сравнению вариантов технологии производства СМР при разработке технологических карт в составе курсового и дипломного проектов. Брест: БПИ, 1998. 27 с.
- 5. Спиридонов В.В., Батурчик В.Г., Чернюк В.П. О конструкциях забивных свай, погружаемых гидравлическим способом. Проектирование и строительство трубопроводов и газонефтепроводных систем. Научно технический реферативный сборник, вып.2. М.: Информнефтегазстрой, 1982. с.13 16.
- 6. Спиридонов В.В., Чернюк В.П., Юськович Г.И., Пчелин В.Н. Определение величины погружения забивной сваи в грунт. Передовой производственный опыт, рекомендуемый для внедрения в строительстве предприятий нефтяной и газовой промышленности. Научно-технический информационный сборник, вып. 7. М.: ВНИИПКтехоргнефтегазстрой, 1989.- с.23 27.
- 7. Чернюк В.П. и др. Определение отказа забивной сваи при погружении в грунт. Расчет конструкций и теплофизика зданий и сооружений АПК. Сборник научных трудов. М.: ЦНИИЭПСельстрой, 1989. с.64 70.
- 8. Чернюк В.П., Пчелин В.Н., Юськович Г.И., Щербач В.П. Определение величины отказа забивной сваи. Вопросы строительства и архитектуры. Республиканский межведомственный сборник научных трудов, вып.17. Минск: «Вышэйшая школа», 1989. с.90 93.

700 RE N/100

4.553

TO SEE OF SEE OF SEE OF SEE