МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра оснований, фундаментов, инженерной геологии и геодезии

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению курсовой работы по инженерной геологии и гидрогеологии для студентов специальностей

1 - 74 05 01 «Мелиорация и водное хозяйство» и

1 - 70 04 03 «Водоснабжение, водоотведение и охрана водных ресурсов» дневной и заочной форм обучения

Изложена методика оценки гидрогеологических и инженерно-геологических условий территории, требующей гидротехнических мелиораций, или на которой устраиваются сооружения для водоснабжения населённых пунктов.

Эта методика может быть использована в курсовом и дипломном проектировании.

Составители: В.Н. Дедок, доцент О.Л. Образцов, к.т.н., доцент

Рецензент: В.Н. Деркач, заместитель директора филиалаРУП БелНИИС «Научно-технический центр» г.Брест

ВВЕДЕНИЕ

Настоящие методические указания предназначены для студентов специальностей 1 - 74 05 01 «Мелиорация и водное хозяйство» и 1 - 70 04 03 «Водоснабжение, водоотведение и охрана водных ресурсов», изучающих курс "Инженерная геология и гидрогеология".

В курсовой работе необходимо произвести оценку гидрогеологических и инженерногеологических условий территории, требующей сельскохозяйственных гидротехнических мелиораций и в связи с забором подземных вод для водоснабжения населенных пунктов.

Курсовая работа должна выполняться в постоянной увязке с усвоением соответствующих теоретических положений курса. Такой подход к разработке курсовой работы будет углублять, развивать и обобщать полученные ранее знания, позволит творчески подойти к решению поставленной задачи и получить хорошие и прочные знания предмета.

В методических указаниях изложены вопросы построения и анализа карт гидроизобат и гидроизогилс, решения с их использованием ряда практических задач при проектировании мелиоративных систем и систем водоснабжения, оценки качества подземных вод с позиции их пригодности для хозяйственно-питьевых, сельскохозяйственных, технических целей, вопросы оценки строительных свойств грунтов и условий их залегания.

Учитывая небольшой резерв времени студентов и то, что работа выполняется в учебных целях, ряд вопросов, связанных с полной оценкой гидрогеологических и инженерно-геологических условий изучаемой территории не рассматриваются, и студентам следует иметь в виду, что выполненный ими объем работ необходимый, но недостаточный для полной гидрогеологической и инженерно-геологической характеристики района.

top and approximate the form to the control of the property was taken at attraction and attractions.

THE BUILDER SEA CHUICH AN THUR THE THE FURTHER SEA THE FOREIGH THE FOREIGH AN THE SEA THE SEA THE SEA THE SEA THE THE THE FOREIGHT AND THE THE THE SEA THE S

หมู่สามารถไปที่ ได้เกาะที่เลย อย่างหายที่เก็บสิ่นสาย แล้ว เท่างผ่างที่ ได้เก็บสาย ไม่ได้ หมีเลยี่สิ่นเล่น ได้ ได้รายเหมือน (เกาะ ได้ กระเกมุร์น แล้วเกมียากับไม่แล้ว เกมียนสายเป็น ทางเกมีเสมาธิเหมือนสายเกมียน ไม่เลยสมาชิกเลย เมื่อเลย เมื่อ สมาชิกเกม ได้เลย กระกราบกระกราชสมาชิก เพื่อเลยสายใหม่ และเลยสาย

on the first of the control of the second of the first of the second of the second of the second of the second

The term of the control of the contr

ordinate del Perez digento regera. Per en la vega en el entre interes en la granda en la companya de la companya de la companya de la companya de

and the second of the second o

1. ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Курсовая работа выполняется на основании задания, выдаваемого кафедрой. Оно содержит:

- схему размещения скважин на изучаемой территории и их нумерацию;

- отметки устьев скважин и замеренные в них глубины залегания грунтовых вод от поверхности земли;

- глубины подошвы слоев грунтов и места взятия образцов для пабораторных испытаний;

результаты лабораторных испытаний грунтов: основные физические характеристики характеристики пластичности пылевато-глинистых и гранулометрический состав песчаных грунтов.

2. ОБЪЁМ И СОСТАВ КУРСОВОЙ РАБОТЫ

Курсовая работа должна содержать подробную расчётно-пояснительную записку объемом 30-40 страниц, выполненную на листах формата А4 (размером 210х297 мм) и графическую часть, выполненную на листах формата А2 (размером 420х594 мм).

2.1 Состав расчетно-пояснительной записки

Оформление расчетно-пояснительной записки необходимо выполнять в соответствии со Стандартом университета [1]. Расчетно-пояснительная записка должна быть написана четко, без помарок и поправок, на одной стороне листов бумаги. Все записи в расчетно-пояснительной записке выполняют чернилами или пастой черного (синего или фиолетового) цвета.

Записка должна разделяться на разделы, а разделы - на подразделы.

Наименование разделов должно быть кратким, соответствовать содержанию и записываться в виде заголовков (в красную строку) прописными буквами. Наименование подразделов записывается в виде заголовков строчными буквами (кроме первой прописной).

Переносы слов в заголовках не допускаются. Точку в конце заголовка не ставят. Если

заголовок состоит из двух предложений, их разделяют точкой.

Расстояние между заголовком и последующим текстом при выполнении пояснительной записки от руки должно быть 10 мм. Такое же расстояние выдерживают между заголовками раздела и подраздела. Расстояние между основаниями строк заголовка принимают такое же, как и в тексте.

Для разделов, текст которых записывают на одном листе с текстом предыдущего раздела, а также для подразделов расстояние между последней строкой текста и последующим заголовком при выполнении записки от руки должно быть равно 15 мм.

Разделы должны иметь порядковую нумерацию в пределах всей пояснительной записки и обозначаются арабскими цифрами с точкой в конце номера. Номера подразделов состоят из номера раздела и подраздела, разделённых точкой. В конце номера подраздела также должна ставиться точка. Например, 2. - второй раздел, 2.1. - первый подраздел второго раздела.

Номер соответствующего раздела или подраздела ставится в начале заголовка. Номера перед заголовками "Содержание", "Реферат", "Введение" не проставляются. Они

ставятся только перед заголовками основной части записки.

Сокращение слов в тексте и подписях под иллюстрациями, как правило, не допускается, исключение составляют сокращения, общепринятые в русском языке, а также установленные Стандартом. Не допускается применять произвольные словообразования.

Цифровой материал, как правило, оформляется в виде таблиц. Размеры таблиц выбирают произвольно, в зависимости от изложения материала. Высота строк таблицы должна быть не менее 8 мм. Таблица должна иметь тематический заголовок, если она имеет самостоятельное значение. Заголовок помещают над соответствующей таблицей: вначале пишут слово "Таблица", начиная его с прописной буквы, затем, начиная с заглавной буквы, ее название.

Чтобы упростить связь таблицы с текстом, таблицам дают нумерационный заголовок (Таблица 5.3). При ссылке в тексте слово "таблица" дается сокращенно со строчной буквы (табл.5). Нумерация таблиц ведется арабскими цифрами по частям или разделам текста, например: таблица 2.4. (таблица четвертая второго раздела), а ссылка в тексте табл.2.4. Таблицу следует помещать в тексте после первого упоминания о ней. Таблицы допускается оформлять в виде приложений и располагать их в конце текста. Таблицы следует располагать по короткой стороне листа. При необходимости допускается расположение таблиц по длинной стороне листа, при этом ее располагают так, чтобы для чтения их пояснительная записка была повернута по часовой стрелке.

Иллюстрации, помещенные в тексте, именуются рисунками. Рисунки могут быть расположены как по тексту пояснительной записки (возможно ближе к соответствующим частям текста), так и в виде приложения в конце пояснительной записки.

Если рисунков в тексте более одного, они нумеруются арабскими цифрами. Нумерация рисунков производится по частям (разделам), например: Рис.1 или Рис.2.1. Рисунки должны иметь наименование, а при необходимости и пояснительные данные (подрисуночный текст), которые помещаются под рисунком.

При выполнении пояснительной записки следует обеспечить единообразие применяемых единиц физических величин по Международной системе единиц (СИ).

В формулах условные буквенные обозначения механических, химических, математических и других величин, а также символов должны соответствовать установленным стандартам или принятым в научной литературе.

Значения буквенного обозначения, входящего в формулу, приводятся непосредственно под формулой. Значение каждого обозначения дают с новой строки в той поспедовательности, в какой они приведены в формуле. Первая строка расшифровки должна начинаться со слова "где" без двоеточия после него.

Если в пояснительной записке больше одной формулы, то их следует нумеровать арабскими цифрами. Номер ставят с правой стороны листа на уровне формулы, в круглых скобках. Нумерация формул принимается по частям (разделам). Номер формулы состоит из номера части (раздела) и порядкового номера формулы в данной части (разделе), разделенных точкой, например, (5.3) - третья формула пятого раздела.

Расчетно-пояснительная записка должна иметь следующее содержание:

- задание на выполнение работы;
- реферат, в котором отражают основное содержание проведенной работы с указанием полученных результатов. В конце текста реферата помещаются сведения о количестве страниц пояснительной записки, количестве содержащихся в ней таблиц, иллюстраций, библиография и сведения об объёме графической части;
 - оглавление с перечислением всех разделов и подразделов работы;
- введение, где ставятся цели и задачи выполнения работы, кратко освещаются современное научное состояние разрабатываемого вопроса, общие сведения об изучаемом участке;

- гидрогеологические условия участка: построение карты гидроизобат с выделением на ней зон постоянного и временного переувлажнения, где требуется мелиоративное мероприятие, построение карты гидроизогилс с нанесением на ней линий потоков, анализ этих карт, решение с их использованием практических задач мелиорации земель и водоснабжения населенных пунктов (установление взаимосвязи в питании поверхностных и грунтовых вод, определение скоростей движения грунтовых вод в характерных зонах, установление направления дренажных и отводящих воду устройств, установление наиболее рациональных схем расположения скважин для забора воды);
- оценка инженерно-геологических условий участка: исходная таблица состава и физических характеристик грунтов, инженерно-геологический разрез, определение наименования грунтов, рассчитанные значения их производных характеристик, заключение по каждому слою грунта, сводная таблица физико-механических свойств грунтов строительной площадки;
- заключение: обобщенная характеристика пидрогеологических и инженерногеологических условий участка по результатам выполненной работы;
- список использованной литературы, встречающейся по тексту пояснительной записки, приводимый в порядке ее появления в тексте.

2.2. Состав графической части курсовой работы

Графическая часть работы выполняется на миллиметровой бумаге или на ватмане. Она включает:

- карту гидроизобат на топографической основе с нанесением на ней зон постоянного и временного переувлажнения почв, требующих проведения осущительных мероприятий;
- карту гидроизогилс на топографической основе с показом линий потоков движения грунтовой воды, зон, требующих мелиоративных мероприятий, направления дренажных и отводящих воду устройств;
 - инженерно-геологический разрез по одному из диагональных направлений участка.

3. ГИДРОГЕОЛОГИЧЕСКИЕ УСЛОВИЯ УЧАСТКА

В результате гидрогеологической съемки и режимных стационарных наблюдений составляются гидрогеологические карты различных видов, на которых показывают распространение водоносных четвертичных или коренных отложений, водоупорные породы, минерализацию подземных вод, динамические запасы и водопроницаемость пород.

Одними из таких карт являются карта гидроизобат и карта гидроизогипс.

Карта гидроизобат - это карта глубин залегания поверхности грунтовых вод, а **гидроизобаты** - это линии равных глубин от поверхности земли до грунтовых вод.

Карта гидроизогипс - это карта поверхности грунтовых вод, а **гидроизогипсы** - линии, соединяющие точки с одинаковыми абсолютными отметками поверхности грунтовых вод, т.е. это горизонтали поверхности грунтовых вод.

Для построения карт гидроизобат и гидроизогипс пользуются данными замеров глубины залегания уровней воды в скважинах, шурфах и колодцах, которые проводятся в одно и то же время. Эти карты обязательно датируются. Иногда составляются такие карты, отвечающие максимальному и минимальному положению поверхности грунтовых вод в исследуемом районе.

Во время гидрогеологических исследований изучают также химический, бактериологический составы и другие показатели воды (запах, вкус, цвет, мутность и др.).

Имея карты гидроизогилс и гидроизобат, а также данные по составу воды, решают ряд практических задач, связанных с проектированием и строительством сооружений, мелиоративных систем и водозаборов.

3.1. Построение карт гидроизобат и гидроизогипс

Для выполнения курсовой работы задан участок местности квадратной формы в плане с размерами сторон 2000х2000 м. На участке заложено 25 скважин, определены отметки устьев скважин (отметки поверхности земли в месте закладки скважин) и замерены установившиеся глубины воды в скважинах от поверхности земли(например, по состоянию на 28 июня текущего года). В осенне-весенние периоды года возможно повышение уровня воды на 1-2 м. Все скважины образуют сеть квадратов со стороной каждого квадрата 500 м. Скважины расположены по схеме, приведенной на рис.3.1.

Для построения карт гидроизобат и гидроизогипс строят план местности в горизонталях по известной методике из курса инженерной геодезии. Его при выполнении работы следует построить в масштабе 1:5000. Отметки устьев скважин и глубины воды в них принимают по табл. А.1 приложения А.

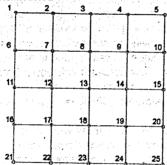


Рисунок 3.1. Схема расположения скважин

Используя значения глубин воды, на плане местности в горизонталях наносят гидроизобаты (линии равных глубин) по той же методике, как и при построении горизонталей, получают карту гидроизобат на определенную дату. Для построения карты гидроизогилс глубины залегания грунтовых вод пересчитывают на абсолютные отметки по выражению:

$$H_{rs} = H - h_{rs} \tag{3.1}$$

где

Н гв. - абсолютная отметка уровня грунтовых вод, м; день же деньы белбего - де

Н - абсолютная отметка земли, м;

 $\mathbf{h}_{\mathbf{r}\mathbf{s}}$ - глубина залегания грунтовых вод, м.

Пример построения карты гидроизобат приведен в приложении Б.

Карта гидроизогипс строится аналогично построению карт гидроизобат, используя для этих целей отметки поверхности земли (при нанесении горизонталей) и отметки залегания грунтовых вод (при нанесении гидроизогипс).

На карте гидроизогипс следует показать направление движения воды по всему изучаемому участку. Для этих целей наносят линии потоков воды, которые представляют собой кривые линии, перпендикулярные к каждой пересекаемой ими гидроизогипсе. Движение воды будет происходить от точек пересечения линиями потоков гидроизогипс с более высокими отметками к точкам их пересечения с более низкими отметками.

Пример построения карты гидроизогилс приведен в приложении В.

Рекомендуется горизонтали наносить в коричневом цвете, гидроизобаты - в синем, гидроизогипсы - в зеленом, а линии потоков - в черном цветах.

3.2. Определение зон подтопления и периодического переувлажнения на исследуемом участке

Грунтовые воды играют весьма значительную роль в процессах почвообразования. Если воды пресные, то при глубине их залегания 1-3 м они служат одним из полезных источников увлажнения почвы. При глубине залегания уровня менее 1-1,2 м грунтовые воды могут вызывать переувлажнение почв, нарушающее водный, воздушный и питательный режимы почв, что приводит к снижению урожайности сельскохозяйственных культур. В таких случаях с целью обеспечения оптимальных условий для развития растений и формирования урожая производят понижение уровня грунтовых вод путем применения специальных инженерных устройств (дренирование почв). Величина понижения уровня грунтовых вод определяется так называемой нормой осушения. Под нормой осушения понимается расстояние от поверхности земли до уровня грунтовых вод, при котором создаются оптимальные условия развития растений и формирования урожая. Она зависит от вида сельскохозяйственной культуры и фазы ее развития.

Средняя норма осушения для полевых, кормовых, овощных культур и пастбищ составляет 90÷110 см; для сенокосов - 60÷80 см, норма осушения принимается согласно заданию на проектирование.

Таким образом, для выделения зоны постоянного переувлажнения на карте гидроизобат следует выделить гидроизобату, равную норме осушения. Участок территории, ограниченный этой гидроизобатой, и будет представлять собой зону постоянного переувлажнения.

Для выделения зоны временного переувлажнения следует найти на карте гидроизобату при самом высоком уровне грунтовых вод в период произрастания растений. Она и будет внешней границей зоны, требующей мелиоративных мероприятий. Эта граница в плане будет совпадать с изобатой, показывающей глубину при наинизшем уровне грунтовых вод, равную

$$h_{rs} = h_{rr} - h_{rs}$$
 (3.2)

где

 ${
m h}_{
m IB}$ - глубина залегания грунтовых вод при наинизшем их уровне, соответствующая внешней границе зоны временного переувлажнения почвы в осенне-весенний период, м;

 h_{π} - высота подъема уровня грунтовых вод в осенне-весенние периоды над наинизшим его положением, м;

 $\mathbf{h_o}$ - норма осушения,м.

При выполнении курсовой работы высота подъема уровня грунтовых вод и вид возделываемой на участке сельскохозяйственной культуры задаются преподавателем.

3.3. Анализ карты гидроизогипс

После построения карты гидроизогипс приступают к ее анализу. Используя карту гид-

роизогилс, необходимо решить следующие вопросы:

- установить направление движения потока, которое определяется по перпендикуляру к гидроизогипсе. Направление потока устанавливается не в одной-двух точках карты, а по всему изучаемому участку. Обращается внимание на зоны, где направление потока изменяется. На отдельных участках линии потоков вод могут быть параплельными - это плоский поток. Когда линии расходятся, поток называют радиально-расходящимся. Если линии потока сходятся, его называют радиально-сходящимся;

- определить характер гидравлической связи между поверхностными и грунтовыми водами. Если направление движения подземного потока параллельно направлению течения реки, то в этом случае гидравлической связи между грунтовыми и поверхностными водами не существует. В случае радиально-сходящегося потока грунтовые воды питают поверхностные. При радиально-расходящемся потоке грунтовые воды питаются за счет поверхностных. Может быть случай, когда поверхностные воды, с одной стороны, питают подземные, а с другой питаются подземными;
- перенести с карты гидроизобат на карту гидроизогилс границы зон постоянного и временного переувлажнения;
- учитывая направление потока, установить направление дренажных канав или закрытых дрен, чтобы обеспечить их более эффективную работу. Этого можно добиться, если дренажные устройства расположить параплельно гидроизогипсам;
- с учетом рельефа местности наметить трассу канала, отводящего воду от дренажных устройств;
- расположить эксплуатационные колодцы на воду так, чтобы один колодец не перехватывал подземную воду, поступающую к другому колодцу. Для этого они должны находиться вдоль гидроизогипс;
 - определить гидравлические градиенты для 3-ех характерных участков карты

$$J = \frac{H_1 - H_2}{f},$$
 (3.3)

где

Н, - отметка более высокой гидроизогипсы, м;

Н2 - отметка более низкой гидроизогипсы, м;

L - расстояние между гидроизогипсами по перпендикулярному к ним направлению, м.
 При одинаковом сечении гидроизогипс гидравлический градиент будет большим на

При одинаковом сечении гидроизогипс гидравлический градиент будет большим на тех участках, где расстояние между гидроизогипсами будет меньшим;

- определить скорость движения потока на этих участках

$$\mathbf{V} = \mathbf{K}_{\mathbf{r}} \cdot \mathbf{J}_{\mathbf{r}} \cdot \mathbf{J}_{\mathbf$$

где

V - скорость движения потока, м/сут;

К г- коэффициент фильтрации слагающей водоносный горизонт породы, м/сут;

J - гидравлический градиент.

Величина коэффициента фильтрации К принимается по табл.А.2 приложения А для пород первого от поверхности водоносного горизонта.

Пример определения скорости движения грунтовых вод в трех характерных точках представлен в приложении И.

4. ПОСТРОЕНИЕ ИНЖЕНЕРНО-ГЕОПОГИЧЕСКОГО РАЗРЕЗА

Инженерно-геологический разрез в курсовой работе строится по одному из диагональных направлений карты гидроизогипс и представляет собой изображенное на бумаге вертикальное сечение верхней части земной коры с указанием последовательности залегания и мощности грунтов разного литологического состава, уровней подземных вод, мест взятия проб и проведения испытаний. Данные для построения инженерно-геологического разреза и номера скважин, по которым строится разрез, указаны в табл. Г.1 приложения Г.

Разрезы составляются слева направо, с юга на север; разрезы через долины рек со-

ставляются так, чтобы левый берег был на разрезе слева, правый - справа.

Горизонтальный масштаб разреза должен быть соответствующим масштабу инженерно-геологической карты или топографическому плану (допускается применять смежные масштабы), вертикальный - должен отличаться от горизонтального не более чем в 10 раз (в учебных целях можно применить вертикальные масштабы 1:100, 1:200).

С левой стороны разрез ограничивается шкалой вертикального масштаба, причем она строится так, чтобы охватить максимальную отметку устья скважины (наиболее высокое место на разрезе) и минимальную отметку забоя. За величину основания шкалы принимается 10 мм, шкала в абсолютных отметках с ценой деления в 1 м градуируется и подписывается целыми числами. Основание вертикальной шкалы опирается на горизонтальные графы, в которых указываются номера выработок, абсолютных отметок поверхности земли (устья) и расстояние между ними.

Отступив от шкалы вертикального масштаба 20-30 мм вправо, вычерчивают створ первой скважины - две вертикальные линии с расстоянием между ними 2 мм. Створ ограничивается сверху абсолютной отметкой устья, снизу - абсолютной отметкой забоя. Зная расстояния между скважинами, вправо от первой скважины откладывают соответствующие расстояния и строят створы всех остальных скважин. Используя данные бурения, проводят границы между слоями грунтов. Литологические границы и границы предварительно выделенных инженерно-геологических элементов наносятся тонкими линиями толщиной 0,3 мм, стратиграфические границы - линиями толщиной 0,5 мм (сплошной или штриховкой). На пересечении границ с каждой выработкой слева от выработки проставляется глубина от устья выработки, справа - абсолютная отметка слоя.

Положение уровня подземных вод показывается штрих-пунктирной линией толщиной 0,5 мм. На каждой скважине, вскрывшей воду, слева от нее должна быть показана абсолютная отметка установившегося уровня подземных вод и дата замера; для напорных вод указывается глубина появления.

Отметки поверхностных вод на разрезах, пересекающих водотоки и водоёмы, указываются с датой их замера.

Между линиями, обозначающими створ скважины, соответствующими условными обозначениями показывают консистенцию глинистых и степень влажности песчаных грунтов.

Места отбора образцов грунта и проб воды из скважин изображаются на соответствующих глубинах справа от выработки.

Литологический состав грунтов показывается штриховыми знаками (крапом). Густота штриховки (крапа) зависит от размера чертежа, площади распространения грунтов на чертеже, состава грунтов. Каждый слой грунта раскрашивается в соответствующий цвет. На фоне обозначения литологического состава редкими наложенными знаками дополнительно наносятся наиболее характерные особенности грунтов (гумусированность, иловатость, глинистость и т.д.).

Возраст и генезис грунтов следует обозначать в соответствии с принятой стратиграфической схемой, табл.12 приложение Д.

Номера инженерно-геологических элементов заключаются в окружность, а стратиграфические индексы в рамки.

Условные обозначения к разрезам помещаются на листе разреза (внизу или справа) или на отдельном листе.

Пример построения инженерно-геологического разреза представлен в приложении Е.

5. ОЦЕНКА ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ УСЛОВИЙ ТЕРРИТОРИЙ

Для каждого из пластов, которые были вскрыты скважинами, должно быть определено наименование грунта. Состав и физические характеристики грунтов приведены в табл.Г.2 приложения Г. Если в таблице исходных данных отсутствует влажность на границе текучести и раскатывания, то это означает, что грунт песчаный. Для определения наименования песчаного грунта необходимо знать гранулометрический состав, плотность сложения (коэффициент пористости) и степень влажности.

Для определения наименования пылевато-глинистого грунта требуется знать число пластичности и показатель текучести. Вид песчаного грунта определяют по гранулометрическому составу, табл.Д.1 приложение Д.

Вид пылевато-глинистого грунта по числу пластичности, табл. Д.2 приложение Д:

$$J_{P} = \omega_{L} - \omega_{P}$$
 (5.1)

где

ωι - влажность на границе текучести,%;

ωР - влажность на границе раскатывания, %.

Затем, для каждого вида грунта необходимо подсчитать следующие производные характеристики:

1. Плотность грунта в сухом состоянии:

$$\rho_{\rm d} = \frac{\rho}{1 + 0.01 \cdot \omega} \,, [{\rm T/M^3}] \tag{5.2}$$

`где

 ρ - плотность грунта, т/м³;

ω - природная влажность,%.

2. Коэффициент пористости грунта:

$$e = \frac{\rho_s}{\rho_s} - 1, \tag{5.3}$$

где: ρ_s - плотность частиц грунта, т/м³.

По плотности укладки частиц, т.е. по величине коэффициента пористости, песчаные грунты делятся на плотные, средней плотности и рыхлые (табл.Д.З приложение Д). Использовать рыхлые пески в качестве естественного основания не рекомендуется, поэтому для этих грунтов отсутствуют значения прочностных и деформативных показателей.

3. Степень влажности

$$S_{r} = \frac{0.01 \cdot \omega \cdot \rho_{s}}{e \cdot \rho_{s}}, \tag{5.4}$$

где $\rho_{to} = 1,0$ т/м³ - плотность воды.

По величине степени влажности песчаные грунты подразделяются на маловлажные, влажные и насыщенные водой (табл.Д.4 приложение Д).

Для пылевато-глинистых грунтов определяют показатель текучести:

$$J_{L} = \frac{\omega - \omega_{P}}{\omega_{L} - \omega_{P}}, \tag{5.5}$$

В зависимости от показателя текучести супеси подразделяются на твердые, пластичные, текучие, а суглинки и глины - на твердые, полутвердые, тугопластичные, мягкопластичные, текучепластичные и текучие (табл.Д.5 приложение Д).

После определения классификационных характеристик песчаных и пылеватоглинистых грунтов дается заключение по каждому слою геологического разреза. Например, I слой - песок мелкий, средней плотности, маловлажный; II слой - суглинок тугопластичный.

Нормативные значения деформационных и прочностных характеристик песчаных грунтов (соответственно модуль деформации, угол внутреннего трения и удельное сцепление) принимают по табл.Д.6, Д.7 приложение Д.

Для пылевато-глинистых грунтов нормативные значения угла внутреннего трения и удельного сцепления принимают по табл. Д.8 приложение Д, а нормативное значение модуля деформации - по табл. Д.9 приложение Д.

Для назначения предварительных размеров подошвы фундаментов определяют расчетное сопротивление на основание R_0 , которое принимается в зависимости от физических характеристик грунта. Для песчаных грунтов R_0 определяется в зависимости от наименования грунта и его плотности (табл.Д.10 приложение Д), для пылевато-глинистых (непросадочных) грунтов R_0 устанавливается по виду грунта, его коэффициенту пористости и консистенции (по интерполяции), табл.Д.11 приложение Д.

Примеры оценки физико-механических свойств грунтов приведены в приложении Ж. Данные физико-механических характеристик и показателей грунтов, слагающих строительную площадку, приводятся в сводной таблице и на их основе определяется полное наименование грунтов и дается оценка возможности и целесообразности их использования в качестве несущего слоя основания (см. табл.5.1).

Таблица 5.1. Сводная таблица физико-механических характеристик грунтов

N N	₫ 🕏	М, №	ρ,	ρ _s ,	ρd,			1.1			7 K	.386 253	98.35 1937 [i ii nei i		4	
3	аименован грунта	ость слоя	T/M ³	T/M ³	T/M ³	ω %	ωι %	ω _P %	Ј _Р %	JL	е	Sr	K _f , m/	С _п , кПа	φ _п , град	E, MΠa	R₀, кПа
1	Наим	Мощнс	γ, κΗ/м³	γs, κΗ/м³	γа, кН/м³					1	1		сут	i egy jaku yi			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	- 18

6.3 АКЛЮЧЕНИЕ

В этом разделе по результатам ранее выполненной работы приводится обобщённая пидрогеологическая и инженерно-геологическая характеристика участка. Приводится краткое обоснование необходимости проведения мелиоративных мероприятий, указывается площадь, где эти мероприятия должны проводиться и её доля в процентах к общей площади участка. Указывается характер, питание подземных вод, режим их движения и связь с межпластовыми водами.

Приводится краткая характеристика геологического строения участка, возраст и генезис грунтов, их строительные свойства, указываются возможные геологические процессы, влияющие на условия строительства.

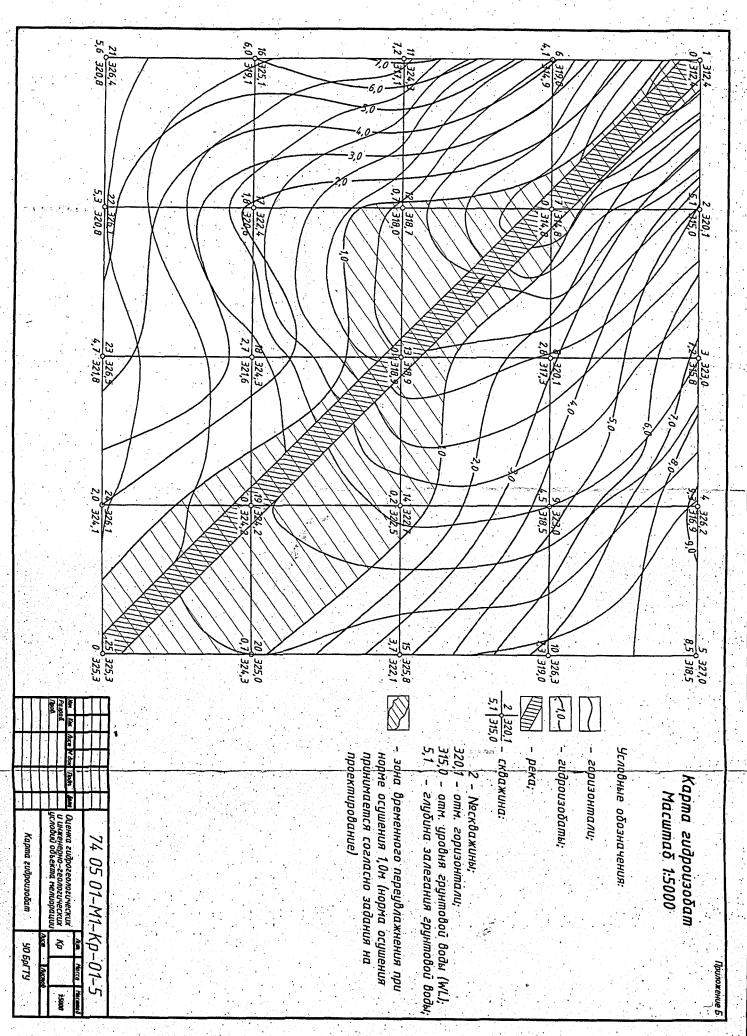
ЛИТЕРАТУРА

- 1. Стандарт университета: Оформление материалов курсовых и дипломных проектов (работ), отчетов по практике). Общие требования и правила оформления: СТ БГТУ-01-2002, Брест, 2002.
- 2. Ананьев В.П., Передельский Л.В. Инженерная геология и гидрогеология: Учебник для вузов. М.: Высшая школа, 1980. 271 с., ил.
- 3. Белый Л.Д. Инженерная геология: Учебник для строит.спец. вузов. М.: Высшая школа, 1985. – 231 с., ил.
- 4. Кац Д.М. Основы геологии и гидрогеология. 2-е изд., перераб. и доп. М.: Колос, 1981. 351 с. ил.
- 5. СТБ 943-93. Грунты. Классификация. Минск: Минсктиппроек, 1994.

Таблица А.1. Результаты замеров уровней грунтовой воды в скважинах

<u> </u>		. 1+	1700	1418	1 : :	L = 12	* ;	9.3		100				5 1		21	, e e	٠,		-
-втельс внидуп Т -оп то ідра вин ипмэЄ итонхдев	13	Вариант 6	1.1	0.7	0.0	3.4	8.7	1.5	0.5	0.3	3.5	9.7	0.0	0.5	0.2	6.5	11.8	1.8	0.0	4.9
Абс. отметка по- верхности Земли	12	Bap	335.0	334.1	331.1	333.0	334.7	333.0	331.7	329.9	330.5	333.7	328.1	329.0	327.1	330.6	333.8	329.9	325.1	329.1
глубина запега- ния воды от по- исмэс итонхдев	1	Вариант 5	5.5	6.1	7.1	3.8	0.0	5.2	1.9	0.8	0.0	4.9	4.4	2.5	0.0	3.2	7.0	2.0	0.0	0.4
Абс. отметка по- верхности Земли	10	Вар	236.4	235.0	234.2	229.0	222.5	236.2	232.5	228.8	224.9	230.0	236.4	234.2	228.9	230.2	233.0	236.0	234.0	232.8
Глубина запега- ния воды от по- верхности Земпи	6	Вариант 4	0.0	2.2	4.2	5.3	5.7	0.7	0.0	2.5	1.8	6.1	3.7	0.2	0.0	0.8	7.1	7.3	4.5	3.0
отметка по- ппмэ£ итэонхфэя	8	Bap	635.7	636.1	636.3	636.2	636.3	635.2	634.1	633.6	632.5	635.1	635.8	632.7	628.8	628.7	634.2	636.4	633.2	630.2
-вээлье внидүл Т -оп то ічдов кин ипмэЄ итэонхдэв	7	Вариант 3	8.7	2.6	11.6	13.0	11.3	3.4	3.4	6.4	0.6	8.9	6.0	0.1	0.1	4.8	0.0	2.0	0.4	0.4
-оп вятемто. эдА ипмэ£ итэонхqэв	9	Bap	524.7	523.7	523.6	523.5	520.9	522.9	520.4	520.4	521.4	518.9	523.1	519.7	517.0	519.0	510.9	524.0	521.7	518.9
-ътэпъс внибул Т -оп то идра кин ипмэ£ итэонхфэв	5	Вариант 2	0.0	5.1	7.2	6.3	8.5	4.1	0.0	2.8	4.5	7.3	7.2	0.7	0.0	0.2	3.7	0.9	1.8	2.7
-бс. отметка по- ипмэЄ итэонхдэв	4	Bap	312.4	320.1	323.0	326.2	327.0	319.0	314.8	320.1	323.0	326.3	324.3	318.7	318.9	322.7	325.8	325.1	322.4	324.3
-втэпве внидуп.Т -оп то гадоа кин ипмэ£ итоонхара	3	Вариант 1	11.3	8.9	0.0	6.9	7.6	13.0	9.5	4.9	0.0	1.7	11.6	6.5	0.1	0.5	0.0	9.8	4.5	0.2
Абс. отметка по- верхности Земли	2	Bap	431.0	429.0	421.0	430.0	431.0	433.0	431.5	429.0	425.0	429.0	433.7	430.5	427.0	429.6	428.2	433.8	430.5	429.8
И⊉И№ СКВЗЖИН	1		-	2	3	4	2	9	7	œ	6	9	11	12	13	14	15	16	17	9

		9.0	3.1	4.8	3.6	0:0	9.0	3.5	7	2.3	9.9	0.0	7.9	8.6	4.0	0.2	5.9	0.0	2.7	2.6	7.5		5.	8	0.8	5.5	1.2	3	2.4	
	13								ант 12	ļ					•	•					- 2				`					l
	12	331.5	333.5	329.8	326.0	322.0	329.0	333.0	Вариант	526.0	524.0	516.0	525.0	526.1	528.6	526.5	524.0	520.0	524.0	528.7	525.5	522.0	524.6	523.2	528.8	525.5	524.8	526.8	528.0	-
	11	4.6	9.5	0.0	9.0	3.9	7.3	9.0	τ 11		9.0	0.0	7.0	7.6	13.1	9.1	4.8	0.0	1.7	11.7	6.5	0.7	0.5	0.0	9.8	3.5	0.5	0.5	1.5	
	10	233.0	236.0	235.8	235.1	235.8	236.4	237.0	Вариант	521.1	519.0	511.0	520.0	521.6	523.6	521.5	519.0	515.0	519.0	523.7	520.5	517.0	519.6	518.2	523.8	520.5	519.8	521.8	523.0	
	6	0.0		'	9.3		5.1		нт 10	7.5	1.6	0:0	1.6	1.2	6.9	0.0	9.0	0.5	0.7	0.0	4.9	0.0	0.3	1.0	8:3	9.1	6.4	3.6	3.4	
	— ∞	0.0 624.8	629.1	637.0	636.1	633.2	630.2	622.4	Вариа	121.5	119.2	118.1	123.1	125.2	120.0	115.1	119.2	121.7	124.0	111.0	117.1	118.2	119.8	123.2	119.0	123.1	120.4	120.5	123.1	
	7	0.0	6.8	1.2	0.0	0.0	1.6	7.5	ര	ľ	4.2	2.4	1.1	0.0	6.8	4.2	1.0	0.0	1.6	6.9	4.0	0:0	1.5	4.5	5.7	0.0	4.0	5.5	7.3	
	9	515.0	520.0	525.0	522.9	518.1	519.1	521.5	Вариант	136.8	135.0	134.4	134.5	135.0	135.8	134.5	132.8	132.5	134.6	135.4	134.0	131.0	133.0	134.5	134.0	129.3	134.0	135.0	136.3	
÷.,	5	0.0	0.7	5.6	5.3	4.7	2.0	0.0	ант 8	ı	6.4	3.8	0.0	1.0	6.7	3.1	0.0	9.0	2.5	3.5	0.0	0.3	1.9	3.2	0.0	1.2	1.3	3.2	3.8	
	4	324.2	325.0	326.4	326.1	326.5	326.1	325.3	Вариант (462.5	461.9	461.0	460.3	461.7	460.9	459.1	458.5	459.6	461.3	457.8	456.2	457.8	459.7	460.8	453.8	456.7	457.6	459.8	460.3	
Продолжение таблицы А.1	က	0.5	ı	8.9		1	0.8	1	ант 7		7.3	3.7	0.7	0.0	9.3	4.7	0.3	0.0	1.9	7.5	3.0	0.0	2.7	4.5	4.9	0.0	0.8	2.0	5.3	
олжение 1	2	19 431.8	433.0	434.4	433.1	433.2	433.9	435.0	Вари	227.0	226.1	225.8	225.1	226.5	226.0	223.1	222.7	224.1	226.0	223.2	220.3	218.8	224.3	226.4	220.0	215.0	218.9	222.6	226.2	
Прод	1	6	20	77	22	23	24	22		-	2	3	4	2	9	7	∞	60	9	11	12	13	4	15	16	171	18	13	22	


	<u>23</u>	4.4	20	1,8	2.1	<u>@</u>	10.	83	4.7	1.7	00	10.3	5.7	1.3	0.0	2.9	8.5	4.0	0.0	2.7	5.5	5.9	0.0	80	3.0	6.3	0.0	4.9	
1					L	мант,	L	L			L					1	7. P	1 20	2.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Samuel Services	V V		9					_
Action of the Control	12	528.1	528.2	528.9	530.0	Bap	2.1 327.0 10	326.1	325.8	325.1	326.5	326.0	323.1	322.0	324.1	326.0	323.2	320.3	318.8	324.3	326.4	320.0	315.0	318.9	322.6	326.2	312.6	319.0	
Second the Application state	11	3.5	1.0	0.7	1.2	Вариант 17	2.1	1.7	1.9	4.4	9.7	2.5	1.5	1.3	4.5	10.7	0.0	1.5	1.2	7.5	12.8	2.8	0.0	5.9	10.0	14.1	5.8	0.0	
The second second second	10	523.0	523.2	524.0	525.0	Вари	330.0	329.1	326.1	328.0	329.7	328.0	326.1	324.9	325.5	328.7	323.1	324.0	322.1	325.6	328.8	324.3	320.1	324.1	326.5	328.5	324.8	317.0	
A to a series as a series to the series.	6	13.0	11.6	9.7	8.6	Вариант 16	6.5	7.1	8.1	4.8	0.0	6.2	2.9	1.8	0.0	5.9	5.4	3.5	0.0	4.2	8.0	3.0	0.0	1.4	5.6	10.2	0.0	1.6	
	æ	123.5	123.8	123.6	124.7	Вари	331.4	330.0	329.2	324.0	317.5	331.2	327.5	323.8	319.9	325.0	331.4	329.2	323.9	325.2	328.0	331.0	329.0	327.8	328.0	331.0	330.8	330.1	
* U	7	0.9	7.4	8.3	10.8	нт 15	0.0	3.0	5.5	6.3	6.7	1.7	0.0	3.5	2.8	7.1	4.7	1.2	0.0	1.8	8.1	8.3	5.5	4.0	0.0	4.9	10.0	10.3	
And the second s	9	134.3	135.4	136.8	138.6	Вариант 15	530.7	531.1	531.3	531.2	531.3	530.2	529.1	528.6	527.5	530.1	530.8	527.7	523.8	523.7	529.2	531,4	528.2	525.2	519.8	524.1	532.0	531.1	
	5	2.5	2.6	3.5		ант 14	6.6	10.9	12.8	15.2	12.5	4.6	4.6	7.6	10.2	10.1	2.1	1.3	1.3	6.0	0.0	1.9	1.6	1.6	0.0	8.0	2.4	2.1	
1000	4	455.5	457.4	459.0	460.0	Вариант	421.7	420.7	420.6	420.5	417.9	419.9	417.4	417.4	418.4	415.9	420.1	416.7	414.0	416.0	407.9	421.0	418.7	415.9	412.0	417.0	422.0	419.0	
блицы А.1	3	3.9	7.3	6.1	5.7	нт 13	0.0	7.4	9.5	11.6	2.8	6.4	0.0	5.1	6.8	9.6	9.5	3.0	0.0	2.5	7.0	8.3	4.1	2.0	0:0	3.0	7.9	7.6	
Іродолжение таблицы А.	1 2 3	219.0	224.3	225.2	226.6	Варие	408.4	416.1	4190	422.2	423.0	415.0	410.8	416.1	419.0	422.3	420.3	414.7	414.9	418.7	421.8	421.1	418.4	420.3	420.2	421.0	422.0	422.1	
Прод	1	22	23	74	22		-	7	က	4	က	ဖ	7	∞	6	9	Ξ	12	13	14	2	9	4	9	65	ຂ	7	77	

	13	7.1	6.7	Вариант 24	9.5	3.6	0.0	3.6	3.2	8.9	0.0	ે 2.6	2.5	2.7	0.0	6.9	0.0	2.8	3.0	10.9	11.1	8.4	5.6	5.4	5.4	15.0	13.6	11.7	10.6
	12	325.2	326.6	Вари	326.5	325.2	323.1	328.1	330.2	325.0	320.1	324.2	326.7	329.0	316.0	322.1	323.2	324.8	328.2	324.0	328.1	325.1	325.5	328.1	328.1	328.5	328.8	328.6	329.7
	11	10.0	14.5	Вариант 23	13.6	11.2	0.0	9.5	9.8	15.3	11.3	7.0	0.0	3.9	13.9	8.7	2.9	2.7	0.0	12.0	5.7	~ 2.4	∴ 2.7	3.7	4.0	1.4. 1. 4.7	3.2	2.9	3.4
	10	324.0	328.0	Bapı	326.1	324.0	316.0	325.0	326.6	328.6	326.5	324.0	320.0	324.0	328.7	325.5	322.0	324.6	323.2	328.8	325.0	324.8	326.8	328.0	329.6	328.0	328.2	329.0	330.0
	6	8.3	10.0	Вариант 22	12.5	10.1	0.0	8.1	8.7	14.2	10.2	5.9	0.0	2.8	12.8	7.6	1.8	1.6	0.0	11.0	4.6	1.3	1.6	2.6	9.9	4.6	2.1	1.8	2.3
	8	331.4	332.0	Вари	420.1	418.0	410.0	419.0	420.6	422.6	420.5	418.0	414.0	418.0	422.7	419.5	416.0	418.6	417.2	422.8	419.5	418.8	420.8	422.0	423.8	:432.0	422.2	423.0	424.0
		6.1	0.0	Вариант 21	8.6	2.7	0.0	2.7	2.4	8.0	0.0	1.7.	1.6	1.8	0.0	0.9	0.0	1.4	2.1	10.0	10.2	7.5	4.7	4.5	12.4	14.1	12.7	10.8	9.7
	9	525.2	517.4	Вари	222.5	220.2	219.1	224.1	226.2	221.0	216.1	220.5	222.7	225.0	212.0	218.1	219.2	220.8	224.2	220.0	224.1	221.4	221.5	224.1	222.0	223.5	224.8	224.6	225.7
je .	5	2.8	8.7	Вариант 20	8.6	5.2	3.4	2.1	0.0	7.8	5.2	2.0	0.0	2.6	7.9	5.0	0.0	2.5	5.5	6.7	0.0	5.0	6.5	8.3	0.0	9.0	8.4	9.3	11.8
	4	416.1	418.5	Bap	236.9	235.1	234.5	234.6	235.1	235.9	234.6	232.9	232.6	234.7	235.5	234.1	231.1	233.1	234.6	234.1	229.4	234.1	235.1	236.4	228.1	234.4	235.9	236.9	238.7
Продолжение таблицы А.1	3	4.3	0.0	Вариант 19		7.6	5.0	0.0	2.2	7.9	4.3	0.0	1.8	3.7	4.7	0.0	1.5	3.1	4.4	0.0	2.4	2.5	4.4	5.0	3.5	3.7	2.6	4.7	5.5
толжение	2	422.1	421.3	Вари	362.5	361.9	361.0	360.3	361.7	360.9	359.1	358.5	359.6	361.3	357.8	356.2	357.8	359.7	360.8	353.8	356.7	357.6	359.8	360.3	354.5	355.5	357.4	359.0	360.0
робП	1	24	25		F	7	က	4	လ	9	_	∞	6	9	Ξ	12	13	14	15	91	17	18	6	20	21	22	23	24	22

Продолжение приложения А

Таблица А.2. Коэффициенты фильтрации пород

u\u NōNō	Название породы	Коэффициент фильтрации, м/сутки
1.	Глины, монолитные скальные породы (практически водо- упоры)	0,001
2.	Суглинки, слаботрещиноватые породы (весьма слабоводопроницаемые)	0,1-0,001
3.	Супесь	0,1-0,5
4.	Necc	0,25-0,5
5.	Песок пылеватый	7-4-4-0,5-1,0 <u> </u>
6.	Песок мелкозернистый	8.797 (1-5 -5)
7.	Песок среднезернистый	5-20
8.	Песок крупнозернистый	20-50
-	Скальные породы:	1 161 - 1
9.	Сильнотрещиноватые	70-150
10.	Среднетрещиноватые	20-60
11.	.Гравий / бере межде бере бере неберенд бере же же бере бере	50-150
12.	Галечник в требер мунаты в тум, мунато мунаторительно	100-500
13.	Крупный галечник, лишенный песчаного заполнителя и закарстованные породы	>500

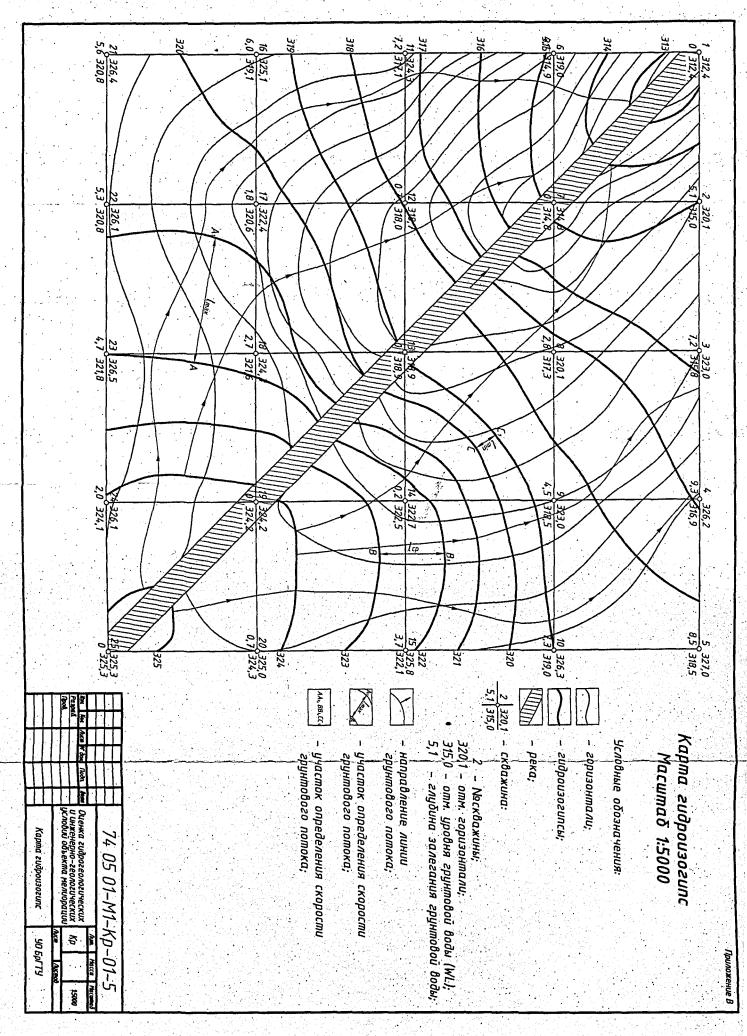


Таблица Г.1. Данные к построению инженерно-геологического разреза

	_			_									
Вариант	NºNº cлоя	Геологичес- кий индекс			о подо абоя о			Γл	убина с	тбора с	образца	, M	Дочетвертич- ная порода
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Nº	CKE	важин	21	17	13	9	5	21	17	13	9	5	
	1	hQıv	-		1.8	1.5	-					-	
	2	vQıv	5.2	1.6	•	÷ •	4.1	4.1	(0.8)	-	-	(1.2)	Доломит
1	3	aQ _{III}	14.4	9.2	7.2	4.9	11.1	1 X		6.3	(5.7)	1 1 1 L	5
	4	fgQıı	24.4	-	16.9	10.7	20.2	(18.6)	3 ja j	1 5	- 1 1 A	16.3	
	5	aQı	30.6	•	18.6	•	25.7				- 41 (E) -	23.2	
	6	N ₂	33.7	4	² -	-	28.6	/32.1/	** ± •			a di Ta	
Nº	CKE	зажин	21	17	13	9	- 5	21	17	13	9 -	5	. X.
	1	hQıv	-	-	1.7	-	-	-	_	-	_		X
	2	vQıv	4.4	0.9	_	1.9	4.9	2.3	1.41		(1.1)	_	H.
2	3	aQ _{III}	13.4	. 9.9	3.6	11.8	16.9	(10.5)	-	(2.7)	9.4	100	Известняк
14	4	aQ⊫	21.5	17.4	-	15.2	21.3	17.0	: 15 <u>-</u>	-	•	-	Z
l	5	fgQ₁	23.4	28.1	•	-	31.8	-	(24.4)	-	-	26.1	
L	6	N ₂	- 1	30.7	-	-	33.3	-	- 4		•	/32.7/	
Nº	СКВ	ажин	-1	7	13	19	25	1	7	13	19	25	igane sign Pistor Par
	1	hQ _{IV}	-	-	1.1	1.2	-	-	-	•	-	-	ما
	2	vQ _{III}	6.1	0.9		-	_	3.9	-	-	-	-	Мергель
3	3	aQ _{III}	13.8	6.1	4.6	2.6	7.8	-	(4.3)	-		5.2	ebi
ا ا	4	aQıı	19.2	-	13.4		16.4	-	-	-	4.7	-	2
	5	aQı	31.7		18.4	14	27.3	24.7	-	(15.2)	-	(19.9)	
	6	N_1	33.8	-	-	2 to -	28.4	/32.9/	-		-	/27.7/	
Nº	СКВ	ажин	21	- 17	13	√9	5	21	17	13	9	5	
	1	hQıv			2.1	-	-	-	-	-	-	· -	_
	2	vQ_{IV}	5.1	1.7		1.3	6.2	-	0.9	-	(0.8)		E E
4	3	aQ _{IV}	12.2	8.1	3.5	6.9	10.2	-	(6.2)	-		8.2	Мергель
	4	aQ _{III}	17.9	9.9	9.4	12.9	16.3		-	7.2	-	-	2
	5	aQn	27.4		12.8	20.1	29.6	22.4	_		-	(20.6)	
	6	N ₁	28.8	-			30.7	(28.0)	-	-	-	/30.2/	30 30 3

Ne скважин	1	2	3	4	.5	6	7	8	9	10	11	12	13	14
2	Nº	CKE	ажин	1	7	13	.19.	25	1	7.	13	19	25	
5 аQ _{II} 28.7 - 16.3 - 29.4 (23.4) 33.6 - 23.8 6 N ₂ 30.4 31.5 /30.4/ /30.6/ /30.6/ Nº СКВАЖИН 21 17 13 9 5 21 17 13 9 5 1 hQn - 1.3 2.1				-	-	1.6	-	-	-	-	-		\$ F.	₹
5 аQ _{II} 28.7 - 16.3 - 29.4 (23.4) 33.6 - 23.8 6 N ₂ 30.4 31.5 /30.4/ /30.6/ /30.6/ Nº СКВАЖИН 21 17 13 9 5 21 17 13 9 5 1 hQn - 1.3 2.1	2	\rightarrow								-	-	-	(2.0)	CTH.
5 аQ _{II} 28.7 - 16.3 - 29.4 (23.4) 33.6 - 23.8 6 N ₂ 30.4 31.5 /30.4/ /30.6/ /30.6/ Nº СКВАЖИН 21 17 13 9 5 21 17 13 9 5 1 hQn - 1.3 2.1	5				9.1		6.6		-	4.7	-	(2.9)	i - 1/4 =	3Be
6	۱	i			-		-		-		8.3			
№ Скважин 21 17 13 9 5 21 17 13 9 5 1 hQ _{IV} - - 1.3 2.1 - <td< td=""><td>3</td><td>-</td><td></td><td></td><td>-</td><td>16.3</td><td>-</td><td></td><td></td><td>**** ; -</td><td></td><td>-</td><td></td><td>2.4</td></td<>	3	-			-	16.3	-			**** ; -		-		2.4
1 hQ _{IV} - 1.3 2.1 - <t< td=""><td>94.00</td><td>-</td><td></td><td></td><td>• •</td><td>-</td><td></td><td></td><td></td><td>· · · · * · ; -</td><td>**** *}-</td><td>-</td><td></td><td>200 - 100 200 -</td></t<>	94.00	-			• •	-				· · · · * · ; -	**** *} -	-		200 - 100 200 -
6 2 VQ _{IV} - - - 2.1 7.2 - - - 4.5 \$\frac{8}{3}\$ 3.3 6.7 11.1 14.1 (2.4) - 4.0 - - - 17.4 - <td< td=""><td>N₂</td><td>СКЕ</td><td></td><td>21</td><td>4</td><td></td><td>9</td><td>5</td><td>21</td><td>17</td><td>- 13</td><td>9</td><td></td><td></td></td<>	N₂	СКЕ		21	4		9	5	21	17	- 13	9		
4 аСип 13.0 11.5 0.4 16.5 25.5 29.1 (20.2) - 21.5 - 17.4 6 N2 28.9 - - 26.9 32.9 /28.8/ - - 21.5 - - /32.1/ 7- За доли 10 стата правот пр	1			-	1.3	2.1	-	-	*	-	· -	** -	14:14-	<u></u>
4 аСип 13.0 11.5 0.4 16.5 25.5 29.1 (20.2) - 21.5 - 17.4 6 N2 28.9 - - 26.9 32.9 /28.8/ - - 21.5 - - /32.1/ 7- За доли 10 стата правот пр		_	′vQ _{IV}	-	-	-			-	_	. H.	-	4.5)WC
4 аСип 13.0 11.5 0.4 16.5 25.5 29.1 (20.2) - 21.5 - 17.4 6 N2 28.9 - - 26.9 32.9 /28.8/ - - 21.5 - - /32.1/ 7- За доли 10 стата правот пр	6								(2.4)	-	4.0	\$0.47		5
No скважин 1	١					8.4			: 12 -	(8.1)	-	7 m 14 17	17.4	
№ СКВАЖИН 1 7 13 19 25 1 7 13 19 25 1 hQiv - - 1.0 - </td <td></td> <td>-</td> <td></td> <td></td> <td>16.5</td> <td>-</td> <td></td> <td></td> <td></td> <td>î -</td> <td>11-7</td> <td>21.5</td> <td>- The second</td> <td></td>		-			16.5	-				î -	11-7	21.5	- The second	
1 hQ _{IV} - - 1.0 -	100	6	N ₂	28.9	<u>.</u>	-	26.9		~/28.8/	-	egin e en 🕳	er francisco e e e e e	/32.1/	um billion and in
2 VQ _{III} 6.9 1.2 3.6 5	Nº	CKE	нижв	1	7	13	19	25	1	.7	13	19	25	
4 аQ _{II} 17.3 18.2 13.4 11.2 19.8 14.7 -		1	hQ _{IV}	-		1.0	-	-	-		, -	- 12 Juli	11 juli . -	
4 аQ _{II} 17.3 18.2 13.4 11.2 19.8 14.7 -	4	2	vQ _{III}	6.9	1.2	_	-		3.6		v (, ,) -			ТИ
4 аQ _{II} 17.3 18.2 13.4 11.2 19.8 14.7 -	7	3	aQiii	12.6	8.1	3.3	7.5	10.6	-	(4.2)	7.5	(5.1)	4.6	Da l
1 hQ _{IV}	1	4	aQıı	17.3	18.2		11.2	19.8	14.7	-	1.15°+	- 1 x 6 . -	*********	
№ скважин 25 19 13 7 1 25 19 13 7 1 8 1 hQ _{IV} - - 1.7 -		5	aQii			16.2	-		-	-	1,31,±	- · · · -	24.7	A) 30 h
1 hQ _{IV} 1.7	94,945	6	P₃	29.9		au si Tiri		30.9	/28.5/	* 1	anniga.	in the contract	/30.2/	e de la company
8 2 VQ _{IV} 9.2 4.8 2.5 3.8 3.1 - 2.3 - - (1.6) ½ 3 aQ _{III} 13.1 7.9 9.1 10.6 12.5 11.2 - - (7.7) 9.3 2 4 aQ _{II} 17.2 - 14.9 15.1 19.7 - - 11.7 -<	Ng	CKE	зажин	25	19	13	7	1	25	19	13	7	1	
8 2 VQ _{IV} 9.2 4.8 2.5 3.8 3.1 - 2.3 - - (1.6) ½ 3 aQ _{III} 13.1 7.9 9.1 10.6 12.5 11.2 - - (7.7) 9.3 2 4 aQ _{II} 17.2 - 14.9 15.1 19.7 - - 11.7 -<	L				1	1:					4 -4	•		
4 aQn 17.2 - 14.9 15.1 19.7 - - 11.7 - - - - - 11.7 -	1 3	1		-			-		- · · -	<u>.</u> -	** .	41. t		2
4 aQn 17.2 - 14.9 15.1 19.7 - - 11.7 - - - - - 11.7 -		-	∶vQ _{IV}			2.5	3.8	3.1	-	2.3	•		(1.6)	H
4 aQn 17.2 - 14.9 15.1 19.7 - - 11.7 - - - - - 11.7 -	g	3	aQ _{III}	13.1	7.9			12.5	11.2		-	(7.7)	9.3	ра
6 P₁ 31.5 - - - 27.5 /30.2/ - - - /26.4/ № скважин 1 7 13 19 25 1 7 13 19 25 1 hQ _N - - 1.8 -	ľ	ᆣ	aQı		-		15.1		<u>-</u>					
№ скважин 1 7 13 19 25 1 7 13 19 25 1 hQ _N - - 1.8 - - - - - - - - - 4.1 2 vQ _N 2.1 0.6 - 3.2 7.7 (1.5) - - - 4.1 3 aQ _{III} 11.9 10.3 7.2 10.0 13.4 - 6.2 (3.9) - 11.7 4 fgQ _I 18.4 13.4 15.6 20.1 22.5 15.8 - (11.0) - - 5 aQ _I 27.6 - 19.2 26.3 31.2 - - - 22.0 (27.2)	1	5	aQı		-	17.8	-			-	16.2	******** -	-	
1 hQ _{IV} 1.8	q is	6	P ₁	31.5	2.5 · · · . -	2. 53 -	· · · · -	27.5	/30.2/	. * 5 -	-		/26.4/	10.00
9 2 VQ _{IV} 2.1 0.6 - 3.2 7.7 (1.5) - 4.1 5 5 3 3 3Q _{III} 11.9 10.3 7.2 10.0 13.4 - 6.2 (3.9) - 11.7 5 4 fgQ _I 18.4 13.4 15.6 20.1 22.5 15.8 - (11.0) - - 5 3Q _I 27.6 - 19.2 26.3 31.2 - - 22.0 (27.2)	N	CKI	важин	1	.7	13	19	25	1	7	13	19	25	
9 2 VQ _{IV} 2.1 0.6 - 3.2 7.7 (1.5) - 4.1 5 5 3 3 3Q _{III} 11.9 10.3 7.2 10.0 13.4 - 6.2 (3.9) - 11.7 5 4 fgQ _I 18.4 13.4 15.6 20.1 22.5 15.8 - (11.0) - - 5 3Q _I 27.6 - 19.2 26.3 31.2 - - 22.0 (27.2)	1.0	11	hQ _{IV}		_	1.8	_	-		_	-	377 -	-	* -
5 aQ ₁ 27.6 - 19.2 26.3 31.2 22.0 (27.2)		2		2.1	0.6		3.2	7.7	(1.5)		-			M
5 aQ ₁ 27.6 - 19.2 26.3 31.2 22.0 (27.2)	1					7.2			-	6.2	(3.9)	-		욹
5 aQ ₁ 27.6 - 19.2 26.3 31.2 22.0 (27.2)	19	_							15.8	-		-		Ĕ
		5			-				-		-	22.0	(27.2)	ξε : n
				30.4		-		33.0	/28.8	-	a san ti i ia 🕳		_	\$

1	2	<u>з</u>	4	5	6	7	8	9	10	11	12	13	14
Nº	СКВ	ажин	25	19	13	7	1	25	19	13	7	1	. V.
									, ,				
7.1	1.	hQ _{IV}	-	0.9	2.6	-			-	-	-	-	똣
	2	vQ _{IV}	-			1.3	7.6	- 0.0	-	(5.0)	7.0	3.2	Известняк
10	3	aQ _{II}	14.1	5.5	9.0	12.7	18.3	6.2	(40 C)	(5.3)	7.3	20.0	/3B
	4	fgQi	18.7	14.3	19.3 23.8	21.1	26.3 35.0	(22.0)	(10.6)			20.9 29.2	_
	5	aQ _i P₃	26.8 29.1	18.4	23.0	22.3	35.5	(22.9) /27.8/	-			25.2	
Nio	استبا		25.1	17	13	9	55.5	21	17	13	9	5	
ΙΛō	CKE	нижв	21		13	9	J	Z1	И	13	9	J	J. 500
	1	hQ _{IV}			1.8	2.1			_				
	2	VQ _{IV}	8.1	2.2	1.0	2.1	2.9	4.7	-			(1.9)	Мергель
	3	aQ _{III}	17.7	12.1	8.0	5.9	13.8			(4.6)	```	10.7	ebL
11	4	IgQ _{II}	22.9	19.2	10.7	14.9	19.4	-	16	-	(9.5)	-	∑
	5	aQ	32.6	20.3	-	16.3	27.7	(28.4)	-	-	-	23.7	
200	6	P ₂	33.7	-	-		29.4	/33.2/	-	-	. , .	/28.7/	2
No	СКЕ	зажин	21	17	13	9	5	21	17	-13	9	5	grija S
:	1	hQıv	_	-	-	1.8	-	-	-		-		5.1
	2	vQIII	. 8.8	3.0	_	-	-	5.3	-	1	-		Гранит
12	3	aQ∥	15.2	9.3	5.1	3.2	10.2	11.8	. t	(3.2)	-	4.6	Ed.
12	4	fgQı	24.6	19.4	8.2		20.5	-	14.3	* -	(7.9)	6 /s -	A - 1
	5	aQı	31.9	21.8	-	22.2	25.8	- 5	· ·	-	(17.8)	22.7	2.5
	6	Jac	33.5	() -	-	23.7) - (-	/32.5/	-		/22.8/	-	100
Nº	CKE	зажин	21	17	13	9	5	21	17	13	9	5	
	1	hQıv	-	6.5 ° =	1.8	•	•	-	-			· Yyd•	
	2	vQ _{IV}	3.7	0.9	-	2.3	5.0	2.1	-	7 - 1	(1.2)	· .	ранит
13	3	aQ _{III}	11.9	10.1	7.4	9.9	13.9	-	6.3	(3.4)		8.9	_ps
١٠	4	IgQ _{II}	19.6	16.9	9.3	19.6	24.8	(16.5)		8.4	1 e80.173=	. () · •	
	5	aQı	28.1	18.4	-	23.7	30.0	25.3	-	<u> </u>	(21.5)	. Kr	
	6	K	29.4	•		-	31.7	ia ya 🖫	-	-	.1 m 45m	/31.1/	913
Nº	CKI	зажин	1	7	13	19	25	1	7	13	19	25	
	1	hQıv	-	-	-	1.3	-		-	-			· _
	2	vQ _{III}	6.6	1.4	-	-	1.6	4.2	(0.8)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Доломит
14	3	aQ∥	12.2	8.5			7.7	17 ts •	-	(3.0)	,	5.6	<u>70</u>
'"	4	fgQı	19.7	16.4	6.9			16.1	• •	-	(5.8)	·	
	5	aQı	28.3	21.3		11.3	26.3		18.2	-	1 · · · ;=	(20.7)	
	6	N ₁	30.7		_	<u> </u>	27.5	/29.5/	•	-	44.5	/26.8/	44

1	2	3	4	5	6	7	8	9	10	11	12	13	14
№	СКВ	ажин	5	.9	13	·· 17	21	5	9	13	17	21	15
L.,													
	1	hQ _{IV}	-		2.0		-			-		- (0.0)	关
	2	·vQ _{III}	9.3	5.0		3.5	6.3	5.7	(2.2)		- (5.0)	(3.3)	SCT
15	3	_aQ _⊪	14.1	10.1	6.3	6.9	15.1		7.7	/O O\	(5.0)	46.0	Известняк
	5	lgQ _i	22.4	14.5	10.8	-	19.0 31.0	(25.0)		(9.0)	-	16.9 24.7	
	ე 6	aQ₁ N₂	29.1 30.5		13.5		31.1	(25.0) /29.8/	-			24.1	
H			30.3	7	13	19	25	129.01	7	13	19	25	
IA	CKE	нижв	1		13	19	20	•	/	13	19	23	
1	1	hQ _{IV}	_		1.7							-	
	2	vQiv		_	- ' · ' 	1.4	6.1	_	_		_	3.3	Мергель
	3	aQıı	10.9	7.1	3.5	6.6	11.6	8.4	(2.2)		(3.6)	0.0	ерг
16	4	fgQ _{II}	19.4	9.6	9.1	-	20.3	(14.8)	(=:=/	6.4	- (0.0)	5- N -	, ≅ .
	5	aQ _{II}	29.7	-	12.2	-	30.9	25.2	_			23.6)	320
	6	N ₁	31.1	-	-	-	31.8	/30.5/	-		-	/31.5/	
Νº	CKI	зажин	- 5	9	13	17	21	5	9	13	17	21	
	1	hQıv	-	-	-	1.3	-	-	-	-	-	Wei 💂	<u> </u>
	2	aQ₁v	5.8	3.8	0.4	-		3.0		: -	10,45 -	-	- MG
17	3	aQııı	14.6	8.7	6.8	5.5	10.9	-	6.1	1 -7-12	27 St.	(7.5)	Доломит
1''	4	IgQ _{II}	21.4	10.4	14.9	11.1	17.2	17.7	-	(11.4)		13.3	hL
	5	aQı	30.8	-	16.2	17.9	28.2	26.9	-		(14.5)		
	6	N ₂	34.0	-	_ :-		29.4	/32.3/			. 10 G -	/28.7/	
N	CK	важин	1	7	13	19	25	1	7	13	19	25	
	i .	T	ļ										
	1	hQıv			1.7	-	-	-	-	-	-	(4.0)	Ŀ
	2	aQıı	4.8	1.9		0.5	2.1	2.9	1 -	-	(0.0)	(1.0)	Гранит
18	3	aQ _{III}	11.7	8.1	2.9	5.5	9.4	-	4.4	(7.0)	(3.8)	(5.6)	ď
	L	fgQ _{II}	17.2	16.5 18.5	11.7	6.9	13.1 30.5	(22.6)	-	(7.2)	-	11.2 23.2	
-	5	aQı	28.4 31.1	10.3	16.3	<u>-</u>	31.5	(22.6) /29.7/		-		23.2	
-	٠	P ₁	31.1	7	13	19	25		7	13	19	25	
IN	₹ CK	важин			13	19	25	1	/	13	19	25	
\vdash	1	hQ _{IV}			1.1								21.3
	2	VQ _{III}	3.8	3.3	4.5	6.2	6.0	(2.0)	<u> </u>	2.7		(2.5)	TMM
	12	aQıı	9.4		9.5	13.3	16.5		(6.0)	2.1	9.6	(2.0)	Доломит
19	4	fgQı	25.0		19.6		20.2		(0.0)	(15.3)	7.0	18.2	- 2
	5	aQ ₁	34.3		23.8	- 10.7	34.4		-	1.0.0	_	(28.8)]
	6	N ₂	36.4	-	-	_	35.6	/35.4/	-	-	_	,_0.0,	
Ь.	1,5	1 12	1 00.7	<u> </u>	<u></u>		00.0	700.77	<u> </u>	1			ــــــــــــــــــــــــــــــــــــــ

1	2	3	.4:	5	6	:: 7 ::	8	9	10	11	12	13	14
Nº	CKE	зажин	200 1	7	13	19	25	Sec. 94	7	13	19	25	° [
	1	hQıv	-	-	1.0	-	-	D. ,: -	•	- 100 July -	- 1		
	2	vQ_{IV}	4.5	2.2		0.9	3.4	-	(1.1)	A , A , *2		2.1	Ě
20	ი	aQ _{III}	16.1	13.4	9.3	11.8	137	12.7		(5.1)	(4.8)	74. F 1 <u>2</u>	Известняк
20	4	fgQ _{il}	18.6	17.6	14.0	21.9		-	15.6		16.2	. · · · -	Изв
	5	aQı	33.9	23.9	-	24.1	33.2	26.8	•	-	_	28.3	
	6	N ₂	35.0	-	_	٠.	35.3	E. (-	1 1 2 2 2 1 2 2 2		-	/34.3/	7-
Nº		ажин	25	19	13	7	1	25	19	13	7	1	a' ,
	1	hQ _{IV}	, -	· -	2.7	1.2	-	.; :-	•	-	· · ·	-	
	2	vQ _{III}	8.6	2.7	-	15. vi =	-	4.7	(1.5)	-		-	J.
21	3	aQı	16.3	9.7	8.1	5.5	10.2	-	6.5	-	(3.7)	7.2	Мергель
-'	4	lgQ _{II}	26.2	17.4	18.2	12.9	18.4	21.3		(12.4)	_		₹
	5	aQı	32.2	-	24.9	15.3	30.0	_		(21.6)		23.8	1
	6	N ₂	34.4	-	26.7	- A -	31.5	/33.1/	200	125.7	-	-	* 1
Nº		ажин	21	17	13	9	5	21	17	13	- 9	5	
	1	hQ _{IV}	:, -			- 1.7	185, 1 <u>-</u>	-	-	-	-	30 ° -	1
	2	vQ_{iv}	4.5	2.2	0.4	- ,	6.1	3.8		-	, t., -	(3.8)	МИ
22	3	aQ⊪	12.0	9.7	7.7	6.5	11.5	-	6.0		(4.0)	_	Доломит
	4	fgQ _{II}	20.0	18.1	15.6	11.4	20.2	- 1 () - <u>-</u>	14.0	(10.5)		14.7	ध
	5	aQii	29.8	20.1	.19.1	-	29.7	26.3		- · · · -		(24.8)	
	6	N ₁	31.6	-	·	-	30.4	/30.8/	- 1		-	1 E	7
Nº		ажин	21	17	13	9	5	21	17	13	9	5	
	1	hQ _{iV}	-	-	-	2.0		<u>-</u>	-) -	7 7 -	-	
	2	VQ_{IV}	4.9	0.9		-	5.2	(3.1)		# 15 -		3.2	7
23	3	aQ _{III}	14.3	9.9	7.1	4.8	10.3	10.5	(3.4)		(3.0)	-	ранит
-	4	fgQ _{ii}	19.9	16.5	15.6	10.8	19.4	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.8	*** * **	(8.0)		
	5	aQı	33.0	23.3	23.3	·	27.4		-	(19.5)	-	23.5	
	6	P ₃	34.0		24.7	1,30	30.5	a 1-	•	-		/29.0/	
Nō	СКВ	ажин	25	19	13	7	1	25	19	13	7	1	Acres
	1	hQ _{IV}	-	1.1	2.5		11 Tax 112 2 74	2 P 2 8 S	***	Autorita		2.4 C. etgs	3.7
	2	vQiii	2.9		13 J	1.0	4.8		1.			3.2	Мергель
24	3	aQı	10.7	2.4	5.7	7.3	9.4	6.0			(3.8)	2 -	pre
27	4	fgQı	16.3	10.1	15.3	18.3	22.0	u" 197 -	6.8	(9.9)	-	15.0	. ⊠
- [5	aQı	25.5	12.3	22.1	21.4	33.0	(21.2)		18.4	. *,; * .,***-	28.7	
	6	N ₂	30.0	-	-	11.5	34.0	/27.7/		•	el est le cart	1,74	\$11.4

Примечание: В графах "Глубина отбора образцов" обозначены: без скобок – образцы ненарушенной структуры; в круглых скобках () – образцы нарушенной структуры; в косых скобках / / - секционные (валовые) пробы.

Продолжение приложения Г

Таблица Г.2. Состав и физические характеристики грунтов

	2		20 1 1 2 4 1	11 15 2 10							 1
.		Гран	уломе	етрич	еский	CO-	اسا	<u> </u>	¥	Пределы	пластич-
			CT	ав, %)		Ħ	Ĕ	, Z	ност	1, %
Вариант	NeNe cnos	> 2 MM	2-0.5 мм	0.5-0.25 MM	0.25-0.1 мм	< 0.1 мм	Плотность грунта, р, г/см³	Плотность частиц, рs, г/см³	Естественная влаж- ность, W, %	W _p	WL .
1	2	3	4	5	6	7	8	9	10	11	12
	2					1.1	2.03	2.68	. 10	6	11 E E
1	3	20	38	29	9	4	- 2.01	2.67	24		100012
	4		-				1.81	2.72	13	16	35
	5	12	18	31	24	15	2.09	2.66	18		4.774
	2.	6	17	26	35	16	1.75	2.67	15	tion of the second	
2	3	1	21	38	30	10	2.07	2.67	21		
-	4		4.				1.92	2.70	. 3	5	/ 18
	5	23	35	26	9	7	2.10	2.67	19	1.0	
	2	141.2					1.64	2.69	13	10	14
3	3	5	16	21	38	20	2.01	2.67	24	1. t	
്	4						1.94	2.73	3	9	28
	. 5	15	23	28	22	.12	2.08	2.66	19	Section 1995	W
	2	4	18	26	31	21	1.96	2.66	· · · · 7	ta dates.	
4	3	17	41	31	.10	1	2.02	2.66			
	4						1.81	2.72	10	11	25
	5	37	25	20	12	6	2.10	2.66	19	Mary Liberty	
100	2				1.1.1		1.71	2.69	11	9	14
5	3	4	11	26	45	14	2.05	2.67	22	+	
ľ	. 4	a specie	ight Sidda		5, 17.24	elen i	1.89			7	30
	5	24	37	. 19	16	: 4	2.03				2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2	100				11.4	2.08				13
6	3	3	15	30	- 38	14	2.00				1.5 7.5.7
"	4	(*),	247	1-1		11.55	1.93				19
	5	13	26	31	27	3					
	2						1.91	2.68		1	19
7	3	14	39	27	13	7	2.05				
'	4						1.81				35
L	5	32	26	24	12	6	2.07	2.66	20	<u> </u>	

11,	2	жение	4	5	6	7.7	8	9	10	11	12
	2		1.00	2			1.79	2.69	10	7	i 12
8	3	- :	-12	26	34	28	2.01	2.67	24		3 1, 44
0	4			-20		1 1 F	2.08	2.72	7	9	22
	5	16	49	23	9	3	1.98	`2.67	25		31 3
	2				;6°	5 F	1.67	2.69	12	9	14
9	3	2	11	18	29	3 40	1.99	2.68	26	91 (44)	
ש	4	1	1	V to	17.77	3 7 4	1.82	2.73	16.5	. 14	4 33
	5	14	48	19	11	8	2.08	2.67	21	at Jibir	d []
	2			.f.	10 m 20 m	1	1.72	2.69	15	12	17
10	3	1	. 9	28	- 30	32	2.03	2.67	24		31.04
10	4			2° Y		4.1	1.99	2.70	7	10	21
	5	9	32	23	18	18	2.01	2.67	□ 23		4.74
	2	4		814	1.14		1,71	2.69	8	7	11
11	3	3	16	21	34	26	1.97	2.68	28	P 12	
.11	4			V .	101	12 · 1	1.84	2.74	4	11	29
	5	41	23	18	9	9	2.06	2.67	21	45	
	2		12	17	30	41	2.02	2.67	10	14	No.
12	3	46	23	18	9	4	2.00	2.66	26	N E	
12	4	13.5%		0.5	10	V	1.91	2.70	6	. 9	23
	5	18	38	24	13	7	2.02	2.66	24	73. 3.1	1 · 1
	2	2	16	27	- 39	16	1.73	2.67	10	A. J.	
13	3	32	25	£23	- 12	8	2.06	2.67	22	4-15-	e Grand
, 13	4			8.67	1.3	× 1	1.81	2.72	9.5	12	34
	5	11	27	29	25	. 8	2.05	2.66	21	327 17	. d
	2	2	10	18	25	45	1.78	2.68	16		
14	3	2	23	36	18	21	2.00	2.66	24	31 350	13 1361
	4	** **,	in and	1, 1	34.72		1.88	2.71	4		18
	5	46	23	19	10	[~] 5	2.02	2.67	23	St 188	1.00
6	2	1	-11	24	29	35	1.87	2.68	8		
15	3	37	29	21	10	3	2.04	2.67	23		1 - 1
13	4				3 27	100	1.83	2.73	4	8	29
	5	21	37	18	16	8	2.09	2.67	20		
	2	100			3* 5 ° 7	Section 1	1.83	2.68	9	7	11
16	3	1	18	25	41	15	2.02	2.66	23		
10	4						1.76	2.71	7	9	23
	5	29	24	16	18	13	2.04	2.67	22		
	2	1	17	30	42	-10	1.85	2.67	11		
17	3	9	17	40	19	15	2.03	2.66	23		
-17	4						1.82	2.74	13	12	30
	5	17	41	18	17	7	2.00	2.66	24		

— ——			
прод	опжение	таблицы	

1	2	3	4	5	6	7	8	9	10	11	12	\neg
	2	1	18	19	29	33	1.90	2.67	7			
40	3	15	42	31	8	4	1.99	2.67	25			
18	4	5.5				17 1	1.96	2.70	9	11		20
	5	7	30	22	25	16	2.00	2.67	24			
* 1	2	₽ 4	16	28	33	19	1.92	2.66	12			-
19	3	5	18	31	28	18	1.99	2.66	25			
19	4	1 5 7		3.31		1	1.82	2.74	6.5	10	1.	37
	5	46	18	17	11	8	2.10	2.66	20	Rai Data		
	2	5	20	-24	38	13	1.93	2.66	9			
20	3	41	19	15	14	11	2.00	2.66	24		1.5	
20	4	12.7				9 4	1.88	2.71	11	. 12		25
7	5	8	27	₹21	29	15	2.00	2.67	25			
	2			4	13.		2.09	2.68	: 8	8	1.5	.14
21	3	2	19	26	32	21	2.03	2.66	22		i in an	1
21	4	7.5					1.83	2.73	7	. 11		31
	5	39	26	21	13	1	2.00	2.67	24		0 -	1
	2		14	24	32	. 30	1.85	2.67	.11	.E.	- 2	5
22	3	13	14	41	23	9	2.05	2.67	22			
~~	4	i,		4			1.73	2.72	8	10		26
Ŀ	5	15	43	21	13	. 8	1.99	2.67	24	N5 11		
	2		15	25	30	30	1.82	2.68	12	37 37		
23	3	22	35	23	17	3	2.03	2.66	22	588 Se	1 2	3
23	4			3.3	5.30		1.98	2.72	16.5	15		36
	5	10	23	19	36	12	1.99	2.67	2.6	95 d.		
	2			1 2	7.5	2 1	1.82	2.68	12	9		15
24	3	4	15	23	23	35	1.94	. 2.68	29		1 - 1 1 - 1	
~	4			1		4	1.89	2.71	, 8	11		24
	5	20	32	28	18	2	2.04	2.66	; 22	4.1 G	1	1

Таблица Д.1. Классификация песчаных грунтов по гранулометрическому составу

Грунт	Размер частиц, мм	Масса частиц, % от массы воздушно-капельного грунта
En weren regress that we want out to the		
Гравелистый	<i>></i> 2	* program = >25 * p * p *
Крупный	>0.5	>50
Средней крупности	>0.25	>50
Мелкий	>0.1	≥75
Пылеватый	>0,1	<75

Примечание: Наименование грунта принимается по первому удовлетворяющему показателю в порядке их расположения в таблице.

Таблица Д.2. Подразделение пылевато-глинистых грунтов

	111100111
Грунт 🚉 💮	Число пластичности, %
The state of the s	2
Супесь	1≤ J _p ≤7
Суглинок	7 <j<sub>p≤17</j<sub>
Глина 🚈 🚧 🚧 🖂 🖂	J _p >17- 200 (200 (200 (200 (200 (200 (200 (200

Таблица Д.З. Подразделение песчаных грунтов по плотности сложения

Песок	Значение	коэффициента п	ористости
the control of the second of t	плотные	средней плотности	рыхлые
e. 1 <mark>1</mark> 990 bestegski	27 (2 2 2 22)	3 .5	4
Гравелистый, крупный и средней крупности	e<0.55	0.55≤e≤0.7	e>0.7
Мелкий	e<0.6	0.6≤e≤0.75	e>0.75
Пылеватый	e<0.6	0.6≤e≤0.8	e>0.8

Таблица Д.4. Подразделение песчаных грунтов по степени влажности

Грунт	Степень влажности
1	
Маловлажный	0 <s<u><20.5</s<u>
Влажный	0.5<\$≤0.8
Насыщенный водой	0.8< S₁≤1.0

Таблица Д.5. Подразделение пылевато-глинистых грунтов по показателю текучести

показателю текучести	and the second second second second second
Грунт	Показатель текучести
and the control of th	2
Супесь:	ang a sakarang galaganyan ang kalangga ang kalangga ang kalangga ang kalangga ang kalangga ang kalangga ang ka Tangga ang kalangga
твёрдая	J _L <0
пластичная	0≤ J∟≤1.0
текучая	J _L >1.0
Суглинок и глина:	44. A., A., A.
твёрдые	J _L <0
полутвёрдые	0≤ J∟≤0.25
тугопластичные	0.25< J _L ≤0.5
мягкопластичные.	0.5< ป∟≤0.75
текучепластичные	0.75< J _L ≤1.0
текучие	J _L >1.0

Таблица Д.б. Нормативные значения модулей деформации песчаных грунтов

Песок	при ко:		100	Па ристости
	0.45	0.55	0.65	0.75
and the second of the second o	· · · · 2	3	4 ***	5
Гравелистый, крупный и средней крупности	50	- 40	. 30 =	en está e S
Мелкий общество на предоставления на предоставле	48	38	28	18
Пылеватый	39	28	18	11

Таблица Д.7. Нормативные значения удельных сцеплений Сп, кПа и углов внутреннего трения ϕ_n , град., песчаных грунтов

н Песок Населения	Характе- ристика			С _п и ф _п при е пористос	
TURNEL TO A HORSE	1	0.45	0.55	0.65	0.75
1 1/2.01	2	3	4	5	6
Граровистий иружици	Cn	2	1	0	-
Гравелистый, крупный	л Фл	43	40	38	-
Coorney roverseers	C _n v	1. T. A. C	2	1	
Средней крупности	φп	40	38	35	
Manue	Cn	6	4	2	0
Мелкий:	φп	38	36	32	28
Character of the second of the	Cn	8	6	4	2
Пылеватый	φп	36	34	30	26

Таблица Д.8. Нормативные значения удельных сцеплений С_п, кПа и углов внутреннего трения φ_п, град., пылевато-глинистых грунтов четвертичных отложений

Грунт	Показатель	Харак- терис-		A 3 1	Значен Бфици	2	9.0	*	
	текучести	тика	0.45	0.55	0.65	0.75	0.85	0.95	1.05
~*.127	2	3.	4	5	6	7	8	9	: 10
	0 <j∟≤0.25< td=""><td>C_n</td><td>21</td><td>17</td><td>15</td><td>13</td><td>-</td><td></td><td>-</td></j∟≤0.25<>	C _n	21	17	15	13	-		-
<u>5</u>	070[0.20	ϕ_n	30	29	27	24	-	í -	-
Супесь	0.25 <j∟≤0.75< td=""><td>Cu</td><td>19</td><td>15</td><td>- 13</td><td>11</td><td> <u></u></td><td>•</td><td>_</td></j∟≤0.75<>	Cu	19	15	- 13	11	<u></u>	•	_
	0.23~3[≥0.73	Фп	28	26	24	21	Maria 🚊	- 1 -	
1175	0≤J∟≤0.25	Cn	47	37	: 31	25	22	19	
×	0≥3[≥0.23	φn	26	25	24	23	22	20	-
Суглинок	0.25 <j∟≤0.5< td=""><td>Cn</td><td>39</td><td>34</td><td>28</td><td>23</td><td>18</td><td>15</td><td>-</td></j∟≤0.5<>	Cn	39	34	28	23	18	15	-
LT.	0.23<3∟≤0.5	φπ	24	23	22	21	19	17	
	0 5 1 20 75	Cn	-	-	25	20	16	14	12
	0.5 <j∟≤0.75< td=""><td>φn</td><td></td><td>•</td><td>- 19</td><td>18</td><td>16</td><td>14</td><td>12</td></j∟≤0.75<>	φn		•	- 19	18	16	14	12
	0≤J∟≤0.25	Cn	-	81	68	54	47	41	36
	020[20.20	φп		21	20	19	18	16	14
Глина	0.25 <j<sub>L<0.5</j<sub>	Cn	-	-	57	50	43	37	- 32
Ē	0.25~3[~0.5	Фп	-	-	18	17	16	14	11
:	0.25 <j∟≤0.5< td=""><td>C_n</td><td>-</td><td>-</td><td>57</td><td>50</td><td>43</td><td>37</td><td>32</td></j∟≤0.5<>	C _n	-	-	57	50	43	37	32
<u> </u>	0.23~3[≥0.5	Φn	•	, · · · · ·	16	14	12	10	- 7

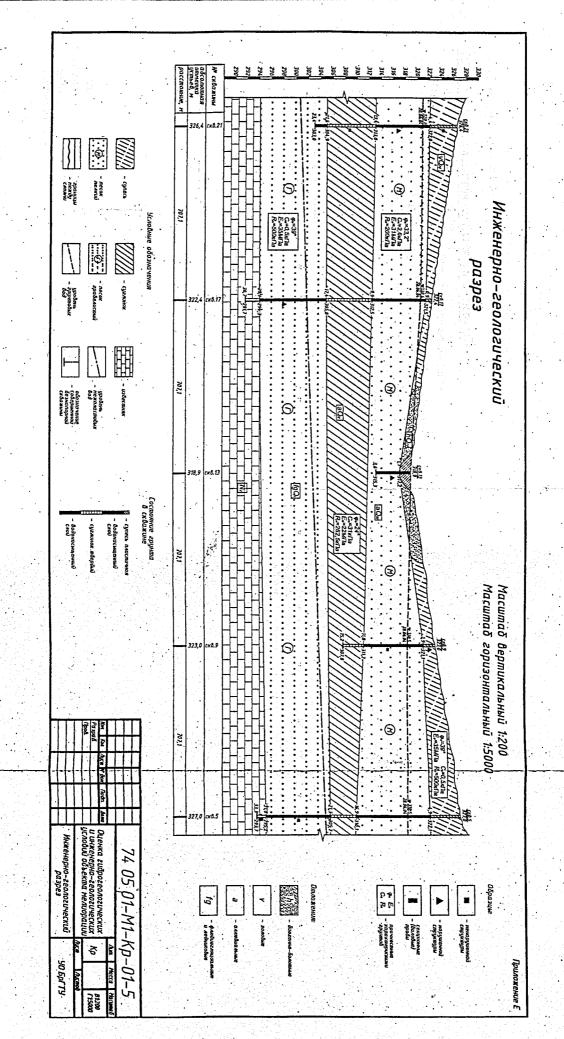
Таблица Д.9. Нормативные значения модулей деформации Е_о пылевато-глинистых грунтов

Возраст и происхожде-		Поизортопь					Значе	FYA E	Значения Е₀, Мпа				
ние грунтов	Грунт	1 lonasa i cu ib	i,		<u>u</u>	и коэс	прфф	Ленте	при коэффициенте пористости е	ТОСТИ	O		
	Ţ.	екучести	0.35	0.45	0.55	0.65	0.75	0.85	0.45 0.55 0.65 0.75 0.85 0.95 1.05	1.05	1.2	1.4	1.6
-	2	3	4	5	9	7	8	6	10	11	12	12 13	14
	Супесь	0≤√20.75		32	24	16	10	7	•		•		٠
Четвертичные отложе-		0≤J∟≤0.25		34	27	22	17	14	11	•	-		
ния:	Суглинок	0.25 <j∟≤0.5< td=""><td></td><td>32</td><td>.25</td><td>19</td><td>14</td><td>11</td><td>8</td><td>•</td><td></td><td>•</td><td>•</td></j∟≤0.5<>		32	.25	19	14	11	8	•		•	•
аллювиальные, делюви-		0.5<1∟≤0.75	-	•		17	12	8	9	5	•	•	•
альные, озерно-		0≤√≤0.25			26	24	21	18	15	12	•	1	•
аллювиальные	Глина	0.25 <j∟≤0.5< td=""><td></td><td>•</td><td>•</td><td>21</td><td>18</td><td>15</td><td>12</td><td>6</td><td></td><td>•</td><td>•</td></j∟≤0.5<>		•	•	21	18	15	12	6		•	•
		0.5<√ ≤0.75	•	•	•	•	15	12	6	7			•
	Супесь	0≤J_≤0.75	-	33	24	11	11	7		•	٠	,	•
	a Statement	0≤J∟≤0.25		40	33	27	21	1	•	•	•	1	•
A INCENDITING NATION SIGN	Суглинок	0.25 <j∟≤0.5< td=""><td></td><td>35</td><td>28</td><td>22</td><td>21</td><td>٠</td><td>i</td><td></td><td></td><td></td><td>•</td></j∟≤0.5<>		35	28	22	21	٠	i				•
		0.5<ò0.75	•	-		17	13	9	7			'	
Моренные	Супесь и суглинок	J _[≤0.5	75	55	45		•			•		n, Nasa Maraka	
		0.25≤J∟≤0			•	•	•	1	27	22	22	2.*	•
формородо друго	Глина	0 <j∟≤0.25< td=""><td>•</td><td></td><td>a</td><td></td><td>•</td><td></td><td>24</td><td>22</td><td>19</td><td>15</td><td>•</td></j∟≤0.25<>	•		a		•		24	22	19	15	•
HOPACKUI O APYCA		0.25 <j∟≤0.5< td=""><td>•</td><td>1</td><td>•</td><td>,</td><td>i</td><td>•</td><td>•</td><td>•</td><td>16</td><td>12</td><td>10</td></j∟≤0.5<>	•	1	•	,	i	•	•	•	16	12	10

Примечание: Значение Е_о не распространяется на лессовые грунты

Таблица Д.10. Расчётное сопротивление R₀ для крупнообломочных и песчаных грунтов

nec and a pyriod				
A second of the	R₀, кПа			
Пески под	плотные	средней плотно- сти		
**************************************	2	3		
Гравелистые, крупные	600	500		
Средней крупности	500	400		
Мелкие: поветельный учения и поветельный учения в	erita y de La companya de la comp	Simulate)		
- маловлажные	400	300		
- влажные и насыщенные водой	300	A.S. 200		
Пылеватые: 4 образования	- tack	- มหาวายเลื		
- маловлажные пожет добо	300	250		
- влажные шарый больбай больбай	200	s 150 km²		
- насыщенные водой	150	100		


Таблица Д.11. Расчётное сопротивление № для пылевато-глинистых грунтов

Parente de la viva de la	для пвыевато-глинистых грунтов R ₀ ; кПа на за серез с			
Пылевато-глинистые грунты	J _L =0	.7 o d Jլ=1 #€38		
	2.2	देन वन हा 3 केस्पृतिस्		
Супеси с коэффициентом пористости		i ji Tanderi engiştir		
0.5 section 1.5 se	300	300		
0.7*************	250	200		
Суглинки с коэффициентом пористости		tagraginsi Neggibby. T		
0.5	300	250		
0.7	250	180		
0.8	200	100		
Глины с коэффициентом пористости				
0.5	600	400		
<u></u>	500	300		
0.8	300	200		
1.0	250	100		

Примечание: при промежуточных значениях е и J_L значения определяются интерполяцией.

Таблица Д.12. Генетические индексы и цвета к карте четвертичных отложений

Наименование основных и смешанных типов четвертичных отложений	Индекс	The transport and the second of the second o
	2	3
Элювиальные	е	Фиолетовый
Делювиальные	d	Ярко-оранжевый
Аллювиальные	а	Зелёный
Ледниковые	9	Коричневый
Флювиогляциальные	f	Тускло-зелёный
Озёрные		Синевато-голубой
Пролювиальные	. p	Оливковый
Солифлюкционные	^ S	Красновато-фиолетовый
Морские	m	Голубой
Эоловые	V	Светло-жёлтый
Химические	ch	Серовато-фиолетовый
Элювиально-делювиальные	ed	Оранжевый
Делювиально-солифлюкционные	ds	Розовый
Аллювиально-делювиальные	ad	Жёлтый
Аллювиально-озёрные	al	Голубовато-зелёный
Аллювиально-морские	am	Синевато-зелёный
Аллювиально-пролювиальные	ар	Светло-желтовато-зелёный
Пролювиально-делювиальные	pd .	Палевый
Озёрно-ледниковые	lg lg	Серовато-зелёный
Ледниково-морские	gm	Синий
Озёрно-болотные	lb	Серовато-голубой
Биогенные	b	Не закрашивается
Биогенно-болотные	h	Фиолетово-красный
Вулканические	β	Тёмно-зелёный
Искусственные (техногенные)	t	Зеленовато-жёлтый
Коллювиальные	С	Кармин
Делювиально-коллювиальные	dc	Розовато-оранжевый

Оценка физико-механических свойств грунтов

Определим наименование грунта для каждого из пластов, которые были вскрыты скважинами.

2-й слой является песчаным, т.к. в таблице исходных данных отсутствует влажность на границе текучести и раскатывания. Чтобы определить вид песчаного грунта необходимо знать плотность, степень влажности и гранулометрический состав грунта.

Определим вид песчаного грунта по гранулометрическому составу.

Таблица Ж.1. Гранулометрический состав песчаного грунта

Наименование показателей	Гранулометрический состав					
Диаметр частиц	>2мм 🗔	2-0.5мм	0.5-0.25мм	0.25-0.1мм	<0.1мм	
Содержание частиц, %	11	11	24	29	35	
∑сод-ние частиц, %	1	12	36	65	100	

Т.к. суммарное содержание частиц диаметра более 0.1 мм составляет 65%, что менее 75%, то песчаный грунт - пылеватый, табл.Д.1 приложения Д.

Определим плотность грунта в сухом состоянии:

$$\rho_d = \frac{\rho}{1 + 0.01 \cdot \omega}, \text{ T/M}^3 \text{ as the same of the state of t$$

где ρ - плотность грунта;

 ω - природная влажность, %

$$\rho_a = \frac{1,87}{1+0,01\cdot 8} = 1,73 \text{ T/M}^3$$

Определим коэффициент пористости грунта:

$$e = \frac{\rho_s}{\rho_d} - 1$$

где ho_s - плотность частиц грунта.

$$e = \frac{2,68}{1,73} - 1 = 0,55$$

По величине коэффициента пористости песчаные грунты делятся на плотные, средней плотности и рыхлые. Т.к. 0,55<0,6, значит, песчаный грунт плотный, табл. Д.3 приложения Д.

Определим степень водонасыщения грунта, для этого находим степень влажности:

$$S_r = \frac{0.01 \cdot \omega \cdot \rho_s}{e \cdot \rho_\omega}$$

где $\rho_{w} = 1,0$ т/м³- плотность воды.

$$S_r = \frac{0.01 \cdot 2.68 \cdot 8}{0.55 \cdot 1} = 0.39$$

По величине степени влажности песчаные грунты подразделяются на маловлажные, влажные и насыщенные водой. Т.к. 0 < S, < 0.5, то песчаный грунт является маловлажным, табл. Д.4 приложения Д.

Определяем нормативные значения деформационных и прочностных характеристик: модуль деформации, табл. Д.6 приложения Д; угол внутреннего трения и удельное сцепление, табл. Д.7 приложения Д; расчетное сопротивление грунта, табл. Д.10 приложения Д:

 $E_0 = 28$ МПа; $\varphi_* = 34$ град; $C_n = 6$ кПа; $R_0 = 300$ кПа.

Таким образом, 2-ой слой-песок пылеватый, плотный, маловлажный со следующими характеристиками:

E₀=28 МПа; ℊ_n =34град; С п≈6кПа; R₀=300 кПа.

3-й слой является пылевато-глинистым, т.к. в таблице исходных данных присутствует влажность на границе текучести и раскатывания. Для определения пылевато-глинистого грунта требуется знать число пластичности и показатель текучести. Определим вид пылевато-глинистого грунта по числу пластичности:

$$J_p = \omega_L - \omega_p$$

где ω_L - влажность на границе текучести, %;

 ω_p - влажность на границе раскатывания, %;

$$J_p = 29 - 8 = 21\%$$

По числу пластичности $J_p=21\%$, грунт является глиной, т.к. $J_p>17\%$, табл. Д.2 приложения Д.

Определим показатель текучести:

$$J_L = \frac{\omega - \omega_p}{\omega_L - \omega_p}$$

$$J_L = \frac{4 - 8}{29 - 8} = -0.19$$

Т.к. показатель текучести $J_L < 0$, то грунт твердый, табл. Д.5 приложения Д.

Определим коэффициент пористости грунта, для этого находим плотность грунта в сухом состоянии:

$$\rho_d = \frac{1,83}{1+0,01\cdot 4} = 1,76 \text{ T/M}^3$$

$$e = \frac{2,73}{1,76} - 1 = 0,55$$

Определяем нормативные значения деформационных и прочностных характеристик: модуль деформации, табл. Д.6 приложения Д; угол внутреннего трения и удельное сцепление, табл. Д.7 приложения Д; расчетное сопротивление грунта, табл. Д.11 приложения Д:

 $E_0 = 26$ МПа; $\varphi_n = 21$ град; $C_n = 81$ кПа; $R_0 = 285,5$ кПа.

Таким образом, 2-й слой – глина твердая со следующими характеристиками:

 $E_0 = 26$ МПа; $\varphi_n = 21$ град; $C_n = 81$ кПа; $R_0 = 285,5$ кПа.

Составляем сводную таблицу физико-механических характеристик грунтов.

4. 4.448 <u></u>						
	Ко, кПа	82		300	285	
13.742	ЕО, кПа	11		28,0	26,0	
	ntedi.nQ	16	i salijī Kara	34,0	21,0	
ស្នេក្សិទ លោក ស្ន	Cn, klla	15		0,9	0,18	
	₹,₹\$ }	14	ADAT AMA	1,0	0,001	
	' S	13		0,39	•	
	a	12		92'0	0,55	
	Parket April 18	11			-0,19	
	%'⁴Ր	10			21,0	
	% 'dm	6	•		8,0	4, 10
	% '¹m	80	•	•	29,0	- .
	% 'w	7	•	8,0	4,0	
унтов	^ε Μ\Τ ,Υ‰ વ ં	9	07. ⁸ 1.	1,73	1,76	
тики гр	emit ,yleq	5	1.j • % 1. V	2,68	2,73	ajesta Aprila
зктерис	[€] M\T ,Y\Q	4		1,87 18,7	1,83	
еские характери	Мощность споя, м	က	0,9-0	$\frac{2,6-0}{1,9}$	5,1-4,1	
Ко-механич	ю грунта		я порода	плотный, ма-	(88 \$ (88 \$ 	raginak raginak wa 2011
Таблица Ж.2. Физико	Наименование	2	Биогенно-болотная по	Песок лылеватый, лл ловлажный	Глина твердая	24 (1.5) 24 (1.5) 24 (2.5)
блиц			Биоі			
re l		-	-	2	3	

Определение скорости движения грунтовых вод в трех характерных точках

Движение воды в горных породах определяется их водными свойствами и степенью насыщенности. При этом нужно различать инфильтрационное движение (просачивание) — это движение воды по свободным порам пород, то есть не занятых водой, а фильтрация — это движение воды в зоне полного насыщения, при наличии разности гидравлических напоров (уровней) от мест с более высоким к местам с более низким напором (уровнем).

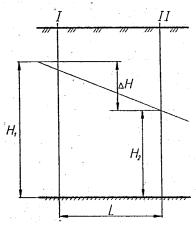


Рисунок И.1. Схема движения (фильтрации) грунтовой воды

Разность напоров $\Delta H = H_1 - H_2$ на участке (Δl) обуславливает движение воды в направлении сечения II.

Скорость движения зависит от величины разности напора (ΔH) и длины пути фильтрации (ΔI), то есть от гидравлического уклона

(градиента) - $I = \Delta H / \Delta I$.

Чтобы вычислить скорость движения грунтовых вод, рассчитаем гидравлический градиент по формуле:

$$I = \frac{H_1 - H_2}{L}, \tag{1}$$

где $H_{\rm I}$ - отметка более высокой горизонтали, м;

 H_{2} - отметка более низкой горизонтали, м;

L - расстояние между горизонталями, м.

Вначале определим I_{\max} . Для этого на карте гидроизогилс замеряем максимальное расстояние AA₁ между двумя соседними гидроизогилсами и умножаем его на 50 с учетом масштаба.

$$I_{\text{max}} = \frac{322 - 321}{8.7 \cdot 50} = 0,002$$

Далее вычислим I_{ep} , замерив на карте гидроизогилс расстояние BB₁.

$$I_{cp} = \frac{322 - 322}{4,1.50} = 0,005$$

Повторяя аналогичные вычисления, определим I_{\min} , замерив расстояние СС₁.

$$I_{\min} = \frac{320 - 319}{1, 2 \cdot 50} = 0,017$$

Теперь, зная гидравлические градиенты, определим скорость движения грунтовых вод по формуле Дарси.

$$V = k_f \cdot I \tag{2}$$

где V - установившаяся скорость фильтрационного потока постоянной массы, м/сут; k_f - коэффициент фильтрации, м/сут;

установившийся градиент напора.

Так как песок мелкозернистый, принимаем коэффициент фильтрации $k_f=3\,$ м/сут /2/.

Скорости движения грунтовых вод в трех характерных точках будут соответственно равны:

$$V_{AA} = 3 \cdot 0,002 = 0,006 \text{ M/cyT},$$

$$V_{BB_1} = 3 \cdot 0,005 = 0,015 \text{ M/cyT},$$

$$V_{CC_1} = 3 \cdot 0,017 = 0,051 \text{ M/cyT}.$$

Зная пропорциональную зависимость между напорным градиентом и скоростью фильтрационного потока (при увеличении числа градиента скорость движения грунтовых вод увеличивается), можно сделать следующий вывод: движение грунтового потока в водонасыщенных слоях со скоростью до 400 м/сут (пески, супеси, суглинки) имеет параллельно-струйчатый (паминарный) характер.

ાર્થ કે જોઈએક પ્રાથમિક કરે પક્ષ પ્રેક્ષ નિશ્વિક કિંદી કે ઉપલબ્ધ કરે પ્રાથમિક કરે માર્ચ કરા કે પ્રાથમિક માર્ચ કે પ્રાથમિક કે ઉપલબ્ધો કિંદી પ્રાથમિક કરે કે પ્રાથમિક કે ઉપલબ્ધો

Составители: Дедок Владимир Николаевич Образцов Олег Леонидович

STANDED THE THE STANDED STANDS

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

o grafia hill kalabalibati

g og ole, i gli okin kowa ji segila ng bigbi mgakeji sek

and an airtheach an an ann an an ann ann an an agus aire ann an ann ann airtean airtean an an an an an an airt

к выполнению курсовой работы по инженерной геологии и гидрогеологии для студентов специальностей

1 - 74 05 01 «Мелиорация и водное хозяйство» и

1 - 70 04 03 «Водоснабжение, водоотведение и охрана водных ресурсов» дневной и заочной форм обучения

Balaga Balawa ni ili ela arina di nada ili anda ili anda ili ali anti na ili anti na ili ay distributa di late

Ответственный за выпуск: Дедок В.Н. Редактор: Строкач Т.В. Компьютерная верстка: Боровикова Е.А. Корректор: Никитчик Е.В.

Подписано к печати 6.12.2007 г. Формат 60х84 1/₁₆. Бумага «Снегурочка». Усл. п. л. 2,7. Уч.-изд. л. 2,9. Заказ № 1291. Тираж 100 экз. Отпечатано на ризографе Учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.