Sagarence R. Lendo of Rechieves and which here

ОЦЕНКА ВЛИЯНИЯ РОСТА ПОДВИЖНЫХ НАГРУЗОК НА ИЗМЕНЕНИЕ напряженно-деформированного состояния балочного пролетного строения моста

На автомобильных дорогах нашей страны эксплуатируются балочные мосты различных лет постройки. Они проектировались по действующим в те годы нормативам и обладают различной грузо-

В РБ фактически все мосты довоенной постройки были разрушены во время войны. Поэтому анализ нагрузок проведен по нормам, начиная с 1948 г.

В соответствии с «Правилами и указаниями про проектированию железобетонных, металлических, бетонных и каменных искусственных сооружений на автомобильных дорогах» 1948 г. для капитальных мостов использовались нагрузки Н-13 и Н-10 в сочетании с толпой интенсивностью 300 кгс/м²; гусеничная нагрузка весом 60 и 30 т. Нормы 1948 г. изданы взамен норм 1943 г. Действовали при проектировании мостов до издания норм 1962 г. (СН 200-62), по нагрузкам – до 1953 г.

В 1953 г. изданы «Нормы подвижных вертикальных нагрузок для расчета искусственных сооружений на автомобильных дорогах Н 106-53». Утверждены Госстроем СССР 19 декабря 1952 г., введены с 1 апреля 1953 года. Действовали до издания норм 1962 г. (СН 200-62). Подвижные вертикальные нагрузки для расчета искусственных сооружений назначались в зависимости от категории дороги: для дорог I—II категорий H-18 и НК-80, для III— H-13 и НГ-60.

30 декабря 1961 г. утверждены Госстроем СССР «Технические условия проектирования железнодорожных, автодорожных и городских мостов и труб» СН 200-62, которые были введены с 1 апреля 1962г. В соответствии с этим документом в качестве временных нагрузок принимались автомобильные нагрузки Н-30 и Н-10, колесная НК-80 и гусеничная НГ-60. Нормативные временные нагрузки были назначены с учетом перспективы. При расчетах на выносливость нагрузка НК-80 не учитывалась, а при расчетах по III предельному состоянию принималась с коэффициентом 0,8.

В 1967 г изданы новые «Указания по проектированию железобетонных и бетонных конструкций железобетонных автодорожных и городских мостов и труб» СН 365-67. Утверждены Госстроем СССР 31 января 1967 г. Введены в действие с 1 июля 1967 г. Действовали до 1 января 1986 г. Нормы введены в развитие главы СНиП II -Д.7-62* «Мосты и трубы. Нормы проектирования».

До 1986 г. в качестве расчетных нагрузок применялись автомобильные нагрузки Н-13, Н-18, Н-30, НГ-60, НК-80, с января 1986 г. начали применяться нагрузки АК в соответствии с действующим СНиП 2.05.03-84*[2].

Новые нагрузки от автотранспорта приведены в проекте российского СНиП на мосты редакции 2001 г. [3]. Значения нагрузок и воздействий для расчета конструкций по всем группам предельных состояний принимают с коэффициентами надежности по нагрузке для соответствующих нормативных нагрузок и воздействий и динамическими коэффициентами $1+\mu$ или $1+0.7\mu$ для временных вертикальных нагрузок.

Нормативную временную вертикальную нагрузку от автотранспортных средств на автомобильных дорогах общего пользования, на улицах и дорогах городов следует принимать с учетом перспективы в виде схем АК и НК (К-класс нагрузки), исходя из следующих возможных эксплуатаци-

Случай 1 – нормальное движение по мосту автотранспорта общего пользования и пешеходов без ограничений;

Случай 2 – временное стеснение габарита автопроезда (вследсткие ремонта или расчистки покрытия, дорожно -транспортного происшедствия и т. п.);

Случай 3 - пропуск по мосту специальных автотранспортных средств, весовые размеры которых выходят за границы, определённые для весовых параметров автотранспорта общего пользования.

Применительно к случаям 1-2 нормативная нагрузка принимается в виде полос автомобильной нагрузки АК, каждая из которых содержит одну двухколесную тележку с давлением на ось, равным 10К (кН) (кроме случая определения опорного момента в неразрезной балке, где должны быть установлены на каждую полосу 2 тележки, создающие наибольший опорный момент) и равномерно распределенную нагрузку интенсивностью - К (кН/м) (на обе колеи), где К – класс нагрузки.

Класс нагрузки К следует принимать равным 14 для всех мостовых железобетонных конструкций, расположенных на дорогах I – II категорий.

При загружении полосами нагрузки АК в случае 1 должны быть выполнены следующие условия:

- число полос нагрузки, размещаемой на мосту, не должно превышать установленного числа полос движения;
- полосы нагрузки АК размещаются в пределах проезжей части (не включающей полосы безопасности) вдоль направления движения на расстоянии не менее 1,5 м от оси полосы нагрузки до края проезжей части;
 - расстояния между осями смежных полос нагрузки должны быть не менее 3 м;
- если на мосту предусмотрена разделительная полоса шириной 3 м и более без ограждений, то при нагружении моста временными вертикальными нагрузками следует учитывать возможность использования в перспективе разделительной полосы для движения.

Применительно к случаю 2 нормативная нагрузка представляется в виде двух полос нагрузки АК, размещенных в невыгодном положении по всей ширине ездового полотна (включая полосы безопасности).

При этом оси крайних полос нагрузки АК должны быть расположены не ближе 1,5 м от ограждения.

При расчетах конструкций на выносливость и по предельным состояниям второй группы следует рассматривать только случай 1.

Применительно к случаю 3 нормативная нагрузка НК-80 представляется в виде одиночной (при отсутствии на мосту других подвижных нагрузок) четырехколесной нагрузки НК с массой 80 т и с давлением на ось- 20 К (кН), где К – класс нагрузки.

Кроме того, производится расчет конструкций на воздействие сдвоенных нагрузок НК, установленных на расстоянии 12 м между последней осью передней и первой осью задней нагрузок, с введением к ним общего понижающего коэффициента -0,75.

Нагрузку НК следует располагать вдоль направления движения в пределах проезжей части (вне полос безопасности) в наиболее невыгодном положении.

Сдвоенные нагрузки НК не учитывают при расчетах по предельным состояниям второй группы.

Во всех расчетах для элементов или отдельных конструкций мостов, воспринимающих временную нагрузку с полос движения, нагрузку с одной полосы движения следует принимать с коэффициентом $s_1 = 1,0$. С остальных полос нагрузки АК принимают с коэффициентом s_1 , равными: 1,0 для тележек и 0,6 для равномерно-распределенной нагрузки.

Нормативную горизонтальную поперечную нагрузку от ударов транспорта, независимо от числа путей или полос движения на мосту, следует принимать от автомобильной нагрузки АК – в виде равномерно распределенной нагрузки, равной 0,4 кН/м или сосредоточенной силы равной 6К (кН), приложенных в уровне верха покрытия проезжей части, где К – класс нагрузки.

Нормативную горизонтальную продольную нагрузку от торможения или сил тяги подвижного состава следует принимать с каждого пути или полосы, равной 50 % от равномерно распределенной части нагрузки АК, но не менее 8К (кН) и не более 25 К (кН).

Основным изменением по сравнению с действующим СНиП 2.05.03-84*, является увеличение подвижной вертикальной нагрузки для автодорожных мостов, примерно на 30 %.

Таким образом, как видно из приведенного анализа, нормативные вертикальные временные нагрузки за последние 50 лет выросли почти в 3 раза.

Рост подвижных нагрузок естественно вызывает повышение напряжений в сечениях и часто старые конструкции перестают удовлетворять возросшим требованиям по грузоподъемности.

Для пропуска сверхтяжелых транзитных автомобилей или проезда их в определенный пункт республики необходимо выбирать маршруты, на которых мосты имеют достаточную грузоподъемность.

Введение в белорусские нормы автомобильной нагрузки класса А14 позволит сблизить требования по нагрузкам, принятыми в РФ и РБ.

Однако настораживает тот факт, что нагрузки в проекте Eurocode [4] превышают по своей величине нагрузки, которые предусмотрены проектом российского СНиП.

Принцип нагружения мостов связан с делением на полосы проезжей части. Для расчета прочности и устойчивости элементов моста применяется основная грузовая модель 1 (LM1), при которой сосредоточенные и равномерно распределенные по площади нагрузки имитируют воздействия на сооружение грузовых и легковых автомашин. Эта модель предназначена для общих и местных проверок.

Главная система нагрузок состоит из двух независимых нагрузок, тележки (тандема) и равномерно-распределенной по площади.

Двухосная тележка (тандем TS-CT) с давлением на обе оси $\alpha_0 Q_\kappa$ где Q_κ нагрузка на ось тандема, кH; α_0 – поправочный коэффициент (при отсутствии каких-либо ограничений принимается равным 1,0). Только один тандем может быть установлен на полосе. Контактные отпечатки колес 0,4х0,4 м. Расстояние между осями вдоль моста 1,2 м.

Равномерно-распределенная нагрузка (UPL-PPH) с давлением $\alpha_q q_\kappa$ на м².

Значения $\alpha_0 Q_\kappa$ и $\alpha_q q_\kappa$ принимаются: для полосы 1 — соответственно 300 кН и 9 кН/м²; для полосы 2 — 200 кН и 2,5кН/м²; для полосы 3 -100 кН и 2,5 кН/м², прочие полосы - 0 и 2,5 кН/м²; оставшиеся площади -0 и 2,5 кН/м².

Международная экономическая интеграция выдвигает в число важнейших проблему межгосударственной унификации нормативных требований к автомобильным нагрузкам на мосты и трубы.

ГПП «Белгипродор» и РГПП «Белавтострада» столкнулись с проблемой проектирования сталежелезобетонного балочного моста через р. Западный Буг, когда возникла необходимость удовлетворения требованиям по нагрузкам, по СНиП 2.05.03-84* (Республика Беларусь) и по PN-85/S-10030 и PN-91/S-10042 (Польша).

Было принято решение о проектировании данного моста по нормам с более жесткими требованиями.

Несомненно, что при проектировании новых мостов в Республике Беларусь на дорогах I и II категорий следует ориентироваться на перспективные нагрузки более высокого значения, приведенные в проекте Eurocode, а не на российские нормы.

Для оценки изменения напряженно-деформированного состояния плитно-балочного бездиафрагменного пролетного строения старой постройки при возрастании нагрузки до значения, при котором происходит разрушение, сделан анализ работы крупномасштабной железобетонной модели пятибалочного пролетного строения (рис.1).

На основании проведенных испытаний в работе пролетного строения можно выделить три стадии: первая стадия — до появления нормальных трещин в балочных элементах:

вторая - от появления первых трещин до появления критической продольной трещины, разделяющей пролетное строение на две части;

третья — от появления критической продольной трещины до разрушения пролетного строения по пространственному сечению.

Проведенные экспериментальные исследования позволили выявить условия работы конструкции на всех стадиях загружения вплоть до разрушения, а также момент образования и характер развития трещин при различных загружениях, оценить жесткость пролетного строения и расчетную модель работы сечений с учетом реальных диаграмм работы материалов, выявить наиболее важные модели разрушения.

Конструктивными решениями типовых проектов прошлого столетия железобетонные мосты, и особенно плиты проезжей части, были поставлены в сложные эксплуатационные условия. Особенно следует отметить, что действующими в то время нормативными документами для железобетонных пролетных строений автодорожных мостов не требовался расчет на выносливость. Однако плиты проезжей части подвержены непосредственному воздействию многократно повторных нагрузок с динамическим эффектом, а так как плиты не имеют, как правило, предварительного напряжения арматуры, то были допущены расчетом чрезвычайно жесткие режимные нагружения на выносливость арматуры и бетона с многократным раскрытием трещин в сечениях плиты.

Значительные повреждения плиты проезжей части, наблюдаемые всеми мостоиспытательными станциями при обследовании автодорожных мостовых сооружений, заставили ввести в действующие нормы поправку о необходимости расчета плит проезжей части автодорожных мостов на выносливость.

В последние годы возросли требования СНиП 2.05.03-84* к величине защитного слоя бетона в плитах проезжей части, что привело к необходимости при новом проектировании увеличения их толщины на 20...30 мм.

Таким образом, толщина плиты по прежним проектам оказывается недостаточной по формальным признакам и не удовлетворяющей современным требованиям обеспечения долговечности конструкции, что предопределяет более скорый срок достижения фронтом коррозионных процессов рабочей арматуры плиты.

С целью повышения надежности и долговечности балочных пролетных строений представля-และอยใจสา อะ น้อยชิงเราว ется необходимым:

- 1. Возродить сборно-монолитную конструкцию балочных пролетных строений и предпочитать устройство монолитных предварительно напряженных железобетонных плит по сборным балкам. Следует отказаться от типовых сборных двутавровых балок с широкой верхней полкой и перейти на новые более эффективные сечения
- 2. Рекомендовать для монолитных плит применять модифицированные бетоны нового поколения с повышенными важнейшими показателями долговечности: марка по водонепроницаемости не ниже W8, водопоглощение не больше 4,2% по массе, малая усадка, морозостойкость с маркой не ниже F400, обеспечение требуемой трещиностойкости.
- 3. Требуется разработка методов расчета конструкций с использованием расчетных схем, учитывающих появление и развитие в процессе эксплуатации дефектов и повреждений различного вида, изменение механических характеристик материалов, воздействий агрессивных эксплуатационных сред ил.перенции водительнико муста в берей и станер. Учене в очене общество в развительной в станерования в общество в
- 4. Для повышения долговечности мостов требуется проведение анализа деформированного состояния с учетом стадийности работы конструктивных элементов в составе пространственных систем с учетом характерных особенностей конструктивных решений пролетных строений и дорожной одежды и эксплуатационных факторов. ปีการที่ เพลงลูกต่างเพิ่ง และจุดต่างที่เพลงสะตัวสูติวัตที่ ๒ สดาเอยธ มีเยอกส มายตลากสุดาวส คนุ้น และได้เกิดก็ก

доправо до лине допом при стисок использованной литературы до допом до допом до допом до допом до допом до допом

- 1. G.Pastushkov, V.Pastushkov. Durability of reinforced concrete bridges the major problem of road branch: Proceedings of the International Conference "Construction and Architecture"/ Edited by Khroustaliev B.M. and Leonovich S.N.- Minsk, 2003, pp.322-332. 2. СНиП 2.05.03-84* Мосты и трубы. – М.:Госстрой России,1998.
- 3. Мосты и трубы. Проектирование, строительство и приемка в эксплуатацию, 2-я ред. М.: Госстрой России.
- 4. ENV 1991-3 EUROCODE 1 Basis of design and action on structures. Part 3: Traffic loads on dridges. Annex C. Basis of design – supplementary clauses to ENV 1991-1 for road bridges. องหญากระดามระบุจากให้เล่าเกตส์เกล้ากระดามรถการและเกล้าและเกล้าย การ เกล้าเกล้า และ พลาย และเกล้าเล่าเล่า และก

УДК 556.332.042 в риготивнический од голима у без темент боле истори в голима на соли в соли Махато Упендра -กระบัง (เราะการที่ ให้เล่นคระบาก โดยต่อง ตารเกาะการกราช เมษาต่องมหาร () และ โดยต่อง เกาะนั้นผู้เมื่อการ (กระการ กระการ

marana anastropang binaka tuang dar

инженерная защита оползневой территории санатория "Белоруссия"

न्त्रका है कि है कार्यों के अपने कार्य कार्य कार्य कार्य कार्य कार्य के कार्य के कार्य कार्य कार्य कार्य कार्य

Территория санатория "Белоруссия" в Мисхоре с тридцатых годов состоит в ведении Белорусской ССР (ныне Республики Беларусь). В связи с этим понятна забота республики об экологической сохранности этого благодатного уголка Южного Берега Крыма.

Площадка санатория расположена на древнем оползне "Горное солнце", исполосованном тремя глетчеровидными современными оползнями покровных отложений и рядом других мелких оползневых очагов, и постоянно нуждается в инженерной защите. Каждый этап ее освоения требовал проведения определенных мероприятий по снижению оползневой опасности. Первоначально, в начале минувшего столетия, при возведении на данной территории зданий эти мероприятия сводились к выбору более или менее устойчивых площадок, устройству подпорных стен на подрезанных склонах и водоотводящих лотков. Примером может служить корпус № 1, построенный в 1915 году.

При воздействии в тридцатые годы корпуса № 4, кроме подпорной стены со стороны склона, в его основании был выполнена горным способом дренажная штольня для перехвата струйного потока оползня № 42. В последующем строительство корпусов и сооружений на территории санатория сопровождалось устройством систем подпорных стен и открытых водоотводящих лотков. Увеличение плотности застройки сопровождалось возрастанием оползневой опасности в силу подрезки склонов и возникновения новых источников увлажнения покровного делювия на самой территории и на более высоких отметках за ее пределами, в частности, за дорогой Ялта — Семеиз. Определенную роль в возрастании оползневой опасности сыграла засыпка оврагов и озерца выше корпуса № 2. Проблематичным остается вопрос о влиянии тектонических трещин и медленных (по разные стороны от них)