следующими свойствами: произвычуженавиченые принагаро и жиротора

- 1) в каждой точке $x \in B$ форма θ^k эквивариантна относительно правого действия группы G_x^k ;
 - 2) форма θ^k левоинвариантна;
- 3) ограничение формы θ^k на алгеброиде Ли $A(\Pi^k(B))$ совпадает с усечением π^k_{k-1} ;
- ...4) k-струйное продолжение диффеоморфизма базы оставляет инвариантной фундаментальную форму θ^k .

Классическая форма Картана на главном расслоении реперов позволяет характеризовать продолжения многообразия. Аналогичным свойством обладает и построенная нами фундаментальной форма θ^k на группоиде Ли $\Pi^k(B)$. Т.е. справедлива следующая

Теорема 2. Автоморфизм $(\Psi, \psi)_k$ группоида Ли $\Pi^k(B)$ с усечением является k-струйным продолжением диффеоморфизма многообразия B тогда и только тогда, когда $(\Psi, \psi)_k$ оставляет инвариантной фундаментальную форму θ^k , т.е.

 $_{k}$ If $\dot{\Psi}^{ullet}oldsymbol{ heta}^{ullet}=\hat{ heta}^{ullet}$ $\hat{\Psi}^{ullet}$ is an interpretable of the product and $\hat{\Psi}^{ullet}$

G-структура порядка k на многообразии B определяется подгруппоидом монители из спата A на многообразии B определяется подгруппоидом B и B группоида B B B сужение формы B является фундаментальной населе B определяется фундаментальной формой B структуры B.

ПРИМЕНЕНИЕ ПАКЕТА MAPLE ДЛЯ ВЫЧИСЛЕНИЯ ОБРАТНОЙ МАТРИЦЫ ДРАЙЗИНА

А приводен же принципритель Асмыкович О.И., БГУ, Минскинов об деть в 13 1 1 1 2

Рассмотрим стационарную линейную неоднородную дескрипторную [1] систему с запаздыванием:

$$A_0 \dot{x}(t) + A \dot{x}(t) + A_1 \dot{x}(t-1) = f(t), \qquad (3)$$

$$x_0(\cdot) = \{x(t) = \varphi(t), -1 \le t < 0, x(0) = x_0^*\}$$
 (3)

где $x \in R^n$, $A_0, A, A_1 \in C_{n,n}$, $\det A_0 = 0$, $f(t), \varphi(t)$ - кусочно-непрерывные n-вектор

функции, $x_0 \in R^n$. При исследовании её качественных свойств в теории управления необходимо иметь аналитическую запись решения [3].

Система (1) совместна тогда и только тогда, когда совместна соответствующая ей однородная система

$$A_0 \dot{x}(t) + Ax(t) + A_1 x(t-1) = 0.$$
(3)

Доказана теорема [4].

Всли для параметров системы (3) выполняется равенство

$$A_0(A + mA_1) = (A + mA_1)A_0,$$
 (4)

для всех $m, m \in C$, то для любых n-вектора q и кусочно-непрерывной n-векторфункции $\psi(\tau)$, $-1 \le \tau < 0$, вектор-функция

$$x(t) = F(t)A_0^D A_0 q + \int_{-1}^{0} F(t - \tau - 1)A_0^D A_1 A_0^D A_0 \psi(\tau) d\tau, \quad t \ge 0,$$
 (5)

где F(t) есть решение уравнения

$$\dot{F}(t) + A_0^D A F(t) + A_0^D A_1 F(t-1) = 0,$$

$$F(0) = E_n, F(t) = 0, t < 0,$$
(6)

является решением системы (3). Здесь A_0^D - обратная матрица Драйзина [2].

Матрица $A^D \in C_{n,n}$, являющаяся решением матричных уравнений

$$AA^{D} = A^{D}A, \quad A^{D}AA^{D} = A^{D}, \quad A^{D}A^{l_0+1} = A^{k_0}$$
 (7)

Commission of the second of the control of the cont

Salte 19 les es santantes de la come

где $k_0 = ind(A)$, называется обратной Драйзина [2] матрицы $A \in C_{n,n}$.

Она обладает следующими свойствами:

$$1.R(A^D)=R(A^{k_0}),$$

2.
$$N(A^D) = R(A^{k_0}),$$

3.
$$AA^{D} = A^{D}A = P_{N(A^{k_0}),R(A^{k_0})}$$

$$(4, (I-AA^p)=(I-A^pA), \quad \text{we are a rith an attribute that }$$

5.
$$A^{p+1}A^{D} = A^{p}$$
 если $p \ge k_0$ и $p \in N$

6. если
$$A$$
 невырождена то $A^{D} = A^{-1}$:

Пусть
$$A_0$$
, $B \in C_{n,n}$ и $A_0B = BA_0$. Тогда $A_0B^D = B^DA_0$, $A_0^DB = BA_0^D$, $A_0^DB^D = B^DA_0^D$.

Для нахождения обратной матрицы Драйзина в докладе использованы [2] и запрограммированы в Maple несколько различных методов.

- I. Подсчёт с использованием жордановой формы, (1994) (1)
 - 1. Находим жорданову форму матрицы $A J(A) = \begin{bmatrix} C & 0 \\ 0 & N \end{bmatrix}$.
 - 2. Вычисляем переходную матрицу P, и обратную к ней P^{-1} .
 - 3. Выделяем из матрицы J(A) матрицу C и вычисляем C^{-1} .
 - 4. Подсчитываем $A^{D} = P\begin{bmatrix} C^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1}$.
 - II. С помощью эшелонной формы Эрмита.
- 1. Берём $p \ge k_0$ $p \in N$, так чтобы $A^p \ne 0$.
- 2. Находим эшелонную форму Эрмита [2] к $A' H_A$, .
 - 3. Выбираем из $H_{A'}$ линейно независимые вектор-строки $v_1, v_2, ... v'$ (базис для $R(A^k)$.)
 - 4. Формируем матрицу $I-H_A$, и сохраняем ненулевые строки, которые назовём $v_{r+1}, v_{r+2}, ..., v_n$ (базис для $\mathcal{N}(A^k)$)
 - 5. Составим невырожденную матрицу $P = [v_1 | v_2 | ... | v_n]$.
 - 6. Вычисляем P-1
- 7. Формируем матрицу $P^{-1}AP = \begin{bmatrix} C & 0 \\ 0 & N \end{bmatrix}$, где C невырожденная матри-
 - 8. Подсчитываем *С*⁻¹
 - 9. Записываем $A^{D} = P\begin{bmatrix} C^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1}$.
- III. Нахождение обратной матрицы Драйзина A^{o} в виде полинома от матрицы A.
 - 1. Находим собственные числа для А., от стато в дажно в применения в п
 - 2. m_0 количество нулевых собственных чисел $m = n m_0$ количество

всех остальных собственных чисел.

3. Находим коэффициенты полинома
$$p(x) = x^{m_0} (\alpha_0 + \alpha_1 x + ... + \alpha_{m-1} x^{m-1})$$
,

. The second contains
$$\frac{1}{\lambda_i} = p(\lambda_i),$$
 where $\frac{1}{\lambda_i} = p(\lambda_i)$ is the second contains the second contains $\lambda_i = \frac{1}{\lambda_i} + \frac{1}$

The content of the content of the
$$\frac{1}{2} = p(\lambda_i)$$
, where it is the content of the content of

$$\frac{(-1)^{m_i-1}(m_i-1)!}{\lambda_i^{m_i}} = p^{(m_i-1)}(\lambda_i)$$

4. Находим $A^{D} = p(A)$. (f) $\frac{1}{1+1}$ (No. 2)

Приведены оценки быстродействия и точности предложенных методов.

Литература. 1. Dai L. Singular Control Systems. Lecture Notes in Control and information Sciences, Vol.118.- Berlin, Springer-Verlag, 1989. 2. Campbell S.L. Generalized inverses of linear transformations. Belmont. California 1979. 3. Асмыкович О.И., Крахотко В.В. О стабилизации линейных регулярных дескрипторных систем с запаздыванием // Мат. V Респ. науч. конф. студ. и асп. 18-20 марта 2002 г. Гомель, 2002, с. 153-154. 4. Крахотко В.В., Размыслович Г.М. Линейные системы с запаздыванием, неразрешенные относительно старшей производной // Актуальные задачи теории динамических систем управления. -Мн.1989, с.51-59.

МОДЕЛИРОВАНИЕ РОСТА КЛАСТЕРОВ МЕТОДАМИ молекулярной динамики не воделжение в настания в не воделжение в не воделжение в не воделжение в не воделжение

Белко А.В., ГрГУ, г.Гродно

Фрактальные кластеры являются основным структурообразующим элементом целого ряда макроскопических систем, возникающих в результате протекания физико-химических процессов и явлений. Моделирование фрактальных кластеров является одним из способов изучения таких макроскопических систем [1-3]. Выбрав потенциал межатомного взаимодействия, можно, казалось бы, приступить к моделированию образования кластеров. Однако сразу же возникает проблема: каким численным методом решать уравнения движения? В традиционной молекулярной динамике движение системы из N частиц описывают уравнениями Ньютона: при видента вы при ставительной видента выправлениями ньютона: