УДК 621.793

ИССЛЕДОВАНИЕ ВЛИЯНИЯ НАНОУГЛЕРОДНЫХ МОДИФИКАТОРОВ НА МИКРОТВЕРДОСТЬ САМОФЛЮСУЮЩЕГОСЯ ПОКРЫТИЯ ИЗ ПОРОШКОВОГО МАТЕРИАЛАПГ-СР4, ОПЛАВЛЕННОГО ЛАЗЕРНЫМ ЛУЧОМ

Ванюк Э.А. ¹, **Сокоров И.О.** ², **Куис Д.В.** ³, **Раковец А.С.** ³, **Кришталь С.А.** ¹ Белорусский национальный технический университет, Минск, Республика Беларусь ² УО «Республиканский институт профессионального образования» ³ УО «Белорусский государственный технологический университет»

Введение. Постоянное повышение скоростей и нагрузок различного оборудования серьезно ужесточает требования к качеству узлов и механизмов машин, работающих в тяжелых эксплуатационных условиях, в том числе к свойствам рабочих поверхностей деталей. Использование легированных сталей, обеспечивающих высокие физико-механические свойства деталей? весомо отражается на расходах предприятий из-за их высокой стоимости, кроме того являющихся статьей импорта для предприятий республики.

Значительно сократить расходы таких материалов позволяют технологии газотермического нанесения покрытий на рабочие поверхности деталей, обеспечивающие физико-механические свойства и эксплуатационные показатели поверхностей деталей из конструкционных сталей на уровень специальных сталей и сплавов.

Технология газотермического напыления позволяет получать функциональные защитные, в том числе композиционные покрытия за счет усовершенствованного технологического оборудования с программным обеспечением. Вместе с развитием оборудования непрерывно развиваются и материалы для газотермического напыления.

Для создания конкуренции на рынке необходимо постоянно совершенствовать как оборудование для газотермического напыления, так и материалы, используемые для нанесения покрытий. В связи с этим экономически и технически целесообразно развивать принципиально новый подход к выбору материалов уже на стадии проектирования. Одно из таких направлений — это модифицирование порошковых материалов различными наноуглеродными добавками. В качестве таких добавок целесообразно использовать фуллерены (фуллерен — молекулярное соединение, представляющее собой выпуклые замкнутые многогранники, составленные из трёхкоординированных атомов углерода).

Фуллерены были открыты в 1985 году и вызвали большой интерес в научном сообществе по всему миру [1]. После получения в 1996 году Нобелевской премии за эту разработку, научный интерес к фуллеренам стал ослабевать за счет их высокой стоимости (от 15 у. е. до 300 у. е. в зависимости от степени очистки). Получают фуллерены из фуллереносодержащей сажи, которая образуется на стенках камеры при сгорании графитовых электродов под низким давлением в среде гелия [2]. В такой саже содержание фуллеренов в пределах 10–12 % от

общего объема [2], а стоимость ее на порядок ниже стоимости чистых фуллеренов. Однако сегодня недостаточно исследовано влияния фуллереновой сажи на физико-механические свойства газотермических покрытий.

Анализ работ [3, 4] показал, что введение наноуглреродных компонентов в виде ультрадисперсных алмазов детонационного синтеза (УДА) в электрохимические покрытия насыщает покрытия сверхтвердыми частицами, а также способствует диспергированию кристаллов осаждаемого металла. В результате повышаются такие показатели покрытий, как износостойкость, микротвердость, адгезия покрытий и их коррозионная стойкость существенно повышаются.

В связи с этим было выдвинуто предположение, что при модифицировании самофлюсующихся порошковых материалов для газотермического напыления наноуглеродными компонентами фуллереновой сажи, микротвердость покрытий увеличится.

Цель. Исследование влияния наноуглеродных модификаторов на микротвердость самофлюсующегося покрытия ПГ-СР4, оплавленного лазерным лучом.

Материалы. Для проведения исследований была выбрана порошковая композиция ПГ-СР4 (хим. состав основа Ni; 13–17 %Cr; 0,6–1 % C; 3–5 % Si; 2,5–4 % B; 4 %Fe), которую перед нанесением покрытия модифицировали 1% ед.масс. компонентами фуллереновой сажи. Для сравнения результатов также производилась модификация ПГ-СР4 1 % ед.масс. обычным графитом и использовалось покрытие без наноуглеродных модификаторов. Смешивание порошковых композиций осуществлялось в лопастной механической мельнице.

Нанесение покрытий. Покрытия наносились газопламенным напылением с использованием газотермической установки мод. ТРУ-2.1.Р, разработанной на базе отраслевой научно-исследовательской лаборатории плазменных и лазерных технологий БНТУ (давление воздуха 0,2 МПа, давление воздуха кислорода 0,3 МПа, давление МАФ 0,18 МПа, толщина покрытия при газопламенном напылении $h\approx0,4$ мм). Оплавление сформированного слоя покрытия осуществлялось на лазерной установке (плотность лазерного пучка P=1 кВт; развертка 400×050 ; расстояние от сопла до поверхности образца l=350 мм; ширина пятна лазерного луча b=5 мм; скорость перемещения лазерного луча v=300 мм/мин).

На рисунке 1 представлено фото экспериментальных образцов ПГ-СР4 (без наноуглеродных компонентов) после лазерного оплавления.

Рисунок 1 — фото экспериментальных образцов ПГ-CP4 (без наноуглеродных компонентов) после лазерного оплавления

Методика исследований. Подготовка микрошлифов осуществлялась по стандартной методике на специализированном оборудовании для материалографической пробоподготовки твердых материалов датской фирмы Duramin Struers.

Микротвердость определялась по методу Виккерса на микротвердомере Duramin Struers с нагрузками 10–2000 г. Измерение микротвердости производилось по 25 точкам.

Результаты исследований. Для определения влияния наноуглеродных модификаторов на микротвердость исследования производились у покрытий из ПГ-СР4 модифицированного 1 масс.% компонентами фуллереновой сажи, ПГ-СР4 модифицированного 1 масс.%. обычным графитом, а также ПГ-СР4 без модифицирующих компонентов.

Результаты определения микротвердости приведены на рисунках 2–4.

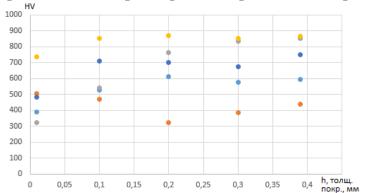


Рисунок 2 — Результаты определения микротвердости покрытия ПГ-СР4 без наноуглеродных модификаторов

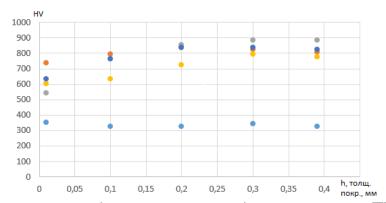


Рисунок 3 — Результаты определения микротвердости покрытия ПГ-CP4 модифицированного 1 масс. % графита

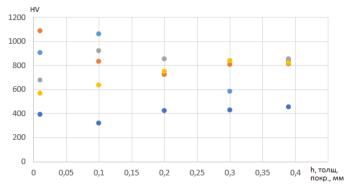


Рисунок 4 — Результаты определения микротвердости покрытия ПГ-СР4, модифицированного 1 масс.% компонентами фуллереновой сажи

На рисунке 5 представлена гистограмма средних значений микротвердости самофлюсующихся покрытий ПГ-СР4, оплавленных лазерным лучом.

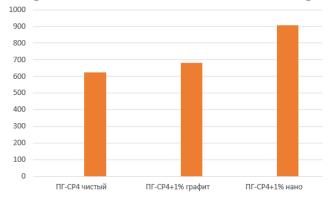


Рисунок 5 — гистограмма средних значений микротвердости самофлюсующихся покрытий ПГ-СР4, оплавленных лазерным лучом (ПГ-СР4 чистый 626 HV, ПГ-СР4 +1% графит 681 HV и ПГ-СР4 +1% нано 907 HV)

Заключение. Анализ результатов выполненных исследований позволил установить, что модификация наноуглеродными компонентами фуллереновой сажи порошковых композиций самофлюсующихся покрытий ПГ-СР4 обеспечивает повышение микротвердости покрытий в 1,4 раза по сравнению с аналогичными без наноуглеродных модификаторов, а также в 1,3 раза по сравнению с покрытиями из ПГ-СР4 модифицированных 1 масс.% графитом. Кроме того, подобная модификация может способствовать не только повышению износостойкости покрытий, но и снижению коэффициента трения [5].

Таким образом модификация самофлюсующихся порошковых смесей наноуглеродными компонентами при формировании газотермических покрытий газопламенным напылением с последующим лазерным оплавлением способствует повышению эксплуатационных характеристик, обеспечивающих увеличение ресурса быстроизнашивающихся деталей, а следовательно, уменьшает затраты на изготовление запасных частей и ремонтно-восстановительные работы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Грузинская, Е. А. Фуллереновая сажа электродугового синтеза / Е. А. Гризинская [и др.] // Наносистемы: физика, химия, математика, 2012. 3 (6). С. 83–90.
- 2. Горелик, О.П. Кластерная структура частиц фуллереносодержащей сажи и порошка фуллеренов C_{60} / О.П. Горелик [и др.] // Журнал технической физики. 2000. Т. 70, вып. 11, С. 118—125.
- 3. Тимошков, Ю. В. Свойства композиционных никелевых покрытий с различными типами ультрадисперсных алмазных частиц / Ю. В. Тимошков [и др.] // Гальванотехника и обработка поверхности, 1999, т.7, № 2, с. 20-25.
- 4. Ващенко, С.В. Электроосаждение износостойких хромовых покрытий из электролитов с ультрадисперсными алмазными порошками / С. В. Ващенко, З. А. Соловьева // Гальванотехника и обработка поверхности. − 1992. − № 5–6. − С. 45 48.
- 5. Леванцевич, М. А. / Исследование коэффициента трения газотермических покрытий, модифицированных наноуглеродами на основе фуллереновой черни / М. А. Леванцевич, И.О. Сокоров, Э.А. Ванюк // Машиностроение: республиканский межведомственный сборник научных трудов / Белорусский национальный технический университет; редкол.: В. К. Шелег (гл. ред.). Минск: БНТУ, 2021. Вып. 33. С. 50–55.