- Логинов, В.Ф. Сезонные особенности изменения климата Беларуси / В.Ф. Логинов, Ю.А. Бровка // Природопользование: сб. научн. тр. / Ин-тут природопользования НАН Беларуси; под ред. А.К. Карабанова. – Минск, 2014. – С. 16–22.
- ТКП EN 1991-1-5-2009 Еврокод 1: Воздействия на конструкции. Часть1-5: Общие воздействия. Температурные воздействия. – Минск: Минстройархитектуры Республики Беларусь, 2009.
- Логинов, В.Ф. Опасные метеорологические явления на территории Беларуси / В.Ф. Логинов, А.А. Волчек, И.Н. Шпока. – Минск: Беларус. навука, 2010. – 129 с.
- Логинов, В. Ф. Влияние Атлантического океана на величину трендов температуры воздуха в период современного потепления / В. Ф. Логинов // География и природные ресурсы. – 2010. – № 3.

Материал поступил в редакцию 27.05.15

MESHIK O.P., RYZHKOVSKAYA I.A. Extremal temperatures of air on the territory of Belarus

The article presents the results of a researching of maximal and minimal air temperatures on the territory of the Republic of Belarus. Set the transformation of air temperatures that have statistical significance.

УДК 628.162.1

Житенёв Б.Н., Рыбак Е.С., Житенева Н.С., Король К.А.

ИССЛЕДОВАНИЯ ПО СОДЕРЖАНИЮ СВИНЦА В ОТРАБОТАННЫХ ЭЛЕКТРОЛИТАХ СВИНЦОВЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ

Введение. Республика Беларусь по объемам перевозок выходит на одно из ведущих мест в Европе, опережая ряд развитых стран. Большая часть грузов и значительная часть пассажиров перевозится с помощью автотранспорта. На территории Бреста и Брестской области сосредоточена значительная часть автомобильного парка республики, который принадлежит крупнейшим международным перевозчикам, ведомственным автобазам, а также предприятиям различных форм собственности. В последние годы резко возросло количество автомобилей, принадлежащим гражданам на правах собственности.

На каждом автомобиле установлена аккумуляторная батарея, в подавляющем числе случаев свинцовые аккумуляторные батареи (АКБ), срок службы которых в основном колеблется от 3 до 5 лет. Затем необходима замена её или реставрация. В основном батареи заменяются на новые. Отработанные свинцовые АКБ экологически опасны. Причина этого заключается в токсичности содержащегося в АКБ свинца (до 60 % от массы АКБ) и химической агрессивности кислотного электролита — раствора серной кислоты. Также присутствуют сурьма (около 2 %), различные пластмассы в количестве 12—18 % и раствор серной кислоты, составляющий от общего веса автомобильного аккумулятора приблизительно 10–15 %[1].

Обращение с АКБ регулируется Указом Президента Республики Беларусь № 179 от 5 мая 1995 г. «О мерах по усилению борьбы с хищением драгоценных, черных и цветных металлов, их лома и отходов, драгоценных камней», а также постановлением Совета Министров Республики Беларусь от 10 октября 2006 г. № 1331 «О закупке лома и отходов черных и цветных металлов у населения (граждан)», в соответствии с которыми лом и отходы черных и цветных металлов, образующиеся в процессе хозяйственной деятельности у юридических лиц, индивидуальных предпринимателей и населения, подлежат обязательной сдаче заготовительным организациям или отгрузке по их нарядам.

Переработка аккумуляторов включает в себя следующие элементы:

- разделение на составляющие (пластик, свинец, электролит);
- переработка свинца;
- переработка пластика;
- переработка электролита.

Если переработка свинца и пластика являются отработанными процессами и позволяют получать вторичное сырье: свинец и пластик, то переработка электролита требует дальнейшего исследования.

До 80-х годов в Европе и Соединенных Штатах Америки при утилизации аккумуляторных батарей использовался процесс нейтрализации отработанного электролита гашеной и негашеной известью, при этом происходили реакции:

 $H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2 H_2O$ (гашеная известь); $H_2SO_4 + CaO + H_2O \rightarrow CaSO_4 + 2 H_2O$ (негашеная известь).

После нейтрализации до pH= 7, растворы сбрасывались в канализацию. Недостатками такой технологии являются безвозвратные затраты, связанные с приобретением нейтрализующих реагентов (гашеная или негашеная известь, кальцинированная или каустическая сода), а также затраты на сооружение и обслуживание установки по нейтрализации электролитов.

В 80-е годы в Европе, в 90-е в США внедрена в производство разработанная итальянской фирмой EngitecImplanto технология утилизации промышленных и автомобильных отработанных аккумуляторных батарей, согласно которой аккумуляторы разбирают на детали. Процесс нейтрализации электролита известью заменен на процесс получения сульфатов металлов, которые направляются на получение моющих средств, стекла или бумаги [2].

В работе [3] для разработки технологии утилизации отработанных электролитов проводились отборы проб и анализы электролита, которые выполнялись по методикам, приведенным в стандартах: ГОСТ 667- 73 «Кислота аккумуляторная», ГОСТ 6709-72 "Вода дистиллированная", ГОСТ 2184-77 "Кислота серная техническая" [4, 5, 6]. Отработанный электролит исследовался на содержание основных примесей, регламентируемых стандартами: ГОСТ 667-73 "Кислота аккумуляторная" и ГОСТ 6709-72 "Вода дистиллированная". Отработанный электролит сливался непосредственно из аккумулятора, пришедшего в негодность, и анализировался на содержание массовой доли моногидрата (H₂SO₄), массовой доли железа (Fe), массовой доли остатка после прокаливания, массовой доли хлоридов, массовой доли марганца (Мп), массовой доли веществ, восстанавливающих KMnO₄. Кроме того, измерялась относительная плотность электролита. Авторы [3] отмечают, что при сопоставлении требований ГОСТ 2184-77 "Кислота серная техническая" с результатами анализов отработанных электролитов установлено, что по составу примесей они удовлетворяют всем требованиям, предъявляемым указанным стандартом к кислоте серной, технической, контактной 2-го сорта. По сравнению с 1-м сортом отработанный электролит имеет незначительно увеличенное содержание железа и массовой доли осадка после прокаливания.

Рыбак Е.С., ассистент кафедры водоснабжения, водоотведения и охраны водных ресурсов Брестского государственного технического университета.

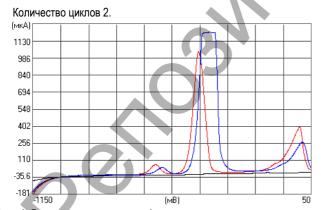
Житенева Н.С., доцент кафедры Начертательной геометрии и инженерной графики Брестского государственного технического

Король К.А., студентка г. В-95 Брестского государственного технического университета. Беларусь, БрГТУ, 224017, г. Брест, ул. Московская, 267.

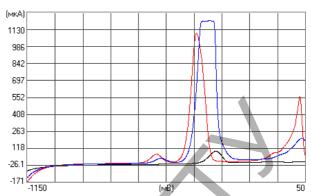
Известно, что разбавленная серная кислота не реагирует со свинцом, но концентрированная H_2SO_4 действует на Pb, при этом получается растворимое комплексное соединение состава $Pb(HSO_4)_2$. Технология нейтрализации электролита, а также механическая очистка фильтрованием не обеспечивает полного удаления свинца. В результате происходит его поступление в окружающую среду со сточными водами. Свинец является одним из наиболее токсичных металлов и включен в списки приоритетных загрязнителей рядом международных организаций.

Свинец может попадать в организм при вдыхании. Оседая в легких, свинец вызывает гибель клеток крови, что приводит к тяжелым анемиям, вмешивается в физико-химические механизмы работы сердца, поражает почки и печень, но наиболее характерные изменения наблюдаются со стороны нервной системы. Свинец влияет на синтез белка, препятствует окислению жирных кислот, нарушает белковый, углеводный и липидный обмены [1].

При сильном отравлении наблюдаются боли в животе, в суставах, судороги, обмороки. Свинец может накапливаться в костях, вызывая их постепенное разрушение, осаждается в печени и почках. Особенно опасно воздействие свинца на детей: при длительном воздействии он вызывает умственную отсталость и хронические заболевания мозга.


В этой связи были выполнены исследования по содержанию свинца в электролите отработанных АКБ.

Измерения массовой концентрации свинца выполнялись с помощью вольтамперометрического анализатора АВА-3. Анализатор обеспечивает измерение массовой концентрации ионов свинца в водных средах в диапазоне от 1 мкг/дм³ до 200 мкг/дм³.


Перед анализом отработанный электролит АКБ отстаивался, фильтровался. Затем определялась массовая концентрация свинца по методике выполнения измерений содержания кадмия, свинца, меди в питьевой, природной и очищенной сточной воде методом инверсионной волътамперометрии, разработанной НПП "Буревестник", ОАО, аттестованной в соответствии с ГОСТ Р 8.563-96 и ГОСТ Р ИСО 5725-2002 (Части 1-6).

Параметры эксперимента:

- потенциал регенерации 50 мВ, длительность регенерации 5 с;
- потенциал накоплениия 1200 мВ длительность 30 с;
- потенциал успокоения 1150 мВ длительность 5 с;
- скорость развертки потенциала 500 мВ/с.

Рис. 1. Вольтамперные кривые фонового раствора и исследуемого отработанного электролита (серия 1)

Рис. 2. Вольтамперные кривые фонового раствора и исследуемого отработанного электролита (серия 2)

В результате выполнения анализов установлено, что массовая концентрация свинца в электролите отработанных свинцовых аккумуляторных батарей составляет от 2,5 до 2,9 мг/л что в 25–29 раз превышает ПДК свинца в воде, поступающей на сооружения биологической очистки сточных вод. Таким образом, электролит отработанных свинцовых аккумуляторных батарей является опасным в экологическом плане отходом, отстаивание и фильтрование является неэффективным методом обезвреживания электролита, требуются дополнительные мероприятия по удалению свинца из электролита.

Заключение

- В результате проведенных исследований установлено, что массовая концентрация свинца в электролите отработанных свинцовых аккумуляторных батарей составляет от 2, 5 до 2, 9 мг/л что в 25–29 раз превышает ПДК свинца в воде, поступающей на сооружения биологической очистки сточных вод.
- Утилизация электролита отработанных свинцовых аккумуляторных батарей должна производиться после мероприятий по извлечению свинца.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- Волкович, А.И. Переработка аккумуляторных батарей: опыт Беларуси / А.И. Волкович, И.В. Моргунова // Экология на предприятии. № 9 (39) 2014.
- Battery recycling gets a boost // Chem. Eng. Progr. 1992. № 5. C. 14–16.
- 3. Житенев, Б.Н. Технология утилизации отработанных электролитов аккумуляторных батарей. Рациональное использование природных ресурсов / Б.Н. Житенев, Р.И. Ставринова, Н.С. Житенева // Научные аспекты рационального использования природных ресурсов: труды Международной конференции; под ред. В.Е. Валуева. Брест: Центр Трансфера Технологий (ЦТТ), 1998. 229 с.
- Единые правила ухода и эксплуатации автомобильных аккумуляторных батарей.
- 5. Кислота аккумуляторная: ГОСТ 667-73.
- 6. Вода дистиллированная: ГОСТ 6709-72.
- 7. Кислота серная техническая: ГОСТ 2184-77.

Материал поступил в редакцию 28.04.15

ZHITENYOV B.N., RYBAK E.S., ZHITENEVA N. S., KOROL K.A. Researches on the content of lead in otrabo-tannyh electrolytes of lead batteries

The authors have performed the research on the content of lead in the spent electrolyte lead-acid batteries. As a result, found that the electrolyte used batteries is hazardous waste and require additional measures to remove him from the lead.