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A b str a c t

This paper presenls novel theoretical results 
obtained in the field of partial logie. New 
operations (including a very useful minimization 
operation), laws, and expansions are introduced. 
Traditional Boolean function representation forms 
for the completely specified functions are 
generalized for the incompletely specified and 
partial functions.

1. In tr o d u c t io n

Most of the existing logie level synthesis 
techniques are based on the traditional two-valued 
logie [1]. The logie allows generation of various 
representations for the same logie function that can 
be mapped to digital circuits with different 
parameters. The most significant representations 
are as follows:

• sum of products
• product of sums
• Reed-Muller expressions
• decision diagrams.

Two key types of decision diagrams are used 
[1,2,4]:

• binary decision diagrams (BDDs) derived 
from the Shannon expansion

• functional decision diagrams (FDDs) 
derived from the positive and negative 
Davio expansions.

The ROBDDs (reduced ordered BDDs) [2,4] 
being a Boolean function canonical representation 
form, are the most popular type of decision 
diagrams widely used for efficient modeling, 
synthesis, and verification of digital circuits.

High-level synthesis systems [5-6] need 
efficient logie optimization techniąues.

Incompletely specified functions are a very 
useful formalism for generating different 
alternatives during logie optimization process [3].

This paper presents novel theoretical results in 
the field of logie that uses three values: true, false, 
and don’t care. New operations and representation

forms (expressions) for the three-valued functions, 
laws and decomposition types in the logie are 
described in the paper.

2 . P a r t ia l a n d  in c o m p le te ly  sp e c if ie d  
v a r ia b le s  a n d  fu n c t io n s

The traditional total logie considers two 
values: true (1) and false (0). The partial logie 
considers three values: true (1), false (0), and 
don 't care (dc or -). The don 't care value can be 
replaced with true or false arbitrarily. A total
function f(xi....x j  is a mapping/ ET—>B where
B=f0,l}. A partial function g(y,....y j  is a
mapping g: A f —tM where M={0,1,-}. Ал
incompletely specified function h(xt....x,j is a
mapping h: B"-»M A variable which takes values 
from the set В will be called a total variable, and a 
variable which takes values from the set M will be 
called a partial variable.

A Value-Domain Representation (VDR) is the 
following encoding of a partial variable y, with a 
pair (vj\dj of total variables:

0.
1,
dc,

if vt=0 and dt=l, 
if vt=J and d ^l, 
if v,e{0,l} and d,=0.

The variable v, is called a value variable and the 
variable d, is called a domain variable.

Due to VDR a partial function z=g(y) of m 
three-valued arguments is represented by an 
incompletely specified function (v\d)=g’((v/\di), 
...,(vn\dj) of 2m two-valued arguments with on-set 
gon=(v&d)°", off-sel ffs =(~v&d)°", and don ‘t-care- 
set g Jc=(~d) ".
Monadic and dyadic partial operations are 
transformed to operations on pairs of total 
functions (Table 1). The operations are used for 
construction of partial logie expressions and mixed 
total-partial logie expressions. Pairs of the 
expressions representing the same partial function 
constitute partial logie laws. The laws which 
transform a partial expression to a pair of total 
expressions, connect the partial logie to the 
traditional total logie. They include:
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~ ( v , \d i )  = ( ~ v , \ d j .

(vt\di)&(v2\d2> = (vi&V2\di&d2-/~vI&drh-V2&d2), 
(vj\di)~^(^2\dd ~ (v i+v2'di&d2-h>i&dj-H>2&d2), 

( v i \ d l) —* (v 2 'd 2)  -  ( v i - + V 2 \d i& d 2 - t~ v l & d i+ V 2 & d 2), 

( v i \ d l) @ ( v 2\d 2)  =  ( v ,e b /3\d l & d i) .

The lefl parts of equalities contain partial 
operations including negation (~), conjunction 
(&), disjunction (+), implication (-»), exclusive 
OR (®), and their right parts contain total 
operations with the same notations.

V=~X|&X2 d=X|®x2 min(v d)̂ X|

xł i t

A
s  \ ► < i  * 0 1

0 0 1 1 0

Figurę 1: Minimization operation on BDDs, an 
example

4 . P a r t ia l lo g ie  la w s

Table 1
Partial logie operations

N Operatio 
n name

Values
Notation0 1 - 0 1 - 0 1 -  

000 1 1 1 -----
1 Negation 10- ~(vi|di)
2 Conjunct. 00001 -0  — (v,|d,)& (v2|dj)
3 Disjunct. 0 1 -  1 1 1 -  1 - (vi|d,)+ (v2ld2)
4 Implicat. 1 0 - 1 1 1 1 - - (vi|di)-»(v2|d2)
5 Excl. OR 01 -  10------- (v,|d,)®(v2|d2)

3 . M in im iz a t io n  o p e r a t io n

In the pair (v\d) function d is fixed. The 
function v can be replaced with another total 
function v, such that

Ш  "  №
or

v,&d = v&d.

In other words, VDRs (vi;d) and (v\d) represent 
the same incompletely specified function. If V is 
the set of functions v, then for each v,eF the 
inequality

(v&d)a,£ v ,an £  (v+~d)m
holds.

A minimization operation min(v\d) is a 
mapping min: FxF —> F where F is the set of total 
functions f: FT-*B In fact, the operation selects 
one function from the set V. Various defmitions 
for min(v\d) are possible. They depend on which 
representation forms for v and d are used. In work 
[7] a definition of the operation on BDDs and in 
particular on ROBDDs is given. The operation 
allows decrease in the number of nodes and edges 
in the BDD v as shown in Fig. 1.

The following laws in the partial logie 
generalize known laws in the traditional logie:

(v \d )  =~~(v| d),

(vi\dt)&(v2\d2) = (v2\d2)&(v,\di), 
(v,\d№((vi\di)&(vj W ) = 

((vi\di)&(v2\d2))&(vs\d^, 
(v,\di)+(v2\d2) = (V2\d2)+(v,\d,),
( y i W+f f aW+f aW)  =

( f v ,  d 1) + ( v 2\ d j ) + ( v 3\d i ), 
(vi\di)&((V2id1)+(v^d1})=‘

( ( v ! \d IJ & ( v 2\d 2) ) + ( ( v l \d l) & ( v 3\d 3) ) ,
( v l \d l) + ( ( v 2,d 2) & ( v 3\d 3) ) =

( ( v , \ d i ) + ( v 2\d 2) ) & ( ( v i \ d l) + ( v } \d ^ ) ,  

~ ( ( v i \d l) & ( v 2\d 2) )  = ~ f v , \d i )  +  ~(v2\d2), 

4 ,( v , \ d l) + ( v 2\d 2) )  =  ~ fv t \d t ) & ~ ( v 2\d i),
( v , \ d , ) & ( ( v l \ d , ) + ( v 2 \d 2) )  = v , \ d h 
( v i \ d , ) + ( ( v , \ d , ) & ( v 2 \d 2) )  = v , \d j ,  
(vi\di)->(v2\d2) = ~<vi\dd+(v2\d2), 
( v \d )& (v \d )  = v| d,
( v \d ) + ( v \d )  = v| d,

( v \d )& ~ { v \d )  = 0 \d ,

(V|d)-i—(v \d )  -  l \d ,
( v \ d ) & ( l \ l )  = v \d ,
( v \ d ) + ( 0 \ l )  = v| d,
( v \d ) & ( 0 \! )  - 0 \ 1 ,
( v \ d ) + ( l \ l )  =  1\1,
( 0 \ I ) - > ( v \d )  =  0 \1 ,
( v \d ) - > ( v \d )  = i \d ,
( v \ d ) - > ( l \ l )  =  l \ l ,

( v i \ d i ) - > ( v 2\d 2)  = ф 2Ю - >  ~fv/|d j .  

New laws of the partial logie are as follows:

(v i\d)&(v2\d) = vi&v2\d,
(v,\d)+(v2\d) = vj+v2\d,
(v\di)&(v\d2) = V]dI&dJA'—v&(dj+di), 
(v\dl)+(v\d2) = v\dl&d2+v&(di+d2), 
v|v = 71 v,
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~v|v = 0\v, 
v&d\d -  v|d, 
v+d\d = l\d, 
v&~d\d = 0\d, 
v+~d\d = vj d, 
v| v&d = l\v&d, 
v| ~v&d = 0\~v&d, 
v|v&d -  (v\d)+(v\0), 
v|~v&d -  (v\d)&(v\0), 
v|v+<f = (v\l)+(0\d), 
v|~r+af = (v\l)&(l\d), 
~v|v+<f = (~v\l)+(l\d), 
-v|~v+cf = (~v\l)&(0\d), 
fx t =f(xi=l)\x„
/I'*» =f(Xi=0) \xh 
v| v(£d = ~d\v(Bd, 
v|v^f = d\vad,
~v| vsd = ~d\vmd, 
f(v)\v(Bd = f(~d)\v(£d, 
f(v)\vsd =f(d)\vsd, 
min(~v\d) = ~rnin(v\d), 
v&d<min(v\d)<v+~d.

f(x) = min(f(x)\~a(x)) Фа(х) &(min((x)J\a(xJ) 
Ф min(f(x)\~a(x)))

is a generalization for the positive Davio 
expansion. A generalization for the negative Davio 
expansion is derived from the positive one by 
means of replacement of the function a(x) with its 
negation ~a(x).

6. F u n c tio n  r e p r e se n ta tio n  fo r m s

The table form is the basie one for the 
representation of the partial and incompletely 
specified Boolean functions.

The partial Sum of Products is represented 
by the following expression

m ą  m ą
/ = f  + &(yj |!)) + (<& +(0\yj ))=

f(a)=l j=l f(a) -0 j=l

m aj m aj
( + & yj \1) + (0\ & + yj )),
flahl j=l f(a)~0 j=l

5. P a r t ia l lo g ie  e x p a n s io n s

The work [1] proofs that only the Shannon and 
Davio expansions are useful for representation and 
manipulation of functions in the total logie. The 
Shannon expansion of function f(x) in the logie is 
as follows:

f(x) = x, + ~x, &f „,0

where x, is a total variable, fxi./ is a cofactor of 
function f(x) on Xj-1 and fxi.0 is a cofactor of the 
function on jc,=0.

The following generalization for the Shannon 
expansion holds in the partial logie:

where a=(at....a j  and
aJ 'У)- 

yj = У> 
if Oj eB, and

aJ
yj =

ifaj=0,
ifdj-l.

~vj&dj, 
yj&dj, 
~dj,

if aj=0, 
if Oj-1, 

if aj= -
if ajeM, where vy, dj are two-valued variables 
encoding the three valued variable yj.

The partial Product of Sums is represented 
by the following expression

m -aj m ~aj
f = (  & +(yj \ 1) )&(& +(1 ]yj ))=

f(a)-0 j=l f(a)- j=l
f(x) = cdx) & min(f(x)|a(x))+~ a(x)& m ~a m -a

mm(f(x)\~a(x)) ( &  Д  \1)&(1\  & Фу,)).
f(a)=0 j=l f(a)=- j ’=l

In the expansion variable x, is replaced with an 
arbitrary total function a(x) and the cofactors are
replaced with the operations minimizing f(x) on 7, I f -d e c is io n  d ia g r a m s  
a(x) and ~a(x) respectively. When a(x)=l then

1 & min(f(x)\ 1) Ф0& min(f(x)\ 0) =f(x).

When a(x)=0 we obtain the same result.
The partial logie expansion

The if-decision diagrams (IFDs) and 
functional if-decision diagrams (FIFDs) [7] are 
constructed though using the generalized Shannon 
and Davio expansions. Basic fragments of IFDs 
and FIFDs are shown in Fig.2.
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c rrin(ijc) trin(f|~-c) c min(ff~c) гш(^с)Ф
rrin(ff~c)

a) b)

Figurę 2: Construction of a) IFD and b) FIFD

The IFD is a generalization for the BDD and 
the FIFD is a generalization for the FDD. The IFD 
is represented by a rooted directed noncyclic graph 
the terminal nodes of which are labeled 0, 1, x„ 
and ~Xj and the nonterminal nodes are not labeled 
and have exactly three successors. The diagram 
graph is reduced if it does not include identical 
subgraphs. The IFDs and FIFDs extend the set of 
representation alternatives and allow a compressed 
representation and efficient manipulation of 
Boolean functions.

In order to manipulate the IFDs, we define the 
minimization operation on this type of decision 
diagrams. Four cases in Fig.3 define the 
minimization result for different source IFDs v and 
d. As the figurę shows, the operation may remove 
nodes and edges from the diagram v in cases b) 
and c).

i i - trî Jd)

g i g

a)

V d min(v|d)
4' I

A \ A \ * 1
a  g h a  0 q min(h>q)

b)

V d min(v|d)
I

/ f \
a  g h

A \
a r 0

* 1
min(gir)

c)

v d tiir(v|d)

A A vA
a  g h a  r q a  nir(̂ r) mr{h|q)

d)
Figurę 3: Minimization operation on IFDs
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