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Ab st r a c t

This paper presents an approach to detect symmetries 
o f switching functions for efficient design o f Reed- 
Muller decision trees (DTs) and decision diagrams 
(DDs). The information theory measures o f switching 
functions are used to determine possible symmetric 
variabies and therefore to reduce search space. This 
approach allows to detect different types o f 
symmetries o f any variables coincident. We consider 
the techniąue to apply symmetries properties that can 
significantly improve Reed-Muller DT or DD design. 
We implement symmetry detection algorithm as a part 
o f program for switching function minimization based 
on DT design. Experiments have been performed on 
MCNC benchmarks and the results verify the 
efficiency o f our approach.

KEY WORDS: Switching functions, symmetry, 
decision trees and diagrams, information theory 
measures

1. INTRODUCTION

Determining symmetries among groups of 
variables is important in problems of logie 
synthesis [5], design verification and testing [7], and 
in problems of technology mapping, i.e. Boolean 
matching [10, 18]. The effectiveness of matching 
procedurę can be inereased if the groups of symmetric 
variables are known.

The symmetry properties are used in different 
areas of logie design. There are well known methods

of Circuit design, decomposition and minimization 
[4, 6, 15, 16]. In our investigation we focus on the 
detection of symmetries for Reed-Muller DT and DD 
design and further application for switching function 
minimization.

There are several techniąues to recognize 
symmetries based on different principles, namely,
(i) manipulation of a truth table and truth column 

vector developed in this paper;
(ii) transformation of the given function into spectral 

domain;
(iii) formal representation of symmetric functions 

(decision trees and diagrams, Reed-Muller forms, 
etc.).
The well known algorithms explore properties of 

symmetries via manipulation of the truth tables. For 
example, in [17] an effective method to detect 
different types of symmetries based on numerical 
methods has been proposed.

The second direction exploits features of spectra 
to determine the symmetries in variables for given 
function. There are many results on detecting 
symmetries in Hadamard, Haar and other transform 
bases [5]. However, spectral coefficients are very 
expensive to compute and storę for functions with 
large number of variables.

Formal representation of symmetric switching 
functions in positive polarity Reed-Muller (PPRM) 
expressions are studied for recognition symmetries 
in [1]. Authors use an additional program to obtain 
PPRM expression.

In recent years binary decision diagrams have 
been used as an efficient data structure to storę
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functions, and symmetry detection has become feasible 
for functions with large number of variables [2, 8, 9]. 
Fast detection of symmetric variables is important for 
DTs and DDs design.

In our approach we consider switching function 
represented by truth tables or truth column vectors and 
use symmetric properties for efficient trees and 
diagrams design.

The paper is organized as follows. Section 2 
outlines background of investigation and presents 
necessary definitions and notations. Section 3 presents 
an approach to detect different types of symmetries. 
Section 4 outlines algorithm to detect symmetries 
InfoRECSym and gives principles of Reed-Muller DTs 
and DDs design for symmetric switching functions. 
Section 5 presents experimental results and Section 6 
concludes the paper.

2. B a c k g r o u n d

Let give some essential definitions and 
prepositions that are important for the understanding 
the paper.

We use the following notations:______________
X  = {*,, x2, ..., x„ } a set of variables
/ (  X i ,  x2, .... x„) or/  a switching function
/ »  f l cofactors of /  with respect to 

arbitrary variable x.
{ X / } a symmetric pair
O a set of expansion types
H( f ) entropy of switching function/
H U  | X) conditional entropy of function 

/ with respect to variable x
Switching function /  can be represent as positive 

Davio (pD) expansion

/ = / ;  © * < / ; « / * ), 
and negative Davio (nD) expansion 

/ = / , © * < / ; © / * ) ■

We consider Reed-Muller DT or DD as directed 
acyclic graph. Each node is labeled with possible 
expansion co with respect to arbitrary variable x, A 
couple ( x, co) is assigned to a node, where х e X  and 
и е  fi. For Reed-Muller DTs and DDs: 
Q = {pD, nD }. pD and nD nodes and cofactors of 
expansion are shown in Fig. 1.

Fig. 1. Nodes and cofactors of pD and nD 
expansion of switching function fwith 

respect to variable x.

2.1. Sy m m e t r ic  s w it c h in g  fu n c t io n s

For any pair of variables x, and x} there are four 
c o fa c to rs /^ ,/  v /  f x ;. /

A function /  is nonequivalent symmetric in 
variables x, and xp denoted as { x„ x, } or { x„ x, }, if
/  remains invariant when this variables are 
interchanged:/ X/X = f x. x. [3].

A function /  is equivalent symmetric in variables 
x, and xj, if it remains invariant when x, and xs
( x, and Xj) are interchanged: f  XjX - f  X/ x [3]. This 
type of symmetry is denoted by { x„ x, } or { x„ x, }.

If function /  is simultaneously nonequivalent and 
equivalent symmetric in x, and xp then /  is multiform 
symmetric [3].
Example 1.
(i) Function /  = x2 Ф x3 0  x2 x3 ® xyx2 x3 is

nonequivalent symmetric in x2 and x3;
function f  = xyx2 + xyx2 is nonequivalent
symmetric in x2 and x3;

(ii) / =  X] © x2 ® xyx2x2 is equivalent symmetric in 
variables { 3 ,̂ x2 } or { x u x2 };

(iii) / =  x.y x2 + x,-x2 is multiform symmetric in { xb 
x2 } ({ *i, *2 }) and { x u x2 } ({ r,. x2 }).

A function /  is partially symmetric with respect 
to X, с  X, if any permutation of variables in X, leaves /  
unchanged.

A function f  is totally symmetric if every pair of 
variables in the function is either nonequivalent or 
equivalent symmetric.
Example 2.
(i) Function / =  I , ф x2 Ф xyx2 x2 is partially 

symmetric in variables { xl( x2 } or { x x, x2 }.
(ii) / =  xy x2 + x vx2 and / =  xyx2 © xyx2 ® xrx2 

are totally symmetric functions.
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2.2. Information theory notations 3. Detection of symmetries

We use information theory measures to reduce 
the search space of detecting symmetric variables 
pairs. Besides we utilize the information measures for 
efficient Reed-Muller DTs and DDs design 
[U, 12, 14].

In order to ąuantify the information content 
revealed by the outcome for finite field of events with 
probabilities distribution, Shannon introduced the 
concept of entropy. Entropy of switching function /  is 
given by [13]:

H ( / )  “  -P\r-o ■ log2p  \fro -p \fr\ ■ bgгР  |/-i- (1)

We calculate probabilities p  t = к |/=*/ k, where 
к i is the number of assignments of values to 
variables (pattems) for which /  = b, and к is the total 
number of assignments.
Example 3. Let us calculate entropy of switching 
function /  given by truth column vector 
[1100000111000010]: #  ( / )  = - 6/16 • log2 6/16 -
l0/i6- log2 10/|6= 0.95 bit/pattem.

We consider the process of DT or DD design as 
recursive decomposition of switching function. A step 
of this recursive decomposition corresponds to the 
expansion of switching function /  with respect to 
variable x. Assume that variable x of function /  carries 
information that is, in some sense, the ratę of influence 
of the input variable to output,/

For positive Davio and negative Davio expansion 
we use conditional entropy W® ( / |  x ) as information 
measure [14]:

t f D( f \  x ) = P\jM) ) + P \ ^  ■ H(f-X @ f x ), (2)

In this section we focus on detecting different 
types of symmetries (nonequivalent, equivalent, 
multiform, totally symmetry) by information measures, 
presented in subsection 2.2.

3.1. D e t e c t io n  o f  n o n eq u iv a le n t

SYMMETRY

Statement 1. Switching function /  is nonequivalent 
symmetric in { x„ x, } or { x„ x, } if

/* , ® /x, = f  xj ® fxj  and f~x = / l /. / , 1 = / y  
Proof. It is easy to show that f x -  f XjX + f xx  and 
f  x ~ f x lxj +f x t x, hear '+' means union of cofactors. 
The nonequivalent symmetry condition /  X/X - / *  * 
implies f  x. = / ,  . Similarly, f  x. = f i  Hence, we can 
write/;,. ® f x. - f Xj @f-Xf ,

DT or DD nodes with nonequivalent symmetric 
variables are assigned together as primitives (Fig.2). 
Property 1. If switching function /  is nonequivalent 
symmetric in x, and Xj then

x , ) = l f D f \ Xj) and 
f r D( f \ x l ) - i r l \ j \ x J ).

This property of entropy equality is necessary but 
not enough to detect symmetry.
Example 4. Consider switching function /  of four 
variables that correspond to truth column vector 
[ 1100000111000010].

The cofactors for this function presented in Table 
1. The information measures for pD and nD expansion 
are given in Table 2. According property 1 we analyze 
pairs with equal information measures. Nonequivalent 
symmetries in { x2, x3 } and in { xb x4 } are possible.

W"D( / | x )  = p |I_l ■H(fx ) + p lx=0 H(f-x ® f x ). (3)

Thus, in proposed approach we consider the 
following tasks, that will be partially solved by 
information theoretic measures:
1. How can we determine different types of 

symmetries in variables for a given switching 
function f?

2. How can we use symmetric properties for efficient 
design o f Reed-Muller DTs and DDs?

f

fi, ij © /r, ij f i,  i, ®У ift
Fig. 2. Nodes of Reed-Muller DT or DD that 

correspond to nonequivalent symmetry.
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ТаЫе 1. The cofactors to detect symmetries 
(Example 4).

f i / , f x ® f x

^1 [ 1 1 0 0 0 0 0 1 ] [ 1 1 0 0 0 0 1 0 ] [0 0 0 0 0 0 1 1 ]
x2 [ 1 1 0 0 1 1 0 0 ] [0 0 0 1 0 0 1 0 ] [ 1 1 0 1 1 1 1 0 ]

X3 [ 1 1 0 0 1 1 0 0 ] [0 0 0 1 0 0 1 0 ] [ 1 1 0 1 1 1 1 0 ]
X Ą [ 1 0 0 0 1 0 0 1 ] [ 1 0 0 1 1 0 0 0 ] [0 0 0 1 0 0 0 1 ]

Table 2. The information measures 
(in bit/pattern) for positive and negative 
Davio expansion (Example 4).

f f n  ( f  1 X ) t r n  ( f  | x)
Xi 0 . 8 8 0 . 8 8

X 2 0.91 0.81
*3 0.91 0.81
XĄ 0 . 8 8 0 . 8 8

The function /  is nonequiva!ent symmetric in 
{ *2, *з V f i 2 ® f x 2 =f x з ® /* 3 and/  ;2 = / ; 3.

This function is nonequivalent symmetric in 
{ x u xt }: / ; ,  ® f x x = / i 4 ® f x 4 and f x, =f  x4,
taking into consideration the necessary permutation of 
variables assignments.

As a result of DT or DD design we obtain the 
following fixed polarity Reed-Muller expression: 

/  =  1 ®  JC2 ©  X 3 ®  X 2 X 3 ©  X y X 2-X3© X ą-X2 x 3.

3 .2 .  D E T E C T IO N  o f  e q u i v a l e n t  s y m m e t r y

Statement 2. Switching function /  is equivalent 
symmetric in { xh xs } or { x, } if

f i ,  ®fx,  ®fxj  a n d /;  = /* .,/*  = / ;  • 
Proof. It is easy to show that f x -  f X(t + f  x x and 

/ ;  = f  i, ;  + / x. hear '+' means union of cofactors. 
The equivalent symmetry condition f  x/c = / ;  ; 
implies f x . = / ;. Similarly,/ ;  = / x. Hence, we can 
write Д  © / ;  = f  Xj ® / ;y. .

DT or DD nodes with equivalent symmetric 
variables are placed together (Fig.3).
Property 2. If switching function /  is equivalent 
symmetric in x, and xJt then

f f D( f \  x, ) = xt ) and
W"D( / I  ) = ł f D( f \  xt ).

This of entropy equality is necessary but not 
enough to detect symmetry.
Example 5. Consider switching function /  of three 
variables that correspond to truth column vector 
[11100011].

Fig. 3. Nodes of Reed-Muller DT or DD that 
correspond to equivalent symmetry.

The cofactors for this function given in Table 3. 
The information measures are presented in Table 5. 
Equivalent symmetries in { jci, x2 } and in { x2, x2 } 
are possible.

The function /  is equivalent symmetric in 
{ x u x2 } : / ; l Ф Д  = / ; 2 ® /* 2 a n d / = Д  and

/* , “ / J 2-
This function is not equivalent symmetric in 

{ x2, x3 } cause / ; 2 @ f  Xl ^ / ; з Ф Д .
Finally, we obtain the following fixed polarity 

Reed-Muller expression:/ =  © x2 © x t-x2-x3.

3 .3 .  D E T E C T IO N  O F M U L T IF O R M  A N D  TO T AL L Y  

SY M M E T R IE S

Property 3. If switching function /  is multiform 
symmetric in { x„ xs }, then

^ D( / | * y) = t f " ( / | x ; ) =

Table 3. The cofactors to detect symmetries 
(Example 5).

f i f x f  x ®  f x

Xi [1110] [0011] [1101]
X2 [1100] [1011] [0111]
x3 [1101] [1001] [0100]

Table 4. The information measures 
(in bit/pattern) for positive and negative 
Davio expansion (Example 5).

ł f D( f  |x) HnD(f\x)
1̂ 0.81 0.91

x2 0.91 0.81
x3 0.81 0.91

HrD{ f \ x i ) = HnD{ f \ x j ).
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Example 6. (Continue o f Example 4) The function/is 
multiform symmetric in { xb xĄ }, cause 
H”D{ f \  *, ) = l f \ f  I Xj) = H”D( f \  X,) = H”D( f \Xj)
= 0.88 bit/pattern.
Property 4. If switching function /  is totally 
symmetric, then for each couple (лt, co) the value of 
H*° ( / |  x ) is the same.
Example 7. Consider switching function of three 
variables /  = [000101111].

The cofactors for this function presented in Table
5. The information measures for pD and nD expansion 
are given in Table 6. Information measures for all 
variables are equal. Function /  is totally symmetric:
/ =  XiX2 ® X2 *з © Х3 Х1.

4. A l g o r it h m  t o  d e t e c t  s y m m e t r ie s

A N D  P R IN C IP L E S  O F  R E E D -M U L L E R  DTS O R  

DDS D E S IG N

We propose an algorithm to detect symmetries of 
switching functions for Reed-Muller DT design. The 
algorithm called InfoRECSym {Infomlation 
RECognizer o f  Symmetries) is described in Fig.4.

We incorporate the symmetry detection 
algorithm InfoRECSym to DT or DD design by 
following stages.
Stage I. For each variable x of function /  calculate 

information measures Hw( f \ x ) .  Select 
subset of couples ( x, a ) for which 
УГ ( / |  jc ) —> min.

Stage 2. Check for symmetries according symmetry 
detection algorithm (Fig. 4).

Stage 3. For each symmetry pair construct DTs or 
DDs primitives (Fig.2 and Fig. 3).

Table 5. The cofactors to detect 
symmetries (Example 7).

A f x f x ® f x
*1 [0001] [0111] [0110]
*2 [0001] [0111] [0110]
*3 [0001] [0111] [0110]

Table 6. The information measures 
(in bit/pattern) for positive and negative 
Davio expansion (Example 7).

I f D (f\ X) H"° (Я x)
X\ 0.91 0.91
X2 0.91 0.91
*3 0.91 0.91

/* (input)/= /(x ,, x2, ..., *„)*/
/*(output) symmetry pairs { xu X j } * l

InfoRECSym if) {
for  each variable хе X  {

Determine cofactors f 0 and f  and storę into
sub table:

pD nD
/o = A

/1 = f - x ® f x

f)  ~ f  x 

f  = f x  © f x

Compute information measures IT0 ( f \ x )  for 
pD and nD expansion, according (l)-(3)

}
for  each pair { x„ Xj } { 

i f  HpD( f \ x l ) = HpD( f \ x J ) md
Д"°(/1 x, ) = H"D( f \ Xj) 

i f  f x t Ф “  f Xj ® f x t and f x. = f Xj
then f  is nonequivalent symmetric in 

X; and Xj
i f  f f ‘\ f \  x, ) = H"D( f \  Xj) and 

H"D( f \  x, ) = t f \ f  | xt ) 
i f  A ® / l , = / x y® /x. and A  = f x j  
then/ i s  equivalent symmetric inx, and x} 

i f  f  is nonequivalent and equivalent 
symmetric simultaneously 
then / i s  multiform symmetric in x, and xt

}
i f  checked pairs are either nonequivalent

or equivalent symmetric then /  is totally 
symmetric function.

Fig. 4. Sketch of the algorithm to detect 
symmetries of switching function f.

Example 8. Let us consider the process of Reed- 
Muller DT design for switching function /  that given 
by truth column vector [11111001]. The cofactors and 
information measures are presented in Table 7 and 
Table 8 respectively.
Step 1. According information measures for DT node 

we assign the couple ( *i, pD ) (Fig. 5).
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Table 7. The cofactors (Example 8, Step 1).

f x f x f x ® f x

*1 [1111] [1001] [0110]
*2 [1110] [1101] [ООП]
*3 [1110] [1101] [ООП]

Table 8. The information measures 
(in bit/pattern) for positive and negative 
Davio expansion (Example 8, Step 1).

t f D(f \x) ITD (f  | x)
*1 0.5 1
*2 0.91 0.91
*3 0.91 0.91

Fig. 5. Step 1 of DT design (Example 8).

Let us consider cofactor / j  =[1111]. The 
cofactor is constant, therefore we assign a leaf 
(logie value 1) to Reed-Muller DT.

Step 2. Consider cofactor / ; ,  0 / x,= [0110]. The 
cofactors and information measures are given 
in Table 9 and Table 10 respectively. The 
information measures are equal. The cofactor 
f x , ®  f x ] is multiform symmetric in x2 and x3. 
Finally, we assign primitives with pD nodes 
for decision tree (Fig. 6).

We obtain the fixed polarity Reed-Muller 
expression:/ =  1 0  x\-x2 0  x t x2.

Table 9. The cofactors (Example 8, Step 2).

f x f x f x ® f x

*2 [0 1 ] [ 10 ] [ 11 ]
X 3 [0 1 ] [ 10 ] [ 11 ]

Table 10. The information measures 
(in bit/pattern) for positive and negative 
Davio expansion (Example 8, Step 2).

l f D ( Я  X ) i r D ( f  1 * )

X2 0 .5 0 .5

*3 0 .5 0 .5

Fig. 6. Reed-Muller DT (Example 8).

5. E x p e r im e n t a l  r e s u l t s

We incorporate InfoRECSym algorithm in 
program of minimization of switching function via 
Reed-Muller DT design InfoEXOR [14] - on Pentium 
100 MHz (RAM 48 Mb), programming language C++ 
under OS Windows 95.

To verify the efficiency of symmetry detection 
approach, we tested program on MCNC benchmarks 
(completely specified Boolean functions). Table 7 
contains ffagments of our results. The column with 
label in shows the number of variables, column with 
label out nr. shows the output number (we consider 
single output benchmarks). In column Time the 
running times for the algorithms in CPU seconds are 
given. The column CT refers the number of products in 
minimized FPRM expressions.

The running time of InfoEXOR program with

Table 11. Comparison of running times for 
Sympathy [4], lnfoEXOR [14] and lnfoEXOR 
with algorithm InfoRECSym.______________

Sympathy InfoEXOR
(FPRM)

lnfoEXOR
(FPRM)+

InfoRECSym

in/
out nr.

CT Time0, s Time&, s Time&, s

xor5 5/1 5 0.1 0.001 0.001
rd84 8/1 28 0.1 0.010 0.001
rd84 8/4 70 0.1 0.092 0.001
9sym 9/1 173 0.1 0.341 0.087
symlO 10/1 266 0.2 2.620 0.152
Total 0.6 3.064 0.242

. -ЛП»/„___§ f

-----13 times---- 1
° S p a r c  1 +  Workstation, O S  U N IX  
&P e n tiu m  1 0 0 M H z  p r o c e s s o r , O S  W in d o w s  9 5
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symmetry detection algorithm InfoRECSym is better 
for 60% than program Sympathy [4] and in 13 times 
better than original program InfoEXOR.

6. CONCLUDING REMARKS

This paper addresses the detection of different 
types of symmetries of switching function for Reed- 
Muller DTs or DDs design. We investigate symmetry 
detection by information theory point of view that 
gives us additional properties for switching function 
minimization techniąues. Our program InfoRECSym 
successfully recognize symmetries for efficient Reed- 
Muller DTs or DDs design.

In futurę it will be interesting to extend our 
results to detect symmetries in multivalued functions.
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