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Abstract
Application of the temporal processing 

neural networks (TPNNs) to the speech 
recognition is justifled by the naturę of the task. 
Indeed ASR is a seąuence recognition problem 
and assumes incorporation of time into decision 
process. Static models treat elements of seąuence 
as independent pattems, which is clearly 
unrealistic. On the other hand temporal 
Processing nets, built on the basis of multilayer 
perceptrons give us a hope to dismiss this 
assumption.

1. Introduction

In our attempt to review the application of 
the neural networks in the task of speech 
recognition let us first make use of Marr theory 
briefly reviewed in [1]. In accordance with it 
“any comp!ex information-processing system 
can be studied with respect to three distinct 
levels of description”:

1. Computational level -  one for 
description of the goal of computation and 
justification why this goal is appropriate. Неге 
we would try to formulate the task of speech 
recognition. As we will see later although these 
formulations are ąuite diverse they share the 
common ground of pattem recognition problem,

which can be effectively solved with help of 
neural network approach.

2. Algorithmic level -  specification of 
particular algorithms served to achieve the task, 
specified at the previous level. Неге we will 
restrict ourselves to consideration of temporal 
processing neural networks (TPNNs) as opposed 
to static nets, which are already significantly 
covered in literaturę. We will present several 
views onto temporal processing networks, 
describe their meaning from the signal 
processing, theory of finite-state automata and 
probabilistic points. We would try to discuss the 
drawbacks of chosen approach also.

3. Implementational level -  specification 
of the details of realization of the chosen 
algorithm. Неге we will briefly discuss training 
algorithms developed for temporal processing 
neural networks.

2. The Speech Recognition Task

2.1 Phonetic Decoding

The earliest attempts to extract information 
from the speech utterances are at least one- 
century-old. They had their origin in works of 
linguists who declared phoneme as the most 
elementary speech building błock. From the
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point of view of modern generative phonetics 
this is not quite true. But let us formulate this 
task as follows: Phonetic Decoding -  static 
pattern recognition task with the aim to correctly 
classify samples coming from one o f the limited 
amount phone classes, phonetic transitions are 
assumed to take place instantly.

Practically, there are about sixty different 
phones distinguished in TIMIT corpus, which 
constitute the major allophonic realizations of 
phonemes in the English language. Decoding 
assumes that each phone has stable target, 
reached in the process of the generation. There is 
the problem with stops, their targets are very 
short periods of time with no airflow and thus no 
sound, that is why it is a common practice to 
distinguish two intervals of a stop: closure and 
release. There are also difficulties with 
recognition of diphthongs and triphthongs: they 
have respectively two and three targets 
successively reached during generation. In any 
case tuming the temporal signal sequence into 
spatial pattern and manipulating the amount of 
data fed to the classifier at a time one can find 
the optimal width of a pattern for phonetic 
decoding.

2.2 Isolated word recognition

In this formulation our job is to discriminate 
between speech utterances, which represent 
isolated words coming from the limited 
vocabulary. The word boundaries are assumed to 
be prespecified or found with the help of some 
external pause detector. There are two ways to 
extract information from the speech flow:

1. Extract limited amount of features from 
each utterance, which is in generał case is of 
variable length.

2. Extract limited amount of features per 
fixed time interval (phone or syllable duration), 
discriminate between those intervals and 
generate the word guess with the help of some 
kind of word temporal structure model e.g. 
HMM.

There are a number of drawbacks associated 
with this approach, among the most discouraging 
we can name:

1. Difficulties with outperforming 
coarticulation effects at the word boundaries in 
informal fast speech.

2. Difficulties with introduction of new 
words to the predefined vocabulary.

3. Impossibility to adequately model word 
pronunciation variations with the limited amount 
of features per word.

4. Grammatical forms are treated as 
different words.

Difficulties with introduction of new words 
can be outperformed with the help of 
representation of words as concatenations of 
syllables, which are modeled at the training 
stage.

2.3 “Voice control”

This is a task to recognize smali amount of 
simple commands, which are in most cases short 
sentences built from limited number of words, 
with some amount of variation of the exact 
formulation. This task has little difference from 
isolated word recognition problem, besides the 
fact that some additional information can be 
gained from simple grammar. Current State of 
speech recognition systems allows developing 
quite reliable “voice control” applications.

2.4 Continuous Speech Dictation 
Systems

This is the most difficult task of speech 
recognition. It presupposes usage of well- 
developed grammar and taking advantage of 
semantic context. Неге we set up a goal to 
correctly recognize an arbitrary “well-formed" 
sentence. Current continuous speech recognition 
systems produce a word sequence, which best 
fits to the perceived utterance as an output. The 
basie disparity of such formulation with the 
human way to recognize speech in the fact, that 
humans able to correct possible grammatical 
errors of the sentence while understanding the 
overall meaning, in other words 
“wellformedness” is not a generał precondition 
for correct recognition.

2.5 Meaning Extraction

This task is frequently associated with 
researches in the field of artiflcial intelligence, 
but from the speech recognition point of view 
meaning extraction task constitutes the most 
abstract representation o f utterance at the 
semantic level.

2.6 Various improvements

There were several attempts to compare 
human and machinę performance in various 
speech recognition tasks. The results show that 
while computers outperform humans in simple
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phonetic decoding tasks, humans are much morę 
superior in morę complicated dictation and 
meaning extraction tasks. The main advantages 
of the human way to recognize speech are:

1. Large vocabulary;
2. Robustness to the environmental noise 

(so called “cocktail party effect”).
3. Speaker Independence -  The ability to 

effectively соре with pronunciation variations 
from speaker to speaker, regional dialects, 
foreign accents, etc.

4. Independence of speech ratę, ranging 
from quite slow and elear dictation to fast and 
often not complete informal conversation 
utterances.

2.7 Tier representation of speech

Most of the modes employed in recognition 
treat speech as sequence of some elementary 
events (pattems, which are classified by 
recognizer) sequentially concatenated to 
represent entire message. But linguists for a long 
time already regard the speech as the 
communication of information represented at the 
several tiers: articulatory-acoustic, phonological, 
grammatical, prosodic, and semantic. These tiers 
tightly interact with each other in both 
production and perception processes.

Modeling of such interaction would allow 
significant improvement of the recognition 
performance compared to the already developed 
Systems. Many research groups at the time 
focussed their efforts on this problem [2].

3. Usage of Neural Networks in 
Speech Recognition

3.1 The Basis

As one can see from the previous 
formulations of the speech recognition task, all 
of them share the common idea of statistical 
pattem recognition; To label incoming patterns 
with the probability o f misclassification being 
minimal. From the statistical decisions theory we 
know that classifier, which posses this property 
must assign to the incoming pattem X  a class 
C if the value of posterior probability 
P(C | X )  is maximum upon all possible 
classes. For proof see [3].

Following facts lay in the foundation of 
usage NN in speech recognition:

- Neural networks trained in classification 
modę happen to estimate such posterior 
probabilities (see [4] for proof).

- Neural networks can learn, in other words 
their parameters can be estimated from some 
training set automatically with the help of some 
learning algorithm, without explicit construction 
by the designer.

- NNs are massively parallel structures, and 
once properly implemented they can perform 
their computation very fast.

Neural network models form the broad class 
of semi-parametric models which is laying 
between two extremes: parametric models and 
non-parametric models. Semi-parametric models 
can be viewed as a compromise characterized by 
making less constrained assumptions about the 
process to be modeled than parametric approach 
while having moderate number of free 
parameters significantly smaller than in non- 
parametric modeling.

Many NN architectures were tried in the 
problem of Speech Recognition, among these we 
can name MLPs [4], RBF [5], TDNN [5], 
Recurrent Networks [5] and many other.

Static MLPs, their combination with HMM, 
RBF networks significantly covered in literaturę 
[3], [6], [7], [8] (as well as authors [9], [10],
[11]) and lay beyond the scope of this paper.

As the drawback of mentioned approaches 
we can name the fact that neighboring pattems in 
the sequence are treated as independent, it is a 
quite unrealistic assumption. We can at least 
potentially dismiss this assumption by 
incorporation time into network operation. 
Further we’11 consider only networks, which are 
built on the basis of multilayer perceprtons.

3.2 Temporal Processing with 
Neural Networks

Unlike static pattem classification in 
sequence recognition we understand that input 
spatial pattems come as a temporal sequence 
(figurę 1), and as a response we receive temporal 
sequence of network outputs. The relation 
between these two sequences is defined by the 
structure of neural network.
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Figurę 1. Schematic representation of the temporal processing

There are basically two methods of 
incorporating time into partem processing:

1. First way is to present a feed-forward 
network with some temporal window of input 
signal (figurę 2). Each time the output of such 
network is computed as a function of input 
partem seąuence of some finite length:

Thus there is a guarantee that network 
response for the input pattern sequence of finite

X(t)

Ii

to become focussed at the cost of additional 
weights.

Universal Myopic Mapping Theorem 
describes the computational power of the 
focussed TLFN. It can be stated as follows: Any 
shifl-imariant myopic dynamie map can be 
uniformly approximated arbitrary well by a 
structure consisting o f two functional blocks: a 
bank o f linear filters feeding a static neural 
network. (After [ 12])

2. Second way comprises an introduction 
of recurrent connections between the temporal

Y T
Y T

Y T

7 П - »

NN
Layer

Y(t)

Figurę 2. Time Lagged Feed-forward Network (TLFN)
length would be also finite.

We have to mention that there are two 
versions of TLFN: focussed and distributed. 
Focussed nets have temporal window only at the 
input, while each layer of distributed net 
possesses it’s own window, in other words time 
dependence is distributed through network. 
Distributed nets can be “unfolded through time”

window of chosen neuron output and neuron 
inputs of the same or previous level (figurę 3). In 
this situation feed-forward flow is no longer the 
only direction in which information can be 
transmitted within a network and each time 
network output is computed as a function of 
current input and intemal State of the network.
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Y(t)

Figurę 3. Recurrent Neural NetWork (NARX model)

Similar to TLFN we can introduce two 
versions: globally recurrent networks only use 
their outputs as a feedback signal, while in 
locally recurrent networks recurrent connections 
are introduced at the neuronal level.

Bounded input -  bounded output (BIBO) 
stability criterion is not suitable for RNN, their 
outputs are always bounded because of neuron 
saturating output nonlinearity (sigmoid function). 
This means that RNN’s are always BIBO stable. 
That is why discussion of stability RNN as any 
other dynamical nonlinear system must be done 
in the Lyapunov sense.

3.3 Delays: Tapped vs. Gamma.

Tapped delay linę, characterized by transfer 
function G (z ) = z~] (showed in figures 2 and 
3) isn’t the only possible way to incorporate 
short-term memory into network operation.

Let us define the memory depth D  as a first 
time moment of total impulse response hp of the 
delay linę of order p  :

D  =  ± t h p (t)  ( 1)
1-0

Memory depth characterizes ability of a 
delay linę to keep information about the past 
with a time flow.

Let us further define memory resolution R 
to be a number of taps per unit time interval. 
Memory resolution defines the ąuality of the 
representation of the past.

It can easily be seen that for tapped delay 
linę we have D  — p , R = 1 and their product
DR  =  p .

Let us now replace conventional tapped 
delays with a single pole discrete time filter with 
a transfer function:

G (z ) = ------ 1-------- , in which
z ~ (  1-/0

0 < p  < 2 , for the filter to be stable. (2)
This structure would constitute gamma 

memory delay linę introduced in [13], it could be 
shown (see [13], [7]) that in this case 
D  = p ! p  , R — p  and their product 
remains D R  =  p  .

With p  — 1 gamma memory represents 
ordinary tapped delay linę.

With p  <  1 gamma memory is able to storę 
morę distant occasions in the past (i.e. increase 
memory depth) with coarser memory resolution 
than conventional tapped delay linę. The 
parameter p  can be adapted to achieve the 
maximum performance.

3.4 Filtering Model.

Неге one can clearly see the analogy with 
FIR and IIR filters. Even morę, neural networks 
of such configurations can be viewed as a 
generalization of standard filters to the nonlinear 
filtering. As it was already discussed, the power 
of neural networks lies in possibility to 
approximate any finite nonlinear function with 
arbitrary precision. It should be noted also that 
spatial dimensionalities o f input and output 
signals are not restricted and can be chosen 
independently one from another.

Thus focussed or distributed TLFN are the 
approximations of nonlinear non-recurrent 
filters, which are always FIR, which can be 
described by the function (3).
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(3)

(4)

Y  (О = X ( t - Y ) , X ( t - 2 ) , . . . ,X ( t - n x +1));

m  = g(X( t ) ,X ( t  -1 ) ,...,X(t  - n x +1), Y ( t - 1), Y(t -  2),..., Y ( t - n y))

Going further we may derive that RNN with 
global or local feedback approximate nonlinear 
function (4), which constitutes the nonlinear 
recurrent filters, which in generał case are IIR. It 
should be noted that particular combination of 
the coefficients might tum conventional 
recurrent filter to FIR. In RNN paradigm filter 
coefficients are connection weights which are 
not fixed during training by any relation and it is 
morę convenient to think of RNN as “IIR filter in 
generał”.

3.5 State-Space Model

Dynam ically driven recurrent networks may 
be viewed as some sort of finite-state automata.
In this case vector S ( t ) is the State vector of the 
model, i.e. a number of intemal variables used to 
storę information about past behavior of the 
model, needed in combination with extemal 
input to fully describe its futurę behavior.

s{t + \) = M W ,x ( t )+ w sś(t))  (5)

Ż(t) = f 2(W0Ś(t)) (6)

in which X(t) - extemal input to the model

at a time t , Z(t)  - model output, Wt , Ws , W0 -
connection weight matrixes for inputs, feedback 
State vector and output respectively. Неге we
treat multiply delayed output vector Y (figurę 3) 
as single State vector S(t)  and output vector 

Z(t)  is computed by as single feed-forward

layer with activation function f 2.
If we would brake feedback connections we 

will have a simple feed-forward MLP computing
function f x of its inputs, which is capable to 
approximate any finite nonlinear function with 
arbitrary precision. Thus our original system can 
approximate wide class of nonlinear dynamical 
systems. It should be noted that this 
approximation holds for compact subsets of 
input space and finite time intervals.

We also should mention that fully connected

functions could simulate any Turing machinę 
(for further reference see [7])

3.6 Probabilistic Meaning

As we noted already that probability 
approximation is our major concern while 
applying neural networks to the ASR task we 
have to define the probabilistic meaning of the 
recurrent networks.

TLFN trained in classification task would 
approximate the posterior probability of visiting 
State C at a time t in the form  of (7), where 
{X} refers the fu li input seą u e n c e , {C} 1 - State 

seąuence v is ited  at the p rev iou s time steps.
It is also possible to shift input window of 

the focussed TLFN to eąually represent futurę 
and past contexts. This was done in the NetTalk 
experiments [14], in the experiments of Morgan 
and Bourlard [4]; authors also tried such 
configuration [10]. Such system is not casual 
(output value depends upon some futurę values 
of input) or we can say that there is some delay 
between the moment the input first time appears 
in the processing and the time it is associated 
with some particular class. But human hearing 
system also posses this property. It is proved in 
the experiments with temporal masking [15] that 
during periods of 20-50 ms before and 100- 
200ms after loud masker sound faint test sounds 
perceived attenuated.

Recurrent neural networks trained in the 
same task will approximate posterior probability
as (8), in which C(t — 1) - represents a network
estimate of the State visited at time t — ł , which 
might not coincide with the true one.

The problem of replacement of true State 
with expected one gives rise of a technique 
called “teacher forcing”, which can be described 
as substitution during the training stage of the 
possibly wrong network estimate with desired 
State obtained from the training set. This 
accelerates training because at some time 
network may have correct weights, but 
occasionally be at the wrong place at the State

р(с\{Х},ю~х)=Р(с\х{1),х{!-\),хц-г),...Ж1-п+\))'  (?)
P {C \{X ) ,{C Y l) = P { C \X { t ) ,X { t - \ ) , . . . ,X ( t - n x + \) ,C{ t- \ ) , . . . ,Ć{ t -ny)) (8)

recurrent networks with sigmoid activation space. On the other hand “teacher forcing”
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removes all information about previous errors 
madę by network. Globally this would lead to 
optimizing error function different from 
“unforced” case.

3.7 Training algorithms

A number of training algorithms was 
developed for TLFNs and recurrent MLPs on the 
basis of standard backpropagation algorithm.

Focused TLFNs can be trained with standard 
backpropagation algorithm converting temporal 
input signal into spatial input vector. This 
procedurę can be done once at the stage of 
preparing training or testing sets.

Any distributed TLFN can be “unfolded” in 
time to become equivalent focussed network 
with much bigger input window size and some 
amount of shared weights and trained with 
“static” version of backpropagation, but this 
procedurę seems to be impractical. A special 
procedurę called Temporal Back-Propagation 
algorithm was proposed by Wan [ 16] for the case 
of distributed TLFN.

Now, that we tum to the brief discussion of 
the training algorithms for the recurrent networks 
let us first define two properties:

Algorithm is thought to be local in time if it 
can be executed as temporal input seąuence 
arrives and allows leaming using only 
information contained in the temporally 
neighboring frames of input signal. Such 
algorithm can be used to leam seąuences of 
arbitrary length.

Algorithm is local in space if weight updates 
of each neuron can be computed only form the 
information about immediate neighbors of 
chosen neuron. Such algorithms can be easily 
implemented in parallel modę.

For the globally recurrent network locality 
in space and time are altematives and can’t be 
achieved simultaneously without any simplifying 
assumptions.

Back-Propagation Through Time was 
proposed in [17] as recurrent extension of the 
standard algorithm and can be summarized as 
follows:

1. Forward propagation of the input 
sequence of fixed length, memorizing each 
neuron's activation at every time step.

2. Backward computation through space 
and time of correction values for each weight in 
the network.

This algorithm resembles backpropagation 
through equivalent “unfolded” feed-forward 
network. This “unfolding” procedurę is possible

because input sequence is restricted to limited 
length. Even morę a truncated version of BPTT 
algorithm was introduced [18], which rejects 
longer time dependencies than some predefmed 
length. BPTT algorithm is local in space.

A local in time altemative (Real-Time 
Recurrent Learning) was proposed in [19]. The 
core idea of this algorithm is in the use of 
instantaneous gradients of the cost function with 
respect to the weights in the network. Gradients 
obtained with the help of RTRL would deviate 
around values of BPTT gradients. This deviation 
is exactly analogous to the behavior of on-line 
update technique in front of batch update in 
conventional static backpropagation.

Further comparison of BPTT and RTRL 
reveals that while BPTT is computationally 
simpler and morę effective than RTRL, RTRL is 
casual and therefore suitable for continuous 
learning without explicitly predefmed training 
set.

Recently several other training algorithms 
(Recursive Backpropagation, Casual Recursive 
Backpropagation) were introduced for the case of 
recurrent networks with local feedback [20]. The 
main advantage of such algorithms is the fact 
that training algorithm can be simultaneously 
local in time and local in space.

3.8 Uniyersal Time flow Ratę

But in spite of generality of presented 
models, one important limitation can be noted in 
these formulations. All models mentioned above 
have a property of universal time flow ratę, i.e. 
one time step at the input strictly cause exactly 
one time step at the output. Besides the fact that 
this brings extra computational complexity (all 
parts of the network should operate at the time 
scalę of the input signal), it is closely related to 
the “vanishing gradients” problem (for complete 
description [5]), in short, recurrent network fails 
to memorize long term dependencies.

To illustrate time scalę problem, let us 
consider the problem of phoneme identification. 
If we build a classifier based on TLFN or RNN 
(for particular examples see [4], [5], [10]) we are 
forcing the network to produce its outputs at a 
ratę of input preprocessed acoustic signal, which 
can be considered as a piecewise stationary 
process through a time period of measurement, 
but anyway at the phoneme boundaries speaker 
articulators are in transition to the next stable 
target configuration. Additional models should 
be used (such as tri-state phone HMM) to 
generate global decisions about produced
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utterance. In spite of the fact that in classification 
modę the network approximates posterior 
probabilities on the basis of which the optimal 
classification should be done, it does this “too 
fast”.

3.9 Why temporal processing 
neural networks did not solve speech 
recognition problem

Feed-forward and recurrent MLPs possess 
many useful properties for speech recognition, 
these models have well understood signal- 
processing state-space and probabilistic meaning, 
they naturally adopt training, that is why they 
can’t be easily rejected as candidate models for 
speech recognition. But from this point we 
already can see some drawbacks of this approach 
comparing to the problem to be solved. Let us 
briefly review the basie disparities between the 
generał speech recognition task and recurrent 
network madę of sigmoid neurons:

1. “Linguistic tiers” representation of 
speech assumes sequential decoding at various 
levels (i.e. transformation of acoustic signal to 
phones, further transformation from phone 
seąuences to syllables, syllable seąuences to 
words, word sequences to sentences and so on up 
to the meaning.). Linguists insist (with some 
evidences) on non-feed-forward information 
flow between such tiers (so called “tier 
interaction”). Moreover, time flow ratę is 
slowing down in the direction of higher 
abstraction levels; in other words one phone 
constitutes some sequence of acoustic vectors. 
On the contrary, TPNN provide us with uniform 
time flow ratę mapping between input and output 
sequences. This problem was addressed from the 
various positions (Dynamie Time Warping, 
statistical models like Hidden Markov Models, 
e.t.c.) but all this approaches suffered from the 
difficulties of introduction of new higher 
abstraction entities, such as problems with 
incorporating new words into a limited 
dictionary speech recognition system.

2. The size of output alphabet grows very 
fast from tier to tier from less then hundred 
different phones to several thousand syllables 
(There are about 8000 distinct syllabic structures 
in English language in accordance with [2]), tens 
of thousands words, virtually unlimited number 
of shades of meaning. It clearly becomes 
impractical to encode each possible output class 
with separated neuron of the output level of the 
network at the higher processing stages.

3. Leaming algorithms deveIoped for 
MLPs assume morę or less equal representation 
of samples coming from different classes at the 
training stage in order to achieve equal modeling 
power for the various output classes. This 
requirement is clearly unrealistic in continuous 
real-time leaming procedurę.

The majority of the problems could possibly 
be overcome with the help of Pulse-Coupled 
Neural Networks (PCNN) (for comprehensive 
foundation look [21], [22]), an approach with 
biological grounds frequently mentioned as morę 
precise model of biological neuron introduced by 
Reinhard Eckhom in 1990. Despite the fact that 
works of Eckhorm were inspired by specific 
activity in visual cortex of smali mammals and 
the most of known applications of PCNN are in 
the field of image processing PCNNs posses 
several useful features for speech processing 
also:

1. Output neuronal activity represents 
series of short spikes with a ratę proportional to a 
sigmoid function of the feeding input.

2. Synchronous groups of neurons act as 
“bigger neurons”, operating at the slower time 
scalę, firing not a single spike at a time, but 
series of spikes with different amplitudę.

3. Signatures of that spike series can be 
viewed as a way to encode output classes, which 
gives coding capacity bounded by the total 
number of neurons (not only in the output layer), 
coding capacity grows with time scalę slowing 
down. This is exactly what we have observed for 
higher speech processing stages.

4. Signature output coding gives an 
opportunity to introduce a kind of distance 
measure between different output classes as 
opposed to “one from m” coding, where there is 
no possibility to gain any similarity measure 
from class labels themselves.

Unfortunately leaming algorithms for PCNN 
are not well understood and developed yet, but 
the principal possibility of such algorithms 
exists.

4. Conclusion

Temporal processing neural networks 
provide morę suitable framework for speech 
recognition problem comparing to the 
conventional static MLPs. They use short-term 
context information in morę effective way than 
their static counterparts. They provide us with 
the models, which have less free parameters to 
be estimated during training.
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In their current State they can replace MLPs 
in the HMM/MLP hybrid recognition system at 
the phonemic decoding stage.

But even though they have all these useful 
properties, TPNNs can’t be considered as 
homogenous devices for solving speech 
recognition problem in generał due to the reasons 
discussed here.
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