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Abstract - The new modifications o f multilayered neurak networks training algorithms in a generalized training plant 
structure are introduced. The first modification for algorithm " on error backpropagation algorithm through time " is 
introduced and its sufficient conditions o f a training procedurę stability are obtained. Other modification for speed 
gradient algorithm o f an error backpropagation is obtained, where measurement State vector in a training procedurę 
instead o f a parametrical model ofplant is used.

1. IN T R O D U C T IO N

It is known that a connection of a neurocontroller with a control plant (CP) may be represented as generalized 

training plant (GTP) (fig. 1) [1,2].

There MS is a measuring system, which translates the statement vector X to the measured vector у  = h (x ( f )), 

where h(-) is a vector function; у  * is a desired function, O = o ( y * , y )  is a generalized error vector, which is used 

for network training. The architecture of MNN is defined by N K symbol, where К is an amount of networkno."i. • nK

layers, n 0 is a number of inputs, rt, , i e 1, К  is a count of the artificial neurons or basie processor elements (BPE)

in the f-th layer. The problem how to find the control function u ( y  *, y ) , which provides a minimum of function Q , 

is reduced in this case to the neural network training problem.

The base algorithm of multilayered neural network training is the algorithm of an error backpropagation (BP). 

Its direct use for synthesis of neural network training algorithms in problems of dynamie plants control by virtue of a 

series of the reasons is hampered [1]. However it forms the basis for synthesis of multilayered neural network training 

algorithms modifications in a structure of GTP.

In this paper we suggest the training algorithm for MNN within GTP (fig. 1), which is based on error 
backpropagation algorithm through time (BPTT) [3]. Also the algorithm resulted ffom back propagation error method 
and speed-gradient method (SG) [4] and was later called speed back propagation error algorithm (SBP) are introduced. 
Using that algorithm one can take into account the dynamics of the network training process and to cover a wide 

spectrum of problems. Unfortunately the algorithm lacks an adeąuate control plant model, it also takes a long time of 
computation and the necessity first to make the prognose of signal in the plant output. Modification of the algorithm
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SBP, free from enumerated shortages is offered below.

2 . B P T T  A L G O R IT H M

We make an algorithm step estimation, which provides training process stability for functional 

N
Q = У  o 7 (k ) a ( k ) at discrete-time point kA t, A t  = const; к  = 1,2, ... , and also a training error is defmed 

fc=1

by us as a(k)  = у  *(k) -  у  (к).

Let a plant be defmed by the following eąuation:

fx(fc +1) = f(x(/c),u(/c)); 
ly(A:) = h(x(/c)).

The control vector on fig. 1 is found by MNN during its training: 

u  = qW  ® x (.. (^Чу(/с — !))• ■ ■))■ ■ ■))) = F(y), (2)

where W ('> = w W : [ is the weight-factor matrix for layer t  e 1, К  , is a weight-factor vector for

the /-th BPE in the /-th layer , f ^ ( s ^ )  are the neurons nonlinear activation functions in the /-th layer,

s ( )̂ = are the first order discriminant functions. Referring to the equation (2) the function carries out a

complex dynamical nonlinear transformation the measured output of GTP during the neural network training process. 

The subject of this work is to fmd the conditions providing the stability of such a function.

The research is based on the Lyapunov functions method. Let us define the following training algorithm for 

МММ in a GTO structure:

^ ( n )  = - y Z d a T ( j ) a U)  5U(1) (3)
du(l) <3wj#)

where у is an algorithm step, и is a number of steps. The partial derivative from equation (3) may be calculated by 

following formula:

doTU)aU) = 8oT(j)oU) dyjj) ( ~ l )MJ ~ 1)) диЦ -  1) , дЦ*Ц -  l),u(j ~ 1)) дяЦ -1) ' 
5u(l) dyij) dxU) da(j - 1) dy{j - 1) dstj -  1) у{j -  1) .

дк( 2)
(4)

The parity such as (4) is used in error backpropagation algorithm (BP). However, this “error backpropagation 

algorithm” differs from BP algorithm, because the described algorithm is not passed from layer to layer, it’s passed 

from state to State, i. e. from one time moment to next. That is why this algorithm is called “error backpropagation 

through time”.

As any recurrent algorithm the gradient procedurę (3) may be stable or unstable depending on the algorithm
N

parameters and, first of all, on the algorithm step у , when the criterion is the function Q = £  a T (k)a(k) ■ Besides
k = i

this in practice one requires to provide the MNN training process stability only if the desired function, network
N

architecture and the initial State are changed. In the square training criterion Q = V  a T (k)a(k)  case a sufficient
k^l

conditions follow from the theorem.
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Theorem. Let the functions f ,  h  e C 1 in system (I) and there exist: a) partial derivatives d*U )
d y ( j  -  1)

b) vector function 5y(W , k) which may be represented in form (5) and ałso indicate an increment o f the vector 

y(W , k) followed a variation o f weight-factor matrix W .

8y(W ,k) = X  x  " f  +e(8 W.fc)
e = \ i = \ j = \  d w \e] ,J

(5)

Then the gradient procedurę (3) comergence for square criterion Q if  the following conditions are satisfied: 

I) there exists X(W, y . k )  > O suchas

К Щ n,-ij 

l = li = \ j  = 1

2) Y G

Sy(W ,fc)r Sy(W ,fc) ś  W y , i ) I  Z  l V S )  •

1 — л/l — 8Xea_1 1 + Vl -  вХеа'1
2Л, 2Л,

/и fAe case 1 -  вЯ-еа"1 > O and у -  О in the case 1 -8Я £а 1 < О,

К щ
where а  = I  I  I

ć=li = l 7 = i

(
_dQ _

d w f lК l'J У
Д =  Z M W ( n - l ) , y , f c ) ,  6 =  I  е г (/с)о(А:).

fc=i fc=i

Proof. The research of system (3) movement stability is based on Lyapunov’s function analysis: 

V{n)  = I  o T (W(n), /c)a(W (n), k)  -  Qmin
fc=i

where is minimum value of a functional O at neural network architecture N K^ min по,щ, ... nK

functions f[).

Let us consider an increment Д V ( n ) :

AV(n)  = V(n)  -  V( n  -  1) = I  a T (W(n), fc)o(W (n), k)  -  a T (W(n -  1), k) ,  o (W (n -  1), k ) .
fc=i

The generalized error o(W (n), i) in (7) is represented in the following kind:

cr(W(rc),/c) = y n (fc) -  y [ n , k )  = y r , (fc) -  (y(W (n -  l),/c) + 5y(W (n -  l),fc)).

(6)

and activation

(7)

(8)

where 8y(W (n — 1), Ac) is a vector function of the y(W (n -  1), k)  vector increment which is determined by the

weight-factors variation. Then the Lyapunov’s function (6) increment A V  referred to (7), (8) is discovered as:

N
Щ п ) = l ( ( y (ł|(k) -  (y(W(n -  l),fc) + Sy(W(n -  l),k))T(Y{' ](k) -  -(y(W(n - 1 ),k) + ду(Щп -  l),k)))~

k=1
N (9)

-  S(y(,)(fc) -  y(W(M -  l),k))T (y[t](i} ~ y(W(n - 1  ) M
k= 1

Simple transformations of equation (9) result its in the following form:

дУ(П) = i  5y(W (n -  1), fc)(2(y(W(n -  1), k))  -  y<*>(W(n -  1), k)) + 5y(W (n -  1), k ) ) . (10) 
k = 1

It is necessary to emphasize that the increment 5y(W (n -  l),/c) in equation (10) may be represent in the kind of

following sum:
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К п( п,_1
5 y ( W ( n - l ) , f c )  = Е  Z  Z  

e = n = i  j = i

Sy(W (n - 1 ) , k
_ r#t
d w ) '1-

S u -S ^ n  - 1 )  -t-e(5W ,y,fc), ( П )

łf) \ '-s
where 5w )  = (-y (n  -  1))----- —  . Then let us write down the increment Д V  of the chosen Lyapunov’s functiondQ

d w W
Uj

(6) refer to (10), (11): 
(  N

AV(n) = Z  Sy(W(n -  1),fc)T 8y(W(n - 1  ),k) + 2e(5W, y, k f  o(W, y, k) 
U -l

nf nt-l l \2
Z E Z  H 3 )  (-y(rt-i))-1 s
e=ii=ij=i

к  п/ t . , ЛГ N w
• Z  Z  Z  (51У, . ) Г I ( -Y(^- l ) )  ‘ + EMW.y.fc) +2Xe(8W,y,fc)Ta.

( 12)

К ne ne_i
Let a  = Ё  Z  Z

ć=lt=l j=1

Ш j=l
/  \2  

5 0

fc=i

К п/ nt.w  \2 _ _ W JV
= Z  Z  Z  W ' !  ) ( у ( п - 1) г ^ ,  x =  E M W ( n . - i ) , y ,  k ), e =  ż ® r (fc)°(fc)-

f=ii=i j =i ,J fc=i )t=i

Then the eąuation (12) can be rewritten as ( -y )2 ka. -  ya + 2e < 0 . If у is expressed we receive that:

in the case 1 -  вХеоГ1 > 0 and у = 0 in the case 1 -  8 л е а -1 < 0 .у  e
1 — л/l  — вХ еа'1 l W l - e ^ e a 1

2X 2k
The theorem is proved.

It can be shown that the function A,(W, y , k)  which meets the theorem condition 1) under condition 2) 

always exists. To obtain this it will be enough to consider the variation ratę of a left bound у parameters (to refer to
lf\

the condition 2)) for smali increment 8ш,- j  . It is necessary to emphasize, that in a generał case the stability by

Lyapunov’s method and, hence, the negative determinacy of Lyapunov function do not guarantee the stability of the 

gradient procedurę (3). However, when we choose a suitable Lyapunov’s function V , which equals the MNN training 

functional 0  accurate to any constant (as it is shown in the proof), the function V  negative determinacy provides non- 

growing functional Q  variations.

It is following from the theorem condition 1) that the function may be defined by the following ineąuality:

O N
6y(W,fc)r 5y(W,fc) 

Let symbol J ( h )  is:

к  nf n(_i /
и х  К/ = li = 1 j  = 1

S MW.y.fc)

(  h
П 5y(v) 5y(2) dx(2)

J ( h )  = i i  fłn
d x  5 q (X>(l)

When we discover the 5y(W , k)  increment in (13) refer to (14) we’ll receive
f .

0)

(13)

(14)

fc К rv Tf-l A4̂ )|11

ha Д Я Н  Mjj

k k  ntn^
Z*W 's u g  zFzW

MM j=1
S W K 4 .  (15)

The ineąuality (15) allows to estimate bounds of the у parameters “stable” area. In particular, if we neglect the 

function e ( 5 W , y ,  h)  values because of the increments 8 ш |lj  are rather smali (as far as the function

e(5 W, y , h)  is o(8W )) we’11 obtain the following step у estimation:

96



( 16)
N

fc=2

к К "f "ł-1 ад(К)т до  
V JШ v  у  V  Г*__ 'AL. V
>1=2 f=li=ij=l Зц£] Sui .

J  1.7 ‘.J '

fc х nf ajW.'i' эо
Z ^ M Z E Z

\ \

h=2 f-ll=l/=l d u .f l___V l»7 mJ /у
We should like to emphasize that the theorem conditions are sufficient for the gradient procedurę (3). Also 

their observation provides roughness of the network training algorithm. Besides this function a(W, y, k )  can be

used for estimation of the MNN architecture and single neuron activation function influence the BPTT procedurę 
stability.

durjM

-i
К ne n,_x
ZEZ
<=li=l > 1

( s2'
8 Q

The obtained expressions may be used for adaptive algorithm of MNN training within GTP because the 

function y(n) is corrected (varied) during the training process referring plant State, the amounts of MNN layers, 

neurons in the layer, the network initial conditions, the current weight-factor value and to the activation function in 

covert form. In other words this function depends on the plant’s dynamics, the MNN architecture and State.
Let us consider an example.

Let a plant is defmed by the following eąuation system: 
x 1 ( k  +1) = x 1 (к )  +  ( ~ x 2 ( к )  -  x 3 (к )  + щ  { k ) ) A t  

• x 2 ( k  + 1) = x 2 ( k )  +  (Xj (к ) + 0 . 3 x 2 (fc) + u 2 (/c))At 
x 3 ( k  + 1) = x 3 (к )  + (0.38Л:! (к ) -  4 .5 x 2 (k) + x x ( k ) x 3 (k) + u 3 ( k ) ) A t ,

where A t  is a discretization step. Let all components of the State vector are measured. Hence, the Jacobian d*U)
d y ( j  -  1)

used in BPTT algorithm exists:

to{j)
f  1 -A t - A t  > 'At 0 (Г

A t 0.3At +1 0 + 0 At 0
4(0.38 + x 3 )A t -  4.5 At x xA  t  +  1, l o 0 At,

d a ( j  -1)

-  !) J 0 . 3 8  +  x 3 ) A t  -  4.5A t  x xA t  +  1,  ̂0 0 At, ~  4
A reference function is set as y*(t) = C o \e ~ l , e~*, e  *) function.

To simulat the process we chose some MNN with a 5Q 5Q 3 architecture and the sigmoidal activation

functions f ( s )  = 1 - e -2 s
The conditions of training simulation was: N = 30 trajectory points, At -O.Olc

1 + e~ 2s
descretization step, *^(1) = X 2 (1) =  X 3 (1) =1 initial conditions. The estimation of у parameter is chosen as in the 
inequality (6). Let us mark:

e+i
D (/)=  n w<?l1.

t l = K

г-i)
08)

(17)

4!! = 5 (7 ,i} m a x ( / / (?)^ '

where 5( j ,  i) is Kronecer’s symbol, j  = 1, n e_ 1 , i  = 1, n ( . After the partial derivations _ Ё 5 _ were discovered
eO

in (16) we receive refer to (17), (18): 

\h -2 /=1г-1

N
y ^ Z

fc=2

f  Г*r X
lh=2

К 14

Z Й
ш

r (  >2 \

Hf*
К  1Ц п/_|
Z E Z

dQ
) ) i= u = i j =i S u f

V. 4 1.7 7 /

(19)

97



[Р]These parameter у estimations satisfy the theorem conditions when the variations 8w \  '■ are smali. Besides

it can be shown that the weight-factors > u {r\
1>J bound

exist for MNN with sigmoidal activation functions and they

provide a decrement of the criterion Q(n)  value.

The Com puter s im u la tio n  showed that neural network training procedurę has an undiverging reference. In fig . 

2 a, b acco rd in g ly  you can  see the graphs which illustrates the variation of the algorithm step у ( n )  and training  

functional Q(n)  in the ca se s  w h en  estimation (19) is used and when у = c o n s t  = 0 .0 0 1 5  .

This graphs allow to conclude that the Computer simulation does not to contradict the theoretical items o f the

work.

3 . S B P  A L G O R IT H M

Let the dynamics of control plant is described by eąuations:

x  = f (x , 0) + g (x )u , x  e R n , u  e R m . (20)

The behaviour of control plant (20) depends on unknown parameters values 0  g  Q e  . The goal of control presented as 

desirable dynamie characteristics of control plant based on a reference model described by a system of linear 

differential eąuations:

X м  = A M X M + B MI ,  (21)
where X м  e  R n is a State vector of a reference model, A M  , B M are model matrixes chosen so that a response of

State vector X м  on assigning action r  carried a desirable character.

Let a control vector u  = q ' H1 be the output of the last К  th layer of a network. It is reąuired to derive

network training algorithm, which would change the vector of adjusted parameters w j^  (where £ = 1, К  - number of

MNN layer, and i = 1, n ( - number in a layer) to ensure reaching control goal at any vector of unknown parameters 

0  G fig  .

A speed-gradient algorithm in the combined form [5] for set-up vectors w j '1 can be written as follows:

l(vr{p  + M/) _
= - r Vw c o (x ;w ^ );f), i = l ,n

d t
t. > (22)

98



(£) т
where со() is function, continuously differentiable on components of a vector W > ; Г = Г ' > 0  is

( { n e +  1) x ( n t +  1)) gain matrix; \y is a pceudo-gradient function which meets to condition || \\i co(-) || > 0 . The 

stability theorems for speed-gradient Systems (20),(22) can be found in [5].

For quasistationary plant the function co( ) is determined as follows:

co(x;w f ];t)  = [ f(x ,0 ) + g ( x ) u ( w ^ ) f  Vx J ( x ; t )  + x J

Instead of (22) it is possible to use SG algorithm in its finite form:

Vx ^ J ( x ; f ) . (23)

= -vj/(x;w (ł '; f ) ,  i = 1 , n t . 
The typical form of a finite algorithm is linear

w ^ 1 = - r V w co(x;w(t , ;f), i = l , n t ,

Let MNN training function be as follows:

J ( x , x M ) = 0 .5 (x M - x f  ( х л  - x )

c o ^ jw ^ U )  = |x 'M -  f ( x ,0 )  -  g (x )u(w ^>  ( х "  - x ) .

Then

(24)

(25)
,n  ------

In this case eąuations of adjusting weight factors W(- ' in MNN layers i  = 1, K" by virtue of (25) will take the 

dependence of:

d w l-

~ d t

№
= Г

f  \
(Ю8 q ( 

8 w i*l
’ i )

g (x )T (x-M -  x), i = 1 , n e , (26)

ОГ

= Гl
8 q<*>

8 w 1' ' i У

g ( x f ( x "  -  x), i = l , n t , (27)

The evaluation of derivatives 8 q ^  j 8 w  У 1 in algorithms (26) - (27) is produced in the correspondence with a back

propagation error technique:

iD\  iD\  iQ\  * 7 > *  ’
8 w <*) 8 w (/* 8 q*.^i i 8 qV

^ 5 ^ 1  = d q [K\ .
8 q ( f + l )

where s 1' 1 = W l'lq U-l) is first order discriminant function and f ' ( s ^ l  =
d s

is (n ( x n ( ) diagonal

matrix , w(<) is weight matrix of i  th layer.

If the matrix function g(x) does not depend on a State vector X, i.e. g (x ) = В , that is taking into account 

an arbitrary choice of a matrix Г , substituted to the algorithm (26) - (27) all nonzero elements of a matrix В can be 

reduced by unity. It allows to expand the class of parametrical indeterminacy of plant, and assume the matrix В
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depending on the vector of unknown parameters 0  .

The obtained no autonomous algorithms of on-line network training in a neural net control system structure

(26) - (27) are modifications of algorithm SBP. However algorithms (26) - (27) are deprived of the listed above 

shortages of algorithm SBP and use a measurement information for network training, that adds some adaptive properties 

in neural net control systems .

The value of a parameter a  is unknown and belongs to area of admissible values Q e , specified by interval

0 .1  < a  < 1.

We shall choose the MNN parameters as follows: numbers of layers К  -  2 ,  numbers of neurons in hidden 

layer Mj = 3 , numbers of neurons in output layer n 2 = 1.

Based on the control plant eąuations, algorithms (26) and (27) can be written as follows:

Let's illustrate an overall performance of the considered network training algorithms on forced brusselator's 

model excitation of oscillations example [6]:

V l

\  i 7

where Г = у = 0 .1  isa gain factor.

1 3

0 2 4

Fig. 3. P hase  p o rtra its : 1 - forced b ru sse la to r  chao tic  a ttra c to r , 2  - contro l 
sy stem  w ith  MNN tra in ed  on  a lgo rithm  (26), 3  - con tro l sy stem  w ith 
MNN tra in ed  on  a lgo rithm  (27)
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The following parameters values are chosen for simulation: a  = 0 .4  + 0 .0 5  s in ( 0 .8 1 1) and b = 1 .2 . 

At these parameters values in a model phase space there is a chaotic attractor designated as 1 in fig. 3. With the purpose 

of excitation of oscillations we shall choose reference motion a s x j “ = 0 .8  + 0 .5  s in (0 .8 1 1) . The phase portraits 

of neural net control system, trained on algorithms (26) and (27) are reduced on fig. 3 and are designated as 2 and 3 

accordingly.

4. CONCLUSION
In this paper we receive the step estimations for the gradient procedurę (3) which provide a training process 

stability when MNN is included in to the dynamical system (1). Such estimations allow to make a synthesis of an 

adaptive neural network training algorithms. If use BPTT training technique we can beforehand estimate ąuality of the 
neurosystem for the finał time interval. It should be emphasize the obtain result may be used in the case when we have a 

half-final time interval. Futurę researches will be directed toward an roughness, controlability and observiability of the 

control system with a neural network.
The introduction of dynamics in multilaered static neural networks training algorithm is added to it properties 

of a dynamie networks, but without use of feed-backs, as in algorithm BPTT. The process of network training on 

dynamie algorithm allows to unit in one processes of training and control in static MNN, that is essential at use it as the 

controller in dynamie systems.
The modifications of speed back propogation algorithm are presented. The efficiency of the proposed 

algorithms for some chaotic oscillation control problems has been demonstrated. The results of Computer simulation 

demonstrate coincidence of trajectories of own plant motions and trajectories of control system on a significan time 
interval. It testifies about minimal interference in own plant dynamics and requeres the minimum Controls for reaching 

a control goal.
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