ИЗГИБАЕМЫЕ ЭЛЕМЕНТЫ С АРМАТУРОЙ КЛАССА AT-500C ИЗ УГЛЕРОДИСТОЙ СТАЛИ

*Терин В.Д., Волик А.Р.*Полоцкий государственный университет

Анализ мирового развития производства и применения ненапрягаемой арматуры показал, что в настоящее время выделяют две тенденции: переход на применение арматуры повышенной прочности с пределом текучести более 500 МПа, и при этом необходимое ограничение легирующих элементов.

Для Республики Беларусь, не имеющей своих источников сырья черных металлов, реальный путь – переход на применение арматуры повышенной прочности из углеродистой стали.

В настоящее время Белорусский металлургический завод освоил технологию производства арматуры из углеродистой стали класса Ст–3сп с пределом текучести не менее 500 МПа. Исследование механических и технологических свойств такой арматуры, проведенные в Полоцком государственном университете, показали [1], что при испытаниях сварных соединений на разупрочнение и срез при пластическом характере разрушения прочность соединений соответствует требованиям ГОСТ 14092 и ЕN–10080. При испытаниях на изгиб изломов и трещин не обнаружено, что свидетельствует о том, что при сварке не образуется закалочные структуры металла, приводящие к хрупкому разрушению соединений. Арматура Ат–500С из углеродистой стали класса Ст–3сп имеет характерную диаграмму растяжения, существенно отличающуюся от диаграммы аналогичной арматуры из легированной стали с очень высоким соотношением $\sigma_{0.2}$ / σ_{u} = 0.9÷0.95 (при 0.7 у стержней из легированной стали).

Цель настоящих исследований заключается в определении эффективности работы арматуры AT-500C из стали CT-3cп в железобетонных конструкциях при изгибе и влиянии различных диаграмм рабочей арматуры на прочность, деформативность и трещиностойкость изгибаемых элементов.

Для исследования эффективности применения арматуры AT-500C в железобетонных изгибаемых элементах были изготовлены и испытаны две серии опытных балок (8 образцов) размерами $160\times300\times3200$ мм. Балки первой и второй серии отличались степенью армирования, которое устанавливали таким образом, чтобы напряжения в арматуре в предельном по прочности состоянии для балок первой серии были близкими к временному сопротивлению, второй серии – к среднему значению между пределом текучести и временном сопротивлением. В каждой серии были изготовлены и испытаны по две балки-близнеца, имеющие различные диаграммы растяжения рабочей арматуры. В одном случае арматура из углеродистой стали с $\sigma_{0.2}$ / σ_{u} = 0.95, в другом случае – из легированной стали с $\sigma_{0.2}$ / σ_{u} = 0.77.

Балки армировали сварными каркасами, которые имели хомуты с шагом 100 мм и арматуру в сжатой зоне лишь в крайних третьих частях пролета. Хомуты и арматура в сжатой зоне изготавливали из арматуры класса А–400 (∅ 12 мм).

Основные характеристики испытанных образцов представлены в табл. 1

Характеристики опытных балок

Таблица 1

b,	h,	$\sigma_{0.2}$,	$\sigma_{\rm u}$,	$\sigma_{0.2} / \sigma_{\rm u}$	A_{8} ,	ζ
MM	MM	МПа	МПа		СМ	
184	330	602	633	0.95	1.13	0.075
184	327	598	634	0.94	1.12	0.074
186	340	645	827	0.77	1.10	0.082
184	328	645	827	0.77	1.10	0.078
185	304	574	620	0.93	3.38	0.230
186	333	577	618	0.93	3.38	0.220
183	335	642	836	0.77	3.30	0.230
184	342	642	833	0.77	3.30	0.220
	MM 184 184 186 184 185 186 183	MM MM 184 330 184 327 186 340 184 328 185 304 186 333 183 335	мм мм МПа 184 330 602 184 327 598 186 340 645 184 328 645 185 304 574 186 333 577 183 335 642	MM MM MITa MITa 184 330 602 633 184 327 598 634 186 340 645 827 184 328 645 827 185 304 574 620 186 333 577 618 183 335 642 836	MM MM MIIa MIIa 184 330 602 633 0.95 184 327 598 634 0.94 186 340 645 827 0.77 184 328 645 827 0.77 185 304 574 620 0.93 186 333 577 618 0.93 183 335 642 836 0.77	MM MM MIIa MIIa CM 184 330 602 633 0.95 1.13 184 327 598 634 0.94 1.12 186 340 645 827 0.77 1.10 184 328 645 827 0.77 1.10 185 304 574 620 0.93 3.38 186 333 577 618 0.93 3.38 183 335 642 836 0.77 3.30

Испытания производили по балочной схеме до разрушения с приложением сосредоточенных усилий в третях пролета. Нагружение осуществляли с помощью гидродомкрата через распределительную траверсу. Нагрузку прикладывали ступенями, каждая из которых не превышала 1/15 предполагаемой разрушающей нагрузки с выдержкой на этапе 10 минут. После появления трещин на этапах выдержку увеличивали до 20 минут. В процессе испытания измеряли деформации бетона и арматуры, прогибы балок, ширину раскрытия трещин и их развитие по высоте сечения вплоть до разрушения. Деформации растянутой арматуры измеряли при помощи индикатора часового типа, установленного на реперах, предварительно закрепленных на рабочем стержне. На боковой поверхности балок были наклеены тензорезисторы с базой 50 мм цепочками длиной 35 см от середины балки для измерения деформаций бетона на разной высоте сечения. После обнаружения трещин в бетоне на каждом этапе фиксировали место появления и достигнутую высоту трещин, а также ширину раскрытия наиболее характерных трещин на уровне рабочей арматуры. Прогиб балок измеряли прогибомером, закрепленным в середине пролета на раме, подвешенной к концам балок по оси опор при помощи струбцин.

Все опытные балки разрушились по нормальным сечениям по середине пролета от раздробления бетона сжатой зоны при напряжениях в растянутой арматуре больших или близких к условному пределу текучести.

Расчетные моменты вычисляли по формулам СНиП 2.03.01–84 и по проекту норм проектирования СН 51–01 с учетом диаграмм состояния бетона и арматуры.

Отношение опытных разрушающих моментов к расчетным по СНиП 2.03.01–84 изменялись от 0.91 до 1.07, а к расчетным по СН 51–01 от 0.94 до 1.04 (табл. 2).

Расчет прочности опытных балок

Шифр балок	Мехо, кН м	Мса1, кН м	M _{exp} /M _{cal I}	М _{саі.ІІ} , кН м	$M_{exp}/M_{cal II}$
Б І–1	22.44	23.40	0.96	22.95	0.98
Б І-2	23.10	22.83	1.01	22.61	1.02
Б І–3	24.94	25.04	0.99	24.57	1.02
Б І-4	25.88	24.22	1.07	24.96	1.04
Б II-1	52.39	54.30	0.97	53.19	0.99
Б II-2	57.52	60.69	0.95	58.99	0.98
Б 11–3	60.01	66.70	0.91	64.01	0.94
Б II-4	65.02	69.34	0.94	66.06	0.98

Анализ полученных данных позволяет заключить, что метод расчета с учетом диаграмм состояния материалов дает лучшую сходимость опытных и расчетных разрушающих моментов.

При оценке деформативности и трещиностойкости железобетонных элементов можно выделить две стадии работы элементов. Первая стадия – когда напряжения в арматуре не превышают предела текучести, а в сжатом бетоне они не велики. Различий в характере развития трещин и прогибов в балках с рабочей арматурой из углеродистой стали с $\sigma_{0.2}$ / $\sigma_u = 0.95$ и из легированной стали с $\sigma_{0.2}$ / $\sigma_u = 0.77$ не наблюдалось (рис. 1, 2).

После превышения напряжений в арматуре условного предела текучести в балках с арматурой из углеродистой стали, имеющей более пологую диаграмму растяжения, отмечено более интенсивное развитие трещин и прогибов по сравнению с балками с арматурой из легированной стали.

Литература

- 1. Терин В.Д., Волик А.Р., Клейменов Д.В. Исследование механических и технологических свойств арматуры Aт–500С из углеродистой стали// Материалы научнотехнической конференции. Люблин, 1996, 172 с.
- 2. Мадатян С.А. Стержневая арматура железобетонных конструкций. Москва, ВНИ-ИНТ, 1991 г., 75 с.
- 3. Баташев В.М. Железобетонные конструкции с высокопрочной ненапрягаемой арматурой// Вопросы строительства и архитектуры: вып. 15, Мн., Выш. шк., 1986 г., с. 3–6.