рассматриваемого ј-периода, в который вносится поправка; m_{j-1} -то же предпествующего периода с ясной погодой (j-1).

ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ РЕЖИМ И ЕГО СОСТАВЛЯЮЩИЕ ЗА КОРОТКИЕ ИНТЕРВАЛЫ ВРЕМЕНИ

Валуев В.Е., Волчек А.А., Мешик О.П., Цилиндь В.Ю., Лукша В.В.

Количество солнечной энергии, приходящей на земную поверхность, определяется поэтапным моделированием суточных величин коротковолновой радиации (I_i). На первом этапе определяется суточная инсоляция (I_i), при отсутствии земной атмосферы, на втором - устанавливается зависимость между величинами I_i и I_i . Для Минска она имеет вид:

$$I_i = a + bI'_i$$
, $\pi p \mu r = 0.997 \pm 0.001$, (1)

где а=-1,542, b=0,575 -коэффициенты уравнения регрессии, отражающие в реальных условиях пропускную способность атмосферы. Радиационный режим деятельной поверхности часто характеризуется величиной радиационного баланса (R_i). Это знакопеременная величина как в сезонном, гак и в суточном ходе. Суточное значение R_i , как результирующая величин I_i , отраженной радиации (R_{iotp}) и эффективного излучения (E_{iotp}), определяется по уравнению:

$$R_{i}=I_{i}-R_{i0Tp}-E_{i3\Phi}. (2)$$

Отраженная радиация (R_{iOTp}) функционально связана с альбедо подстилающей поверхности (A_i) и определяется как:

$$R_{iorp.} = A_i I_i. (3)$$

Эффективное излучение (Етэф.) определяется как:

$$E_{i30} = E_{i3} - E_{ia}$$
, (4)

где E_{i3} - излучение собственно земной поверхности; E_{ia} - встречное излучение атмосферы. В результате анализа экспериментальных данных установлена тесная связь среднесуточных величин эффективного излучения ($E_{i3\varphi}$) и температур поверхности почвы ($t_{lпочв}$). Для метеопункта Минск эта зависимость имеет вид:

$$E_{i ext{i} ext{i$$

Выполненное исследование дает возможность количественно оценить основную составляющую теплоресурсов, участвующих в процессах тепловлагомассообмена.