ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ГЕОДЕЗИЧЕСКОГО ПРОЕКТИРОВАНИЯ ВЕРТИКАЛЬНОЙ ПЛАНИРОВКИ НЕЗАСТРОЕННЫХ УЧАСТКОВ

Позняк А.С.

Исходная топографическая поверхность участка прямоугольной формы представляется для проектирования двумерным массивом фактических отметок центров квадратов со сторонами 20 м. При вводе в ЭВМ исходных данных указываются размер массива по строкам и столбцам, предельно допустимые проектные продольные и поперечные уклоны

поверхности

Преобразование рельефа местности выполняется программно системой наклонных плоскостей-квадратов со сторонами 60 м. При решении в первом приближении задач вертикальной планировки использовано свойство отметок центров тяжести укрупненных квадратов, в соответствии с которым проведенные через них любые плоскости (кроме вертикальных) позволяет получать баланс объемов земляных масс в выемках и насыпях. Корректировка в последующем существующих уклонов исходной поверхности с наименьшими проектными изменениями обеспечивает минимум земляных работ.

Алгоритм автоматизированного проектирования вертикальной планировки включает: контроль правильности (диагностику) фактических отметок; вычисление средневзвешенных отметок центров шестидесятиметровых квадратов; исправление отметок с учетом проектных уклонов; линейную интерполяцию и экстраполяцию при вычислении проектных отметок центров исходных, двадцатиметровых квадратов; вычисление объемов перемещаемого плодородного слоя почвы, объемов выемок и насыпей; репение транспортной задачи; определение средневзвешенного расстояния перемещения грунта и стоимостных затрат на бульдозерные работы; формирование стандартных рабочих планов организации рельефа и земляных масс; вычисление общих и удельных показателей вертикальной планировки.

ГЕОДЕЗИЧЕСКИЕ НАБЛЮДЕНИЯ КРИТИЧЕСКИХ ОСАДОК СВАЙНЫХ ФУНДАМЕНТОВ МЕТОДОМ УЧЕТА СКОРОСТЕЙ ИХ РАЗВИТИЯ

Сарайкин Н.И.

Условия контроля свайных фундаментов по предельным деформациям $\Delta S_t \leq \Delta S_{\text{пред}}$ в экспериментальных наблюдениях оказалось недостаточным. В исследованиях геодезические измерения величин S_t осадок свайных фундаментов определялись строго поэтапно и фиксировался период появления и раскрытия трещин в строительных элементах. Такая методика наблюдений позволила проследить динамику осадок в непо-

средственной связи с ростом нагрузки, скоростью V_t развития осадки и

скоростью неравномерной осадки $V_{\Delta S}$.

Как показали экспериментальные наблюдения экстремальные скорости развития неравномерных осадок ($V_{\Delta S}$ - главная причина развития трещин) соответствуют максимальным темпам роста нагрузки при монтаже. Контрольные измерения по $V_{\Delta S} \leq V_{\Delta S \text{пред}}$ позволили проследить время раскрытия трещин в конструктивных элементах. Анализ выполнен совместно по результатам деформаций и их скорости с учетом геологии грунтов по всей плопади фундамента. Интегральная поверхность, образуемая деформациями точечной модели осадочных марок, описывается формулой, позволяющей вычислить скорости на любой момент времени приложения нагрузки. При интегральном представлении деформаций в виде условной плоскости имеется возможность определить и скорости неравномерных осадок и естественно, регулировать процесс монтажа строительных элементов.

В результате обработки геодезических наблюдений свайных фундаментов и выполненных определений поэтапного изменения интегральных поверхностей получены величины V_t и $V_{\Delta S}$. В период появления микротрещин обычно $V_{\Delta S} \le 0,68\,$ мм/сут. При $V_{\Delta S} \le 1,2\,$ мм/сут. (в экспериментальных геодезических наблюдениях на слабых грунтовых основаниях) было отмечено начало раскрытия трещин, при этом скорость осадки достиг ала $V_t = 2\,$ мм/сут. В СНиП скорости осадок регламентируются в см/год, что является недостаточным фактором контроля ка-

чества в сгроительстве.

К ВОПРОСУ КОНСПЕКТИРОВАНИЯ ЛЕКЦИЙ ПО ИНЖЕНЕРНОЙ ГЕОДЕЗИИ СТУДЕНТАМИ 1 КУРСА

Синякина Н.В.

Одной из первоочередных задач Высшей школы, является подготовка творческого, теоретически грамотного инженера. Эти основы закладываются с первых шагов по лабораториям института, знакомства с

преподавателями и с новыми видами учебных занятий.

Еще в 18 веке в книге для домашнего обучения дворянских детей в России, на равных с арифмстикой, грамматикой, географией, ботаникой дается курс низшей геодезии и топографии. Сегодняшние первокурсники, как правило, не имеют представления о дисциплине геодезия. Очень важно правильно построить изложение совершенно нового лекционного материала с учетом отсутствия навыков конспектирования у студентов. Необходимо заметить, что количество студенческих групп в потоке обратно пропорционально качеству и особенно это отражается на младших курсах.

Наряду с общими требованиями и положениями, лекции по инженерной геодезии должны отвечать специфическим требованиям и приемам с