14	Коэффициент паропроницаемости, мг/м·ч·Па	0,01 (норма – не менее 0,005)
15	Водопоглощение через 24 ч, %	0,25

Лабораторные исследования показали, что разработанная водно-дисперсионная экологичная фасадная краска на основе комбинированного плёнкообразователя имеет высокую паропроницаемость и низкое водопоглощение, что свидетельствует о формировании «дышащего» ЛКП с высокой гидрофобностью. Сочетание таких характеристик и обусловливает высокую атмосферостойкость покрытия — более 100 циклов, что составляет 10 условных лет эксплуатации в умеренном климате, причём адгезия ЛКП к подложке после проведения испытаний составляет около 90% от начальной (А₁₀₀ = 0,9•A₀). Высокую укрывистость фасадной краски обеспечивает сочетание наполнителей (молотый микромрамор и микротальк) и пигмента с различной формой частиц. Благодаря комбинированному плёнкообразователю, включенному в состав рецептуры фасадной краски, достигается высокая светостойкость ЛКП, которая является важнейшим показателем, характеризующим устойчивость ЛКП к атмосферным воздействиям (воздействию ультрафиолетового излучения, атмосферного кислорода, влажности, кислотных дождей, колебаний температуры).

Список цитированных источников

- 1.Брок, Т. Европейское руководство по лакокрасочным материалам и покрытиям / Т. Брок, М. Гротеклаус, П. Мишке. пер. с англ. под ред. Л.Н. Машляковского. М.: Пэйнт-Медиа, 2004. 548 с.
- 2. Охрименко, И.С. Химия и технология плёнкообразующих веществ / И.С. Охрименко, В.В. Верхоланцев. Л.: Химия, 1978. 392 с.
- 3.Яковлев, А.Д. Химия и технология лакокрасочных покрытий / А.Д. Яковлев. Л.: Химия, 1981. 352 с.
- 4.Стойе, Д. Краски, покрытия и растворители / Д. Стойе, В. Фрейтаг; пер. с англ. под ред. Э. Ф. Ицко. СПб.: Профессия, 2007. 528 с.
- 5. Карякина, М.И. Испытание лакокрасочных материалов и покрытий / М.И. Карякина. М.: Химия, 1988. –272 с.

УДК 624.012.45

У ЧжиБинь магистрант

Научные руководители: Кондратчик А.А., Кондратчик Н.И.

ПРИМЕНЕНИЕ НАПРЯГАЮЩЕГО БЕТОНА В СТРОИТЕЛЬСТВЕ

Проектирование железобетонных конструкций базируется на пяти основных принципах. Это: обеспечение безопасности, пригодность к нормальной эксплуатации, долговечность, технологичность, экономичность (см. табл. 1).

Таблица 1 – Основние принципы проектирования железобетонных конструкций

№ п/п	Наименование	Требования при реализации
1	Безопасность	Расчет по первой группе продельных состояний /определение размеров и армирования/
	Пригодность к нормальной эксплуатации	Расчет по второй группе предельных состояний, /расчет трещиностойкости, по раскрытию трещин, по деформациям/
3	Долговечность	Защита от разрушения /учет агрессивности среды

эксплуатации, использование защиты/			
4	Технологичность	Снижение затрат при массовом производстве	
5	Экономичность	Затраты на изготовление и эксплуатацию	

К основныи недостаткам железобетонных конструкций отнесем плохую работу на растяжение и усадку бетона, что способствует появлению в ней трещин. Повысить сопротивление бетона появлению трещин можно создавая в сечении искуственно напряжения сжатия (см. рис. 1).

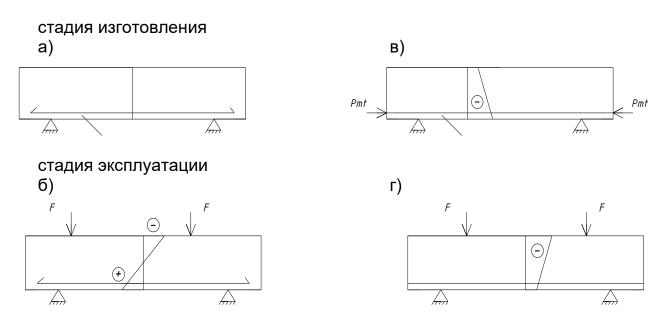


Рисунок 1 – Распределение напряжений в нормальном сечении балки с обычной (а,б) и преднапряженной (в, г) арматурой

Создание в сечении элемента напряжений сжатия на практике выполняется предварительным напряжением арматуры до приложения нагрузки (см. табл. 2)

Особый интерес представляет преднапряжение арматуры при расширении бетона, позваляющий моделировать напряжения сжатия в сечении в любом напрявлении согласно ориентации арматуры. Такой спасоб предварительного напряжения арматуры получие название физико-химический способ.

Таблица 2 – Приемы создания искусственных напряжений в железобетонных конструкциях.

Приег	иы создания	Напряженное состояние		
методы	способы	вид	уровень	
-на упоры;	-механический;	-одноосное;	-полный;	
-на бетон;	-электротермический;	-двухосное;	-ограниченное;	
-при расширении	-физико-химический;	-трехосное	-частичное.	
бетона.	-комбинированный.	(объемное).		

Расширение бетона происходит при расширении вяжущего-напрягающего цемента (НЦ), а бетон с таким вяжущим называют напрягающим бетоном. Расширение структуры бетона происходит при образовании и увеличении в объеме кристаллов гидросульфоалюмитанов кальция. При наличии сил сцепления между бетоном и арматурой деформируется и арматура (преднапрягается). Благодаря упругим свойствам арматуры, она пытаясь вернуть-

ся в исходное состаяние воздействует на бетон, создавая напряжения сжатия. Такие конструкции из напрягающего бетона называют самонапряженными. (см.табл. 3)

Таблица 3 – Классификация самонапряженных конструкций

Характеристика	Вид самонапряженных конструкций				
отличительных	СУ	С	СК		
особенностей			a³	б³	B^4
Способ пред- напряжения арматуры	физико- химический	физико- химический	физико-химический и комбинированный		
Уровень напряжений обжатия бетона	не нормируется	до 6 МПа	до 0.75 f _{cm}		
Использование напряженного состояния	не учитывается в расчете (для компенсации усадки)	учитывается в расчете			

- 1. С, СУ конструкции с арматурой напрягаемой физико-химическим способом.
- 2. СК конструкции, где вся арматура напрягается физико-химическим способом, а рабочая дополнительно и иным способом (комбинированным).
- 3. Рабочая арматура напрягается комбинированным способом вся (a^3) или только часть (b^3).
- 4. Основная рабочая арматура имеет сцепление с бетоном (a^3 , b^3) или не имеет сцепления с бетоном(b^4).

Применение напрягающего цемента в бетоне позволяет получить дополнательние качественные характеристики по сравнению с бетоном на портландцементе:

- -формируется фиброобразная структура бетона за счет иглоподобных кристаллов этренгита;
- -в структуре цементного камня в бетоне объем открытых пор на 20...25% меньше;
 - -повышается водонепроницаемость бетоне (W≥12) ;
 - -снижается газо- и бензопроницаемость;
 - -возрастает коррозионная стойкость:
 - ·в сульфатной среде в 3 раза;
 - ·в магнезиальной среде в 2 раза;
 - ·в хлорсодержащей среде в 3 раза.
 - -возрастает на 50...200 циклов морозостойкость.

Возможность использовать на практике положительные характеристики напрягающего бетона определяет и область его использования в строительстве (см.табл.4).

Таблица 4 – Области применения напрягающих бетонов

	Таблица 4 – Области применения напрягающих бетонов					
№ п/п	Область примения	Новое строите- льство	Ремонт (усиление)	Достигаемая цель		
	1 ЖИЛЫЕ И ПРОИЗВОДСТВЕННЫЕ ЗДАНИЯ					
1.1	Жилые дома – объемные блоки типа «колпак»	+	+	Обеспечение трещиностойкости		
1.2	Жилые дома – безрулонные кровли	+	+	Обеспечение трещиностойкости		
1.3	Производственные здания - полы - фундаментные плиты	+	+	Отсутствие швов, отказ от гидроизоляции, повышение истираемости		
1.4	Жилые дома – элементы мокрых помещений	+	+	Обеспечение гидроизляции		
1.5	Производственные здания – покрытия (оболочки)	+	+	Создание монолитной конструкции		
1.6	Производственные здания – гаражи (полы)	+	+	Создание бензо-, маслонепроницаемости покрытий, отказ от гидроизоляции		
1.7	Перекрытия и покрытия из Мелкоразмерных элементов	+	+	Объединение в монолитную конструкцию, увеличение несущей способности		
		РТИВНЫ	Е СООРУЖ	ЕНИЯ		
2.1	Бассейны – ванны сборно- монолитные и монолитные	+	+	Отказ от гидроизоляции		
2.2	Спортивные поля – бес- шовные охлажающие плиты	+	+	Снижение количества швов, отказ от гидроизоляции		
2.3	трибуны	+	+	Отказ от гидроизоляци <u>и</u>		
	3 ИНЖ	ЕНЕРНЫ	Е СООРУЖ	ЕНИЯ		
3.1	Метро -вибропресованная отделка Тоннелей, швы -траншейные стены	+	+	Водонепроницаемость		
3.2	Безнапорные и низконапорные трубопроводы - трубы	+	+	Трещиностойкость, водонероницаемость		
3.3	Мосты – плиты проезжей части	+	+	Отсуствие швов, отказ от гидроизоляции		
3.4	Емкостные сооружения – стенки, днища,швы	+	+	Объединение сборных элементов в монолитную конструкцию,обеспечение трещиностойкости и водонепроницамости		
3.5	Аэродромы - покрытие	+	+	Уменьшение количества швов, увеличение долговечности		
3.6	Технологические сооружения в агрессивной среде	+	+	Защита от коррозии, герметичность		
3.7	Дороги – бетонное покрытие	+	+	Уменьшение количества швов, увеличение долговечности		
3.8	Подземные переходы	+	+	Отказ от гидроизоляции, водонепроницаемость		

В качестве примера приведем некоторые конкретные конструкции (объекты) в Китае, где был использован напрягающий бетон.

a)

6)

Рисуноки 2 – Использование напрягающего бетона при изготовлении труб

Рисунок 3 – Секретный канал в г.Пекине

a)

б)

Рисуноки 4 – Устройство бетонной дороги

Рисунок 5 – Строительство мостов

Рисунок 6 – Арогнал плотина в Китае

Рисунок 7 – конструкции морских нефтяных платформ

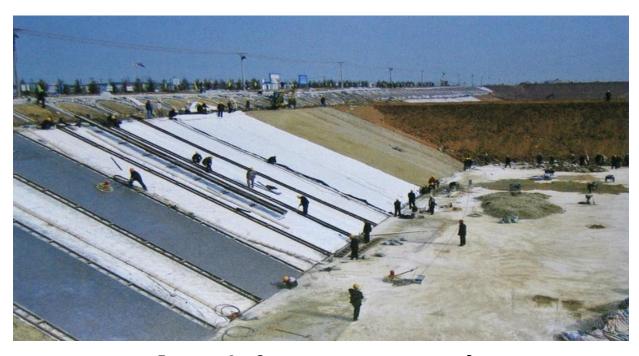


Рисунок 8 – Открытие хранилища воды

Рисунок 9 – Конструкции лотков

Рисунок 10 – Железнодоржные шпалы

Рисунок 11 – Отделка тоннелей метро

УДК 691:620.1 **Цеван А.В.**

Научный руководитель: доцент Яловая Н.П.

ИССЛЕДОВАНИЯ СОСТАВА БЕТОНА В ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ. «СИНДРОМ НЕЗДОРОВОГО ЗДАНИЯ»

Целью настоящей работы является исследование состава бетона в железобетонных конструкциях и определение причины формирования «синдрома нездорового здания» в помещениях из железобетонных конструкций.

Экология жилища как область знаний призвана систематизировать методы создания и поддержания оптимальной жилой среды. Для этого учитываются климат и ландшафт участка, ориентация и размещение дома, материалы стен и перекрытий, система кондиционирования и вентиляции, звуковой и световой комфорт. Следовательно, актуальной проблемой является соблюдение в зданиях различного назначения, как оптимальных параметров микроклимата, так и экологических требований к состоянию среды внутри помещений.

Для решения данной проблемы необходимо особое внимание уделять:

- изучению влияния материалов на среду обитания и здоровье человека при проведении строительных и ремонтных работ;
- разработке экологически безопасных методов проведения строительных и ремонтных работ, использовании при строительстве и отделке качественных строительных материалов.

Экологическая оценка нагрузок строительных материалов на окружающую среду должна проводиться комплексно, учитывая как экологическую, так и