- выпуск конкурентно способной продукции;
- сокращение импорта зарубежных цтф;
- увеличение экспорта оборудования в страны СНГ.

Заключение. Рассмотрены современное состояние оборудования в странах СНГ и особенности развития его за рубежом. Проанализированы перспективы развития центрифуг в Республике Беларусь и странах СНГ и даны рекомендации для дальнейшего совершенствования техники и технологии обработки шерстных и слизистых с/п.

Работа представляет интерес для специалистов мясоперерабатывающей отрасли, а также для предприятий-разработчиков, изготовителей и поставщиков технологического оборудования для обработки шерстных и слизистых с/п.

Список цитированных источников

- 1. Мясожировое производство: убой животных, обработка туш и побочного сырья / Под ред. А.Б. Лисицына. М.: ВНИИ мясной промышленности, 2007.
- 2. Шаршунов, В.А. Технологическое оборудование мясоперерабатывающих предприятий / В.А. Шаршунов, И.М. Кирик. Минск: Мисанта, 2012.
- 3. Паспорт на цтф для обработки слизистых и шерстных с/п моделей БАА-ФОС и БАА ФОШ.
- 4. Оборудование для мясной и птицеперерабатывающей промышленности. Отраслевой каталог. ЦНИИТЭИлегпищемаш. Москва, 1986.
- 5. Паспорт на цтф для обработки слизистых и шерстных с/п моделей В2-ФОС и В2-ФОШ ОАО «Брестмаш».
- 6. Руководство по эксплуатации и обслуживанию цтф для обработки шерстных с/п модели D45 компании «Ollarie&Conti» (Италия).
- 7. Руководство по эксплуатации и обслуживанию автоматической линии для обработки слизистых с/п модели «Р35 + R30 inlin» компании «Ollarie&Conti» (Италия).
- 10. Руководство по эксплуатации и обслуживанию автоматической линии для обработки слизистых с/п компании «LaParmentiereP. Blache&Compagnie» S.A. (Франция).

УДК 664.9

Кухарук Е.С., Титовец Р.А.

Научный руководитель: старший преподаватель Ляшук Н.У.

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ РЕЖИМОВ ОБРАБОТКИ С/П РАЗЛИЧНЫХ ВИДОВ

1. Общие данные

Введение. На конструкцию обрабатывающего оборудования влияют особенности структуры и строения субпродуктов (далее с/п), по которым они подразделяются на 4 вида:

- -мякотные ливер (печень, сердце, легкие, диафрагма, трахея с горлом), почки, селезенка, мясная обрезь, вымя, язык и мозги;
 - мясокостные головы КРС, мясокостные хвосты, цевки;
- слизистые (далее С.) рубцы, книжки и сычуги крупного рогатого скота, рубцы мелкого рогатого скота и свиные желудки;
- шерстные (далее Ш.) головы свиные, бараньи, путовый сустав крупного рогатого скота, ножки свиные и бараньи, губы говяжьи, уши свиные и говяжьи, хвосты свиные. С/п, входящие в каждый вид, также отличаются друг от друга строением и структурой. Для разработки гаммы центрифуг (далее цтф) раз-

личной производительности необходимо знать оптимальные режимы обработки с/п разных видов. Весь объем исследований планируется выполнить в три этапа (таблица 1). В настоящей работе представлена программа и методика выполнения исследований и результаты выполнения первого этапа.

Цель исследований. Целью настоящей работы является получение экспериментальным путем данных оптимальных режимов обработки с/п различных видов на цтф, а также выбора оптимальной конструкции рабочих органов цтф, для каждого вида с/п.

Объект исследования. Объектом исследования являются цтф отечественного и зарубежного производства, оснащенные регулируемым приводом и пультом программного управления и находящиеся в эксплуатации на мясокомбинатах Брестской области, указанные в таблице 1.

Требования, предъявления к качеству обработанных с/п. С/п должны быть без признаков порчи, тщательно очищенные от загрязнений, соответствующими определенным требованиям по качеству обработки и органолептическим показателям (консистенции, цвету, структуре, форме). Качество обработки должно соответствовать с ОСТ 4954—73(стандарт на обработанные мясные субпродукты) [1].

Параметры режимов обработки с/п. Режимы обладают следующими параметрами:

- время обработки;
- температура воды, подаваемой в цтф для обработки;
- окружная скорость вращения ротора.

Кроме того, на качество обработки с/п оказывает влияние конструкция ротора и барабана.

Так как время обработки и температура воды подаваемой в цтф для обработки в каждой операции устанавливается технологической инструкцией и задается программным устройством, то экспериментальному исследованию подлежит окружная скорость вращения ротора, которая в свою очередь влияет на технические характеристики цтф, а также влияние конструктивных особенностей ротора и барабана на качество обработки с/п.

2. Программа выполнения исследований

Исследования проводятся во время прохождения студентами практики на мясокомбинатах Брестской области, где эксплуатируются цтф, оснащенные регулируемым приводом и пультом программного управления. Весь объем исследований планируется выполнить в три этапа для с/п и с использованием цтф, указанных в таблице 1. В настоящей работе представлены результаты исследований, выполненных на первом этапе.

Таблица 1 - Программа выполнения исследований

№ этапа	Наименование мясокомбината	Исследуемые с/п	Модели оборудования	Сроки выполнения исследований
	ОАО «Брестский мясокомбинат	уши, а также говяжьи губы и уши;	lari&Conti»	Июль-октябрь 2015
	ОАО «Березовский мясоконсервный комб.»	С. –книжка КРС Остальные Ш. и С. с/п	P35 + P30 цтф компании «Laparmentiere»	Июль-октябрь 2016
	ОАО «Кобринский мясокомбинат»	Остальные Ш. и С. с/п		Июль-октябрь 2016

3. Методика проведения исследований

Исследования выполняются с использованием цтф, оснащенных регулируемым приводом и устройством программного управления режимами обработки с/п. Исследуемые с/п на первом этапе указаны в таблице 1. С/п, которые будут исследованы на этапе 2 и 3, будут согласованы с руководством мясокомбинатов дополнительно перед началом практики студентов. Перед началом исследования соответствующего вида с/п на пульте программного управления устанавливается соответствующая программа, которая учитывает требуемые температуры обрабатываемой воды для каждой операции, время выполнения каждой операции и цикла в целом в соответствии с технологической инструкцией:

- продолжительность шпарки и обезволашивания Ш. с/п 9-15 мин. при температуре воды 65...68 °C, продолжительность очистки после шпарки Ш. с/п 2-3 мин. в холодной воде [2];
- продолжительность шпарки С. с/п 6-7 мин. при температуре воды 66-78 °C, продолжительность очистки после шпарки С. с/п 2-3 мин. [2];
- коэффициент загрузки барабана цтф Ш. с/п 0,60...0,62; для С. с/п 0,10...0,15 [2]

Ознакомившись с принципом работы и техническими характеристиками цтф установлено: С. с/п обрабатываются с частотой вращения ротора 170...224 об/мин [3]; Ш. с/п обрабатываются с частотой вращения ротора 90...180 об/мин. [4].

Частота вращения ротора зависит от геометрических размеров цтф и конструктивных особенностей рабочих органов. Так как в существующих цтф нет возможности менять ротор, то используем рекомендации компаний - изготовителей, какой ротор применять для определенного вида с/п [3,4].

Устанавливаем цикличность изменения частоты вращения ротора 10 об/мин. Включаем цтф и производим обработку соответствующих с/п. Определяем по дисплею пульта программного управления установившиеся обороты ротора. Затем определяем окружную скорость обработки по формуле:

$$v = \omega \cdot r, \frac{n}{c}$$
 ГДе $\omega = \frac{\pi \cdot n}{30}$ – угловая скорость ротора, $\mathbf{c^{-1}}$;

частота вращения ротора, об/мин.;

г - радиус ротора, м.

После чего выгружаем обработанные с/п и производим органолептический анализ продукта (целостность структуры, качество обработки). Результат заносим в таблицу, форма которой указана ниже.

Форма таблицы результатов исследований

ſ	Наим-е	Угловая	Окружная				
	шаим-с	частота	скорость	Консистен	Цвет	Целостность	Качество
	c/ u	ротора,	ротора,	ция	цьсі	(структура)	обработки
c/ <u>m</u>	C/II	об/мин	M∕C				

4. Результаты исследований

Исследования по определению оптимальных режимов обработки С. с/п. Исследования проводились на обработке книжек КРС с частотой вращения ротора n=170...210 об/мин. с цикличностью изменения 10 об/мин. После каждой обработки сырья проводился органолептический анализ продукта (проверялась целостность структуры, качество обработки). Данные проведенных исследований представлены в таблице 2.

Таблица 2 - Опытные данные проведенных исследований обработки С. с/п

Наим-е с/п	Угловая частота ротора, об/мин	Окружная скорость ротора, м/с	Консистен ция	Цвет	Целостность (структура)	Качество обработки
	170	8,44	плотная	Серый, с кровяными пятнами	Без изменений	Не очищена от слизистой оболочки
	180	11,7	Слегка эластичная	Серый, без кровяных пятен	Без изменений	Слизистая оболочка отделяется не полностью
Книжка КРС	190	12,33	Плотная, эластичная	Серовато- белый	Соответствуе т готовому продукту	тщательно обезжирена
	200	12,98	Эластичная местами рыхлая	Серовато- белый	Теряется форма	Неудовлетвор ительное
	210	13,63	Рыхлая	Серый, с белыми пятнами	разбивается на куски, многочисленн ые порезы	Неудовлетвор ительное

Вывод: при окружной скорости ротора 12,33 м/с обработка книжек КРС проводилась качественно: слизистая оболочка полностью отделялась от готового продукта, сохранялась целостность структуры, консистенция книжек эластичная, защищена от бахромок.

Исследования по определению оптимальных режимов обработки \mathbf{U} . с/п. Исследования проводились на обработке свиных ножек и свиных ушей с частотой вращения ротора n=120-200 об/мин. с цикличностью изменения 20 об/мин. После каждой обработки сырья проводился органолептический анализ продукта (проверялась целостность структуры, качество обработки). Описание проведенных исследований представлено в таблице 3.

Таблица 3 - Опытные данные проведенных исследований Ш. с/п

Наим-е обрабат. продукта	Обороты ротора, об/мин	Окружная скорость ротора, м/ç	Консистенция	Целостность структуры	Качество обработки
свиные	120	6,8	кытопп	Форма не меняется	Наблюдаются следы крови, щетины;
ноги и уши	140	8,65	плотная	Форма не меняется	Наблюдается незначительное отбеливание продукта
	160	9,88	плотная	Соответствует готовому продукту	качественное отделение эпидермиса (отбеливан ие) ушей и ножек,
	180	11,43	рыхлая	с/п разбивает на части	Неудовлетворительно
	200	12,36	рыхлая	с/п теряют целостность	Неудовлетворительно

Вывод: при окружной скорости ротора $v = 9,88\,$ м/с производится качественная обработка свиных ножек и свиных ушей.

Особенности конструкции рабочих органов цтф. Главными рабочими органами цтф является ротор и барабан, непосредственно участвующие в процессе очистки субпродуктов от грязи и шлама. Для обработки С. с/п применяют 2 типа роторов:

- лучевой (рисунок 1), состоящий из стального диска и обода, сваренного между собой стальными прутьями и имеющих насечки на прутьях на поверхности соприкосновения с сырьем;
- абразивный, состоящий из стальной чаши, заполненной мелкозернистым абразивом, имеющей выпуклые бугры на поверхности.

Для оптимальной обработки С.с/п необходимо применять барабан, на внутренней стенке которого приварены выпуклые и прямые ребра толщиной 10 мм (рисунок 3). Для обработки Ш. с/п применяют 2 типа роторов:

- лепестковый (рисунок 2), состоящий из сплошного стального диска, на который наварены лепестки и имеющий множество отверстий, через которые удаляется шлам;
 - ротор с наваренными ребрами, расположенными под углом.

Рисунок 1 – Лучевой ротор для обработки С. с/п

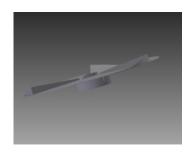


Рисунок 2— 3D-модель лепесткового ротора для обработки Ш. с/п



Рисунок 3— 3D-модель барабана для обработки С. с/п

Для оптимальной обработки Ш.с/п необходимо применять барабан, на стенке внутренней части которого приварены пространственные выпуклые ребра. Внутренняя часть барабана имеет перфорированную поверхность.

Каждый ротор и барабан центрифуги подбирается конструктивно, учитывая процесс обработки сырья и влияние рабочих органов на структуру сырья при обработке. Для лучшего удаления шлама и грязи в процессе обработки субпродуктов к нижней части ротора приваривается болт или пластины. Конфигурация и форма ребер у каждой центрифуги своя. Для обработки С. с/п применяются ребра с острыми кромками, а для обработки Ш. с/п — со сглаженными ребрами.

5. Заключение

- 1. Исследованы оптимальные режимы обработки отдельных с/п и установлено:
- для обработки книжек КРС необходимо применять обработку с окружной скоростью ротора v = 12,33 м/с, использовать лучевой ротор, а также конструкцию барабана цтф с наваренными ребрами;
- для обработки свиных ног и ушей необходимо применять обработку с окружной скоростью ротора v = 9.88 м/с, использовать лепестковый ротор, а также конструкцию барабана цтф с наваренными выпуклыми ребрами.

2. Для выполнения исследований в полном объеме необходимо изготовить опытный образец универсальной центрифуги, укомплектованной роторами различных конструкций, оснащенный регулируемым приводом и устройством программного управления режимами обработки с/п.

Список цитированных источников

- 1.ОСТ 4954—73 Стандарт на обработанные мясные субпродукты.
- 2. Ивашов, В.И. Технологическое оборудование предприятий мясной промышленности.
- 3. Руководство по эксплуатации и обслуживанию центрифуги для обработки шерстных субпродуктов модели D45 компании «Ollarie&Conti» (Италия).
- 4. Руководство по эксплуатации и обслуживанию автоматической линии для обработки слизистых субпродуктов модели «P35 + R30 inline» компании «Ollarie&Conti» (Италия).

УДК 621

Марченя Д.Н.

Научный руководитель: старший преподаватель Добрияник Ю.А.

ИССЛЕДОВАНИЕ И НАУЧНОЕ ОБОСНОВАНИЕ РАЗРУШЕНИЯ УЗЛА ПРИВОДА ГЛАВНОГО ДВИЖЕНИЯ ГИБОЧНОГО СТАНКА

Целью настоящей работы является исследование и выявление причин неоднократного разрыва вала гидроцилиндра привода главного движения (ПГД) на гидравлическом листогибочном станке MVD INAN серии CNCHAP (производства Турции) для гибки сложных изделий, к которым предъявляются высокие требования по точности и качеству. С данной проблематикой столкнулись специалисты металлообрабатывающего предприятия СООО "СтальПродукт-Инвест", которая и была совместно решена учебно-производственными мастерскими (УПМ) и кафедрой машиноведения.

За последние четыре года эксплуатации гибочного станка происходили неоднократные разрывы вала (рисунок 1) гидроцилиндра ПГД. Предприятие СООО "СтальПродукт-Инвест" специализируется на изготовлении и производстве оборудования для нужд мясо-молочной промышленности и аграрной отрасли из нержавеющей стали в Республике Беларусь. Данный вид оборудования на предприятии работает в две смены и при полной загрузке, поэтому его поломки, а соответственно и незапланированные простои обходятся достаточно дорого. После первой поломки были приглашены специалисты с сервисного центра (г. Минск), которые поменяли вал, однако через полгода вал разорвало снова. Для выяснения причины разрушения данного узла учебно-производственными мастерскими совместно с кафедрой машиноведения был проведен полный системный анализ и в дальнейшем сделаны соответствующие выводы.

Рисунок 1 – Вал гидроцилиндра