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LABORATORY WORK № 9 
Determination of stresses in a metal beam at transverse (lateral) bending  

(uniplanar bend) 
 
I. Work purpose: Theoretically and experimentally to determine the stress at 

the given points of the beam cross sections. Investigate the distribution of normal 
stresses over the beam cross section and determine the magnitude and direction of the 
main stresses in the neutral layer of the beam. 

 
II. Content of work 

The metal beam of double-T section is loaded with F force applied on the 
console. Tension is defined in three sections (I, II, III) and in points of sections, as 
shown in fig. 9.1. 

 

 
а) 



4 

 
b) 

Fig. 9.1. – Beam appearance (a) and scheme (b) 
 

a) theoretical determination of stresses 
At transverse bending normal stresses at any point in the cross section of the 

beam are determined by the formula: 

,
x

M
y

I
σ = ±        (9.1) 

where M – bending moment in the considered section; Ix – axial moment of inertia of 
section; у – ordinate of a point in which stress is defined. 

It is easy to determine the sign of tension by the M diagram (the diagram of M 
should be plotted on the stretched fibers). 

From a formula 9.1 it is visible that at у = 0, σ =0, and at max

min:
2

σσ == h
y . 

The stress-strain condition research in beams shows that on a neutral axis 
(у=0) deformation of pure shift takes place (fig. 9.2) i.e. τσσ == minmax , where 

σmax; σmin – principal stresses acting (are directed) at an angle 45° toward beam axes; 
τ – shear stress. 

 
Fig. 9.2. – Stresses in a point at Q>0 
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Shearing stress is determined by Zhuravsky's formula: 

x

x

Q S

I d
τ ⋅=

⋅
,      (9.2) 

where Q – shear force in the considered section; Ix, Sx, d – geometrical characteristics of 
section (accepted from range for rolling profiles cross-sections (for the double-T section)). 
 

b) experimental determination of stresses 
Electric tensiometers (wire sensors of ohmic resistance) are widely used. The 

sensor is pasted by special glue on the studied surface in the set points (fig. 9.1). 
The results of measurements of stresses are processed by a computer. As a re-

sult, we obtain experimental stress values at 13 points of the beam. 
 

III. Order of carrying out tests 
1. To get acquainted with the resistance strain gauge and tensiometer. 
2. To study the device and work of a laboratory unit, a technique of measurement of 
stress by means of electrotensometry. 
3. To sketch the scheme of a beam, to measure the sizes with an accuracy of 1 mm (а; 
b; с; т; l ; h) specified in the fig. 9.1, b. To switch on a computer and in no-load con-
dition of a beam to take consistently indications (of a strain gauge) for all sensors 
pasted in sections I II, III. 
4. To load a beam loading of F and again to take indications for the corresponding 
sensors. 
5. Determine the experimental values of the stress. 
To enter data of calculation in table 9.1. 

 

IV. Processing of results of an experiment 
1. Using the statics equations, basic reactions of the supports are determined. 
2. Plot diagrams of shearing forces and bending moments. 
3. From a range of rolling profiles (for the I-beam No.14) geometrical characteristics 
are written out. 
4. Stresses in the studied points (of the considered sections) is determined by formu-
las (9.1–9.2). In one of sections plot σ diagram. Results of calculation are entered in 
table 9.1. 
5. The results received analytically and experimentally are compared. The errors % is 
determined by a formula: 

exp

100%
theor
i i

theor
i

σ σδ
σ

−= ⋅ .                                           (9.4) 

 

V. Conclusions 
The conclusions should answer the questions posed by the purpose of laborato-

ry work. 
After analyzing the table of experimental data, you can make sure that the ex-

perimental plot of normal stresses is almost a straight line. So the hypothesis of flat 
sections (Bernoulli hypothesis) should be confirmed. 
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Comparing theorσ and expσ  showing that the results are the same or slightly dif-

ferent from each other. This allows us to draw a conclusion about the permissible ap-
plication of those hypotheses and simplifications that are accepted in the theory of 
transverse bending. 
 
Table 9.1 

Sections 
Measurement  

point 

Stresses 

% discrepancy 
expσ , 

МPа 

theorσ , 

МPа 

I-I 

1    
2    
3    
4    
5    
12    
13    

II-II 
11    
14    
15    

III-III 

6    
7    
8    
9    
10    
16    
17    

 
Control questions 

1. What are the hypotheses and assumptions taken in the theory of bending? 
2. What is the hypothesis of flat sections? 
3. How are the normal stresses distributed over the height of the beam section? 
4. What is the stress state of the material at the studied points on the beam sur-
face? 
5. What is the position of neutral layer of a beam? 
6. Formulate a common goal of laboratory work. 
7. What is the formula determined by the normal bending stress at any point in the 
cross section of the beam? 
8. Why formula for the shear stresses in bending the beam is used? 
9. What is the direction of the main stresses at the level of the neutral layer of the 
beam and by what formula they are determined? 
10. What measuring instruments are used in laboratory work? 
11. What is measured by means of the sensors resistance? 
12. How are located (in relation to the longitudinal axis of the beam) sensors used 
to measure the deformation of fibers? 
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13. Show where the cross section of the beam has a pure shear? 
14. Describe the construction and principle of operation of the sensor. 
15. What kind of condition of strength for the normal and shear stresses? 

 
 

LABORATORY WORK № 10 
Determination of deformations in a metal beam at transverse (uniplanar) 

bending 
 

I. Work purpose: Theoretically and experimentally to define deflections and 
angles of rotation of the specified beam sections. 

 
II. Content of work 

The metal I-beam is loaded with a force F applied to the console. Deflections 
should be defined in sections 0, 1, and rotation angles in sections 0, A (fig. 10.1).  

Moving the center of gravity of the beam section in a direction perpendicular to 
the axis of the beam is called the deflection of the beam in this section or deflection 
of the beam section. The angle at which each section rotates relative to its original 
position is called the section rotation angle. 

 
Fig. 10.1. – Beam patterns 

Ix=572 cm4 
Е=2.1⋅105 МPa 
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a) theoretical determination of deflections and angles of rotation 
Deflections and angles of rotation of the set sections are defined by method of 

initial parameters. 
For any section of "z" on the site of AB the universal equation of deflections 

will have an appearance: 

  
( )33

0 0 ;
6 6

A
x z x x

R z aF z
EI y EI y EJ zθ

−⋅= + ⋅ − +    (10.1) 

where: xEI  – rigidity of a beam at a bend, 0 0; yθ – initial parameters, i.e. angle of ro-

tation and deflection, respectively, at the beginning of coordinates (section «0»). 
For determination 0θ  and 0y  we use a condition of fixing of a beam. 

( ) ( )

3

0 0

3 3

0 0

0,
; 6

;
0.

6 6

x A x x

A
x B x x

F a
EI y EI y EI a

as z a

as z a l F a l R l
EI y EI y EI a l

θ

θ

 ⋅= + ⋅ − == 
= + + ⋅ = + + − + =

  (10.2) 

Having solved the system (10.2) equations, we define 0xEI θ  and 0xEI y , and 

then 0 0; .yθ  

We define a deflection of section "1" from the equation (10.1) under a condi-
tion ,baz +=  i.e.   

( )3 3

1 0 0( ) .
6 6

A
x x x

F a b R b
EI y EI y EI a bθ

+ ⋅= + + − +    (10.3) 

We define an angle of rotation of basic section "A" from the universal equation 
of angles of rotation: 

    
2

0 .
2x A x

F a
EI EIθ θ ⋅= −      (10.4) 

 
b) experimental determination of deflections and angles of rotation 
For measurement of deflections of sections "1", "0" of a beam dial indicators 

(indicators of hour type, needle indicators) with an accuracy of 0,01 mm are used 
(fig. 10.1). The device and the principle of work are given in the section "Probing de-
vices"). 

 We determine the size of deflections by a formula: 

     ;cny ⋅=       (10.5) 

where n – indications of indicators (number of divisions); с – the division value of the 
indicator. 

For determination of an angle of rotation of section "0" the device (fig. 10.2) is 
used. 
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Fig. 10.2. – The device for determination of an angle of rotation (θθθθ0) 
1 – a bar (h = 1500 mm), 2 – a plumb, 3 – a ruler 

 
Owing to the smallnesses of deformations we can write down: 

   
h

tg 00
∆=θ≈θ , rad.     (10.6) 

Approximately the angle of rotation of basic section "A" (fig. 10.2) is:  

  0
A A

y
tg

a
θ θ≈ = .             (10.7) 

where 0y  it is determined by a formula (10.5). 
 

III. Order of carrying out tests 
The device of needle indicators, their installation and technique of definition of 

displacement with their help is studied. 
1. The scheme of a metal beam (fig. 10.1) is sketched, the sizes are measured (a; b; l), 
specified on the scheme. 
2. Tests are performed: 
a) prior to the loading of the beam in all indicators shall be set at zero, 
b) smoothly without jerking (jumping) the beam is loaded with a load F, 
c) the indicator readings are taken, as well as the horizontal offset (shift from initial 
position) of the plumb (∆). 
 

IV. Processing of results of an experiment 
1. On formulas (10.5; 10.6; 10.7) experimental values are defined: 0 1 0; ; ; Ay y θ θ  and 
results are entered in table 1. 
2. Basic reactions from the statics equations are defined. 
3. Analytically on formulas (10.1; 10.2; 10.3; 10.4) are defined 0 1 0; ; ; Ay y θ θ  and re-
sults are entered in table 1. 
4. Experimental and theoretical results are compared. The discrepancy % is deter-
mined by formulas: 
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exp exp

100 %; 100 %.
theor theor
i i i i

y theor theor
i i

y y

y θ
θ θδ δ

θ
− −= ⋅ = ⋅  

Table 10.1 

No. Section Indications 
Division 
scale of 

Counting 
on 

to plumb 
∆ 

(mm) 

Deflections of 
sections, y (mm) 

% 
discrepancy 

The angles of 
rotation of  

sections, θ (rad) 

%  
discrepancy 

  indicators indicator  Exp. Theor. (у) Exp. Theor. (θ) 

1 0          
2 А          
3 1          

 
V. Conclusions 

To give the analysis of experimental and theoretical results. 
 

Control questions 
1. What parameters characterize deformation at a uniplanar bend? 
2. What methods of determination of these parameters do you know? 
3. What differential dependence between a deflection and the angle of rotation of sec-
tion of a beam exists? 
4. Formulate the purpose of laboratory work. 
5. Describe the type of installation and devices used to measurement of deflections 
and angles of rotation of sections of a beam. 
6. What method is applied to theoretical determination of deflections and angles of 
rotation of sections? 
7. What is called rigidity of a rod at a bend? 
8. What is initial parameters and from what conditions they are defined? 
9. How according to the indication of the indicator the measured deflection is deter-
mined? 
10. Explain why after unloading of a beam indicators showed initial counting? 

 

LABORATORY WORK № 11 
Research of statically indeterminate beam 

 
I. Work purpose: To confirm the possibility of theoretical calculations of stat-

ically indeterminate beams using displacement equations, i.e. to compare the results 
of experimental determination of the moment of pinching of the beam with the theo-
retical one. On the basis of experimental data to establish a proportional dependence 
of the beam deflection on the load. 

 

II. Content of work 
  Statically indeterminate beams are widely used in engineering practice, be-
cause they are more economical, allowing to perceive large loads, to cover large 
spans. Such beams are produced by the introduction of additional support pins. In 
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these cases, the number of support reactions exceeds the number of possible statics 
equations. This leads to the compilation of additional equations related to the consid-
eration of deformations in beams. Additional equations are generalized displacement 
equations and can be solved in various ways. 

For carrying out a research on this work desktop installation (fig. 11.1) which 
represents the beam (1) made of strip steel of rectangular lateral section is used. The 
beam lies on two support (2) A and (7) B. Support A – isn't mobile, the support B can 
allow the beam to move (11). On a surface of a beam (1) there is a centimetric mark-
ing from a support A to a support B that allows to set position of suspenders (9) and 
(10). Except the hinge support the console G - a figurative form of rigide fixed sup-
port (pinching). A horizontal part of the console is executed in the form of a rail with 
a millimetric marking from a support A towards an end. 

The beam deflects when loading suspenders (9), (10). All lateral sections (in-
cluding and sections at the supports) undergoes turn. Together with basic section A 
the console (3) on a corner θА turns (fig. 11.2). The deviation is fixed by the indicator 
(8). Return of the console to initial situation with the purpose of an exception of turn of 
basic section A (embedded imitation) is made by means of load (6). Knowing the size 
and the location of these loads, it is possible to define the moment at the support A. 

 
a) 

 
b) 

Fig. 11.1. – Appearance (a) and scheme of installation (b) 
3 – beam; 2, 7 – supports; 3 – vertical part of the console; 4 – horizontal part of the console;  

9, 10 – replaceable loads; 6 – mobile load (Fo = 9,6 N); 8 – indicator; 11 – bed 
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Fig. 11.2. – Beam design diagram 

 

a) theoretical determination of the moment at the support 

 
 

Fig. 11.3. – The calculated scheme of a beam 
 

For determination of reaction of the MA and RA we write down the system of 
two equations: 

( )1 20; 0,A AA
M M R l F b c F c= − ⋅ + ⋅ + + ⋅ =∑     (11.1) 

( )32 3 3
1 20; 0.

2 6 6 6
A A

B

F b cM l R l F c
y

⋅ +− ⋅ ⋅ ⋅= + − − =    (11.2) 

The equation (11.1) represents the static equation, and the equation (11.2) – 
geometrical. 

Excepting RA reaction, we come to the following expression for the moment at 
the support A: 

( ) ( ) ( )22 2 2
1 2

22A

F b c l b c F c l c
M

l

 + ⋅ − + + ⋅ −
 = .   (11.3) 

Being set by values (sizes) of forces of F1 and F2 and also having chosen sizes 
a, b, с, we define the moment at the support A. 

 

b) experimental determination of the moment at the support A 
We load a beam by forces of FI and F2. For each case of loading we fix count-

ing (u) on the indicator (8). 
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Fig. 11.4. – Scheme for experimental determination of the moment at the support A 
 
By means of loads (6) we return indications of the indicator in home (initial) 

position that there corresponds equality to zero turn of section A. We fix counting lo 
on a scale of the console (fig. 11.4). The experimental value of the moment of the MA 
is calculated on a formula: 

0 0.
T
AM F l= ⋅       (11.4) 

 

III. Order of carrying out tests 
1. The indication of the indicator (8) is set to zero and loads are prepared (FO, F1, F2). 
2. The beam loads (with F1 and F2) and for each loading fix counting of the indicator (U). 
3. By means of loads (F0) return the indication of the indicator in home position (zero). 
4. Define distances from loads (F0) to support A. 
 

IV. Processing of results of an experiment 
1. For each case of loading is determined by a formula (11.4) support moment. 
2. The scheme of dependence "F – u" is elaborated  
3. The moment at the support theor

AM theoretically is determined by a formula (11.3). 
4. Results of measurements and calculations are entered in table 11.1. 
5. The % of discrepancy of experimental and theoretical determinations on a formula 
is defined: 

exp

100%.
theor
A A

theor
A

M M

M
δ −= ⋅  

Table 11.1 

№ 
Dimensions, m 

Replacement 
loads, N 

Indicator 
reading U, 

mm 

Moment, 
N·m 

δ, 
% 

l l0 a b c f F0 F1 F2 
theor
AM  exp

AM  
1 

 
0,8 

 
   

 
0,33 

       
2           
3           
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Notes:  

1. It is possible to determine theor
AM  by instructions of the teacher (by a comparison method 

deformations). 
2. To plot diagrams of lateral forces (Q) and bending moments (M) in statically indetermina-

ble beam. 

 
V. Conclusions 

To give the answer to the questions posed at statement of a research objective. 
 

Control questions 
1. Which beams are called statically indeterminate?  
2. What is the basic system?  
3. Which restrictings imposes on the beam support with a pinching? 
4. How the experimental value of the moment MA was determined? 
 5. How to determine the theoretical value of MA? 
 6. What supports are superfluous (redundant)?  
7. What kind of movement corresponds to the moment of pinching?  
8. What measuring device was used in the experiment?  
9. What is the role of load acting on the console?  
10. List the methods for determining displacement.  
11. What analytical method was used in this work to determine the moment of pinching? 

 
LABORATORY WORK № 12 

Research of oblique (unsymmetrical) beam bending 
 

1. Work purpose: Familiarization with the oblique (unsymmetrical) bending of the 
cantilever beam and comparison of experimental values of stresses, deflections with theo-
retical. Comparison of the results of oblique and transverse (uniplanar) bends. 

 
II. Content of work 

Installation consists of two identical console beams (console). Section of 
beams - an equilateral angles’. Beams are loaded with F force. In the set sections and 
points of sections stresses are defined, and also are defined deflections of the end of 
the console (fig. 12.1). 

 

Fig. 12.1. – Scheme of installation 
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а) theoretical determination of stress and deflections 

A. Unsymmetrical (oblique) bend. Unsymmetrical bend is called such type of 
a bend when the plane of action of bending moment doesn't match one of the main 
central axes of inertia of lateral section of a rod. The unsymmetrical bend can be pro-
vided as a combination of two uni-planar bends. 

 
Fig.12.2. – Unsymmetrical bend 

 

Normal stresses in any point of section Z can be determined by a formula (12.1): 

yx

x y

MM
y x

I I
σ = ± ± ,      (12.1) 

where ,cos,sin α⋅=α⋅= FFFF yx      (12.2) 

sin sin ,

cos cos ,
y x

x y

M F z F z M

M F z F z M

α α
α α

= ⋅ = ⋅ = ⋅

= ⋅ = ⋅ = ⋅
     (12.3) 

x, y — point coordinates where stresses is defined. 
We will accept the sign "+" or "–" in a formula (12.1) on deformation of a 

beam, i.e. without connecting it with signs of coordinates of a point and bending 
moments. 

In different sections of a beam at an unsymmetrical bend we will apply a method 
of superposition of forces to determination of deflections. We find (by different meth-
ods) a deflection from forces Fy and Fx, and we find a full deflection on a formula: 

  2
y

2
x fff += .      (12.4) 

The design diagram of a beam has an appearance (fig. 12.3). 
Stresses in points 1, 2, 3 respectively will be:  

   

,

,

,

3
y

y
3

x

x
3

2
y

y
2

x

x
2

1
y

y
1

x

x
1

x
I

M
y

I

M

x
I

M
y

I

M

x
I

M
y

I

M

−−=σ

+=σ

−=σ

 where  (12.5) 
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−°==

⋅α=⋅=⋅==

   (12.6) 

a)     b)  
 

Fig. 12.3. – Scheme of a beam 
 

Geometrical characteristics of section: 
894I87575 x ,, =××∠  cm4, 824I y ,=  cm4, 152v0 ,=  cm. 

We determine deflections of a free end of the console by the known formula: 

y

x
x EI

lF
f

3

3⋅= , 
x

y

y EI

lF
f

3

3⋅
=  .      (12.7) 

Note: 
To avoid torsion of a beam force of F is applied in a point C (the center of a bend), 

which is on crossing of average lines of flanges of an angle. 
 
В. Uni-planar bend. The design diagram of a beam has an appearance (fig.12.4). 

We determine stresses in points 4 and 5 by a formula: 

54
x

54 y
I

M
,, ±=σ .      (12.8) 

We determine a deflection of a free end by a formula: 

x

3

y EI3

lF
ff

⋅== .      (12.9) 
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Fig. 12.4. –Scheme of a beam 

 
b) experimental determination of stresses and deflections 

The stresses at the given points of the cross sections are found by the method of 
tensometry. For each point readings (counts) of load by means of electrotensometry 
method before and after the load are taken. The experimental stress values are calcu-
lated using a computer. 

We take deflections on indicators I, II, III (fig. 12.3–12.4). 
 

III. Order of carrying out tests 
1. With the help of a ruler with an accuracy of 1 mm we measure the dimensions of 
the beam.  
2. Set the indicator readings I, II, III to zero.  
3. For beams in the unloaded condition we write down of the tensometry readings for 
each point of the cross-sections.  
4. Load the beams with force F and take tensometry readings (of indicators I, II, III) 
using a computer.  
5. The results are recorded in table 12.1. 

 
IV. Processing of results of an experiment 

1. By formulas (12.5) and (12.8) we determine stress, and by formulas (12.4), (12.7) 
and (12.9) deflections at an unsymmetrical and uniplanar bend. 
3. We determine deflection value at an unsymmetrical bend by a formula (12.4), and 
we take fy on the indicator I, fx – on the indicator II. 
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Deflection value at uniplanar bend is determined by the indicator III. 
 

Table 12.1 
 

l, 
m 

a, m F, N 
Type 
of a 
bend 

N
o

. 
o

f p
o

in
ts

 

Stress, MPa Deflections, mm % discrepancy 

σ
exp σ

teor 
exp. theor. 

σ F 
fx fy f fx fy f 

1,2 1,02 200 

u
n

sy
m

m
et

ri
c 

1   

      

  

2     

3     

1,2 1,02 200 

u
n

i-p
la

n
ar

 

4   
– –  – –  

  

5     

 
V. Conclusions 

1. To give the analysis of results of experimental and theoretical researches. 
2. To compare stress and deflections an unsymmetrical and uniplanar bends. 

 
Control questions 

1. What bend is called unsymmetrical? Where fundamental difference between an un-
symmetrical and uniplanar bends? 
2. What is the principle of independence of action of forces? 
3. What purpose of work? 
4. How to define theoretically normal stresses at an unsymmetrical bending? 
5. What conclusions can be drawn on the basis of comparison of normal stress at an 
unsymmetrical and uniplanar bends? 
6. What condition of strengths at an unsymmetrical bend? 

 
 

LABORATORY WORK № 13 
Research of the unsymmetrical stretching of a straight-axis bar 

 

I. Work purpose: Theoretically and experimentally determine the normal 
stresses at the designated points of the cross section. Determine the position of the ze-
ro line. To confirm Hooke's law at off-center tension-compression and the law of dis-
tribution of normal stresses on the cross section of a bar (to plot their diagrams). 

 
II. Content of work 

The installation is a rectangular strip with sensors glued to its side surface. 
Tests are carried out on the machine UMM-5 (fig. 13.1). 
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a)  
b) 

Fig. 13.1. – Scheme of the machine UMM-5 (a) and the layout of strain sensors (b) 
 
a) theoretical determination of tension and position of the zero line (n.l.) 

 
Fig. 13.2. – Scheme of off-center tension-compression 

 
The off-center (unsymmetrical) tension-compression is compound resistance. 

At the same time in its lateral section work: ,,, yx MMN  i.e. ,FN =    

; ,x F y FM F y M F x= ⋅ = ⋅     (13.1) 

where ,F Fy x −  coordinates of a point of application of force of F. 
Normal stresses in any point of lateral section of a bar are determined by a for-

mula: 

n.l. 
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    yx

x y

MF M
y x

A I I
σ = + +      (13.2) 

where F – external force, A – the cross-section area, Ix, Iy – the principal moments of 
inertia of section, x, y – the current coordinates (coordinate of points where stress is 
defined). 
 Taking into account (13.1) formula for stress will take a form: 

    
2 2

1 ;F F

x y

F y y x x

A i i
σ

 
= + +  

 
     (13.3) 

2 2; yx
x y

II
i i

A A
= = −  radiuses of gyration. 

From (13.4) we will receive segments which are cut by the zero line on coordi-
nate axes (fig. 13.2): 

    
2 2

; ;y x
x y

F F

i i
a a

x y
= − = −      (13.4) 

In our case the line of action of force passes through axis x, then (13.3) and 
(13.4) will take a form: 

   
2

1 ;F

y

F x x

A i
σ

 ⋅= +  
 

     (13.5) 

   
2

;y
x

F

i
a

x
= − ∞=ya .      (13.6) 

The analysis (13.5) shows that stresses changes under the linear law. The zero 
line is parallel to y axis and its position doesn't depend on the size of force F (13.6). 
 
b) experimental determination of stresses and position of the zero line 

 
Fig. 13.3. – The geometric dimensions of the section and scheme of loading 
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We determine stresses in the set points of the section (fig. 13.3) by a tensome-
try method. For each point indications of a sensors are taken and we determine stress-
es by computer. 

We take F1, F2, F3 loading with any step of ∆F. A maximum load ( maxF ) on a 
experimental bar, according requirement of testing )( max prσσ ≤ , shouldn't exceed 80 

kN, (UMM–5 opportunities – 50 kN). 
 

III. Order of carrying out tests 
1. To get acquainted with the device of the UMM–5 machine. 
2. By means of a ruler with an accuracy of 1 mm we measure the sizes of section of a 
bar of h, b and we define positions of sensors in section. 
3. We take counting’s for each sensor in not loaded state by computer. 
4. We load a bar with Fi forces (∆F – any) not exceeding Fmax and we take counting 
on sensors. 
5. We enter results in table 13.1. 
 

IV. Processing of results of an experiment 
1. We determine stresses in points: 1, 2, 3, 4 by a formula (13.5) for all loadings of Fi 
and also we plot diagrams of this stresses theor

iσ . 
2. With the help of a computer, we take readings of sensors before and after loading 
and determine the experimental stress values. exp

iσ . 

4. We compare stresses theor
iσ  and exp

iσ , i.e. we define discrepancy percent. 
5. We enter results in table 13.1. 

     Table 13.1 

Geometrical characteristics 
№ 

points 
Fi, 
kN 

Stresses, 
МPа % 

discrepancy b, 
cm 

h, 
cm 

A, 
cm2 

2
yi , 

cm2 

xi, 
cm 

theor
iσ  exp

iσ  

     1 

 

   
 2    
 3    
 4    

 
V. Conclusions 

1. To specify whether Hooke's law at the off-center tension-compression is carried 
out. 
2. To confirm a theoretical conclusion about position of the neutral line at the off-
center (unsymmetrical) tension-compression and the distribution law of normal 
stress. 

 
Control questions 

1. What does mean the principle of independence of action of forces? 
2. Formulate the work purpose. 
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3. What type of deformation is called the off-center tension-compression? 
4. By what formula normal stresses in any point of lateral section of a bar at the off-
center tension-compression are determined? 
5. How normal stresses on lateral section of a bar at the off-center tension-
compression are distributed? 
6. What position is occupied by the neutral line (in the plane of lateral section of a 
bar) at the off-center tension-compression? 
7. What experimental devices are used in experience and what directly were meas-
ured by them? 
8. Why when testing in bar section the neutral line is perpendicular one of the princi-
pal axes of inertia? 
9. What mutual positioning of points of application of force, center of gravity of sec-
tion and neutral line? 
10. Whether the distribution law of normal stresses on lateral section confirms expe-
rience (at off-center tension-compression bar)? 
11. How experimental values of stress were received? 
12. What internal forces arise in a bar at the off-center tension-compression? 
13. What is called the core section?  
14. Why do you need to know the shape of the core section? 
 
 

LABORATORY WORK № 14 
Research of stresses in a curved bar 

 

I. Work purpose: Determination of stresses in a curved bar with plotting of 
their diagrams on section height. 

 
II. Content of work 

 

 
 

Fig. 14.1. – Scheme of a curved bar 
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Curved bars are widely used in construction and the equipment. Treat them: 
hooks, eyes, links of chains, arches, rim of pulleys, wheels, etc. 

Studies show that the bending distribution of normal stresses in the cross sec-
tion, as well as the value of the maximum stresses in the curved bars, other than in the 
bars with a straight axis. 

Installation represents a circular bar of radius of R which is subject to stretch-
ing by F forces by the UMM–5 machine (fig. 14.1). 

In horizontal section of a bar (A-A) in 9 points sensors with the help of which 
the stresses are defined. 

 
а) theoretical determination of stresses 

  The bar and its sizes are specified on fig. 14.2. 

 
 

Fig. 14.2. – Scheme of loading of a curved bar and its geometrical sizes 
                 

In lateral section A–A 9 sensors with ∆ step are pasted. 
In a curved bar there are at the same time normal stresses from the longitudinal 

(N) force and bending moment (M). Tension is determined by a formula:  

   ;
x

N M y

A S
σ

ρ
= ±       (14.1) 

where N = F – longitudinal force; А = b × h – bar cross-sectional area; M = – F⋅R – 
bending moment in section A–A (the sign “–” means the curvature of a bar decreas-
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es); Sx = A⋅y0 – static moment of section w.r.t. neutral line at a poor bend; y0 – dis-
tance from the neutral line to the center of gravity of the section; (0y R r= − ); y – co-
ordinate point where stress is defined; r yρ = +  – the distance from the center of the 
curvature of the bar to the point where the stress is determined (current radius);  
r – the distance from the center of curvature to the neutral line, depending on the 
shape of the cross section of the bar. 
 For rectangular section: 

     
2

1

;
ln

h
r

R

R

=       (14.2) 

Distance from the neutral line to a point in which stress is defined, it can be 
found from expression:  

    ( )0 1 ;
2n

h
y y n= − + + ∆ −      (14.3) 

where n – number of a point in which stress is defined; ∆ – step with which sensors 
are located. 

Note: when determining stresses, it is necessary to consider signs of bending moment 
(M) and coordinate of points (y) where stresses is defined. 
 The sizes and distances mentioned above are given in fig. 14.3. 

 
 

Fig. 14.3. – Geometrical sizes 
 

b. experimental determination of stresses 
Experimentally stress is defined by an electrotensometry method (by help of 

computer). 
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II. Order of carrying out tests. 
1. To get acquainted with the machine device UMM–5. 
2. By means of a ruler and a caliper with an accuracy of 0,1 mm we measure h bar 
section sizes, and we define places of sensors in section. 
3. We take reading for each sensor in not loaded state. 
4. We load a bar with force of F and we take counting on sensors. 
5. We enter results in table 14.1. 

 
IV. Processing of results of an experiment 

1. We determine stresses in points by a formula (14.1): 1, 2, 3, … 9 also we plot dia-
grams .;; σσσ MN  
2. We determinate by a formula (14.1) stresses in the set points experimentally. 
3. We compare stresses received experimentally and theoretically, we define discrep-
ancy percent. 
4. We enter results in table 14.1. 
 
Table 14.1 
№ yn, ρn, σN, σM, σtheor, σexp, % 

 mm mm МPa МPa МPa МPa discrepancy 

1   

 

    
2       
3       
4       
5       
6       
7       
8       
9       

 

V. Conclusions 
1. To assess the theoretical and experimental data.  
2. Compare the law of stress changes in a curved bar with the law of stress changes 
for a straight bar. 

 
Control questions: 

1. On what signs curved bars subdivide into curved bars of big and small curvature? 
2. What formula for theoretical determination of stresses in the studied points was 
used? 
3. How to determine stress in the set points experimentally? 
4. To what law of distribution of stress does the curved bar submit? 
5. Where the zero line is in curved bar at poor bend? 
6. How position of the zero line for the set curved bar is defined? 
7. Whether position of the zero line depends on form of lateral section of curved bar? 
Prove that. 



26 

LABORATORY WORK № 15 
Research of a longitudinal bend of a rod in an elastic stage 

 

I. Work purpose: To make observation over the phenomenon of loss of stabil-
ity of a steel rod. To determine by practical consideration the value of critical force 
and to compare its value with rated one. To calculate critical stress and to compare it 
with a yielding limit ( yσ ). 

II. Content of work 
The compressed rod of big flexibility at a certain value of the press force called 

by critical loses a stable equilibrium. At the same time the rod with a straight axis is a 
little bent. The type of a curve depends on a way of fixing of its ends. 

For performance of laboratory work the installation shown in the fig. 15.1 is 
used. 

 

 
a) 

 
b) 

 
Fig. 15.1. – Installation scheme 

1 – the examine a sample, 2 – the dynamometer, 3 – the indicator,  
4 – the loading screw 

 

a) Theoretical determination of critical force and critical stress 
At calculation of the critical force Fcr it is necessary to know flexibility of a rod 

which is determined by a formula: 

  
min

l

i

µλ = ,      (15.1) 

where: l – rod length; µ – coefficient of reduction of length of a rod to rated (to eta-
lon); imin – the minimum radius of inertia of section of a rod; 

min
min ;

I
i

A
=          (15.2) 

Imin – the minimum central moment of inertia of section; A – rod cross-sectional area. 
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If limλλ ≥ , then the value of critical force is determined by Euler's formula: 

   
( )
2

min
2 .cr

EI
F

π
µ

=
ℓ

     (15.3) 

If limλλ < , then it is necessary to use Yasinsky-Tetmayer's formula: 

    ( ) ;AbaFcr ⋅−= λ      (15.4) 
where a and b – the coefficients defined from the reference book depending on rod 
material (for construction steel: a = 314 MPa; b = 1,14 MPa). 

The extreme value of flexibility is determined by a formula: 

  
pr

E

σ
πλ

2

lim = .      (15.5) 

Critical stress is determined by a formula: 

     .cr
cr

F

А
σ =       (15.6) 

 
b) experimental determination of critical force and critical stress 

Having fixed the studied sample (1), gradually we load a rod by means of the 
screw (4) and we monitor indications of the indicator (3). 

We determine experimental value of critical force by a formula: 
     ;exp cnFcr ⋅=       (15.7) 

where n – number of divisions; c – the scale division interval (tick spacing) of the in-
dicator of a dynamometer. 
 

III. Order of carrying out tests 
1. By means of a caliper to measure the sizes of lateral section of a rods with an accu-
racy of 0,1 mm, and a ruler – rod length, with an accuracy of 1 mm, we enter results 
of measurements in tab. 15.1. 
2. The sample is fixed in the device for tests (fig. 15.1). 
3. Gradually increasing loading we fix the maximum deviation of an indicator needle 
of a dynamometer. 
4. We determine by a formula (15.7) experimentally the value of critical force. 
5. Results are entered in table 15.1. 

 

IV. Processing of results of an experiment 
1. By practical consideration we determine critical force (15.7). 

2. We determine critical stress .
exp

exp

А

Fcr
cr =σ   

3. We determine theoretically critical force and critical stress (15.3); (15.6). 
4. We compare experimental and theoretical values. 
 

V. Conclusions 

To specify in conclusions whether Euler's formula for a compressed rod of big 
flexibility is confirmed. To offer an explanation why theoretical critical force is more 
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than experimental. Whether the theoretical character of a curvature of an axis of the 
rod which lost stability is confirmed. 
 
Table 15.1 

№ 
Length 

mm 
Way of 
fixing µ 

Form of 
lateral 
section 

mini

lµλ =
 

Critical force, 
N 

Fсr 
discrep
crep-
ancy 

Critical stress, 
MPa 

    
and its 
sizes 

 theor
crF  exp

crF  % theor
crσ  

exp
crσ  

1 500 

 

2 

 

 

      

2 350 

 

1 
 

      

3 350 

 

0,7 
 

      

4 350 

 

0,5 
 

      

 
Control questions 

1. Formulate the purpose of laboratory work. 
2. What force is called critical and how behaves the compressed rod under this force? 
3. How the way of fixing of a rod influence on the value of critical force? 
4. How the form of lateral section of a compressed rod influence on the value of criti-
cal force (other things being equal)? 
5. How critical force is defined? Write down Euler's formula for compressed rods. 
6. By what formula the flexibility of a rod is determined? 
7. How the extreme flexibility is determined and where it is used? 
8. What experimental devices are used in laboratory work and what they measure? 
9. Represent the scheme of testing of a rod. 
10. Was the critical stress (in a rod) exceeding of a limit of proportionality of a mate-
rial? 
11. Is Euler's formula for practical purposes applicable? 
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LABORATORY WORK № 16 

Determination of dynamic coefficient at impact loading on beam 
I. Work purpose: Determination of dynamic coefficient at impact loading on 

beam. 
II. Content of work 

In "Strength of materials" the approximate theory at impact loading based on 
two assumptions is considered, i.e. the blow (hit) is considered inelastic and the 
struck system is accepted with one degree of dynamic freedom.  

The formulas received on the basis of these assumptions approximate and, ac-
tually, demand check. 

In work the case at which the blow is directed perpendicular to rod axil is in-
vestigated. Such impact loading is called uni-planar. 

Installation of CM-21M represents the steel beam, rectangular section lying on 
two pivoted supports (fig. 16.1).  

 

 
а) 

 
b) 

Fig. 16.1. – Installation scheme 
1 – beam, 2 – support, 3 – temporary magnet, 4 – load (ball), 5 – micrometer,  

6 – the bad, 7 – the control panel 
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Load (weight of G ) is kept over beam by means of temporary magnet.  
Static exp

stf  and dynamic exp
dinf  deflections are measured by the micrometric 

screw installed under beam 1. 
Experimentally dynamic coefficient exp

dinK  is determined by formula: 
exp

exp
exp

.din
din

st

f
K

f
=        (16.1) 

Theoretically dynamic coefficient teor
dinК  at blow is determined by formula  

(fig. 16.2). The load falls on beam from some height of H: 

 
2

1 1 ,
1

theor
din

theor
st

H
К

Q
f

G
η

= + +
 + + 
 

    (16.2) 

where H – height of fall of the striking body; G – the weight of the striking body 
(ball); Q – the weight of the struck system (beam); η – the coefficient depending on 
mode of fixing of beam and the place of impact point of load (ball) (in our case η= 
17/35); fst – static deflection in the direction of blow. 
 For two-support bar the greatest static deflection in the middle of span, is 
equal: 

3

.
48

theor
st

x

G l
f

EJ

⋅=       (16.3) 

 
Fig. 16.2. – The scheme of the beam and its geometric dimensions 

 

III. Order of carrying out tests 
1. Rotating the micrometric screw of micrometer (5), the space between (5) and beam 
cleans up (1). So that the get signal from alarm lamp on (7) panel. The electric con-
tour becomes isolated. Is fixed (h0) on micrometer (5) with accuracy up to 0.01 mm. 
2. Load by the weight of G (ball) is put on the midpoint of beam. Rotating the mi-
crometric screw (5) is fixed (hst).  
3. Load (ball) on H height is established, previously having switched on the (7) panel 
temporary magnet (3). 
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4. Having disconnected temporary magnet (3) the ball falls to beam (1). 
5. By means of micrometer (5) is fixed (hdin) at which there will be contact between 
the (5) screw and (1) beam (the lamp shines). 
 

IV. Processing of results of an experiment 
1. Are determined static exp

stf  and dynamic exp
dinf  deflection of beam: 

.0
exp

0
exp ; hhfhhf dindinstst −=−=  

2. The dynamic coefficient theor
dinK  on formula (16.2) is calculated, where 

( )2; 70 , 9,81 /G mg m gr g m sek= = = , 

( )2; 78,5 /Q V A l b h l kN mγ γ γ γ= = ⋅ ⋅ = ⋅ ⋅ = , 

b, h, l – beam sizes, theor
stf  – is determined by formula (16.3) which can be trans-

formed to look: 

    
3

3
.

4
theor

st

mgl
f

Ebh
=       (16.4) 

Results of tests are entered in table 16.1. 
 

Table 16.1 
№ Height 

N, 
mm 

Statich 
deflections, 

mm 

% 
discre-
pancy 

Dynamic 
deflections, 

mm 

% 
discre-
pancy 

Dynamic 
сoefficients 

% 
theor

crF  

  exp
stf  

theor
stf   exp

dinf  
theor

dinf   exp
dinK  

theor
dinK   

1           
2           
3           
4           

 

Control questions 
1. Why coefficient is called “dynamic” and what it characterizes? 
2. How the experimental value of dynamic coefficient has been found in work? 
3. Write formula for dynamic coefficient. Explain the parameters entering it. 
4. How the ratio of weight of the striking body and the struck system influence the 
value of dynamic coefficient? 
5. What will be the simplified formula for dynamic coefficient? 
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