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LABORATORY WORK Ne 9
Deter mination of stressesin a metal beam at transverse (lateral) bending
(uniplanar bend)

|. Work purpose: Theoretically and experimentally to determine ttress at
the given points of the beam cross sections. ligagst the distribution of normal
stresses over the beam cross section and detettmimeagnitude and direction of the
main stresses in the neutral layer of the beam.

|I. Content of work
The metal beam of double-T section is loaded witfof€e applied on the
console. Tension is defined in three sectionsl(llll) and in points of sections, as
shown in fig. 9.1.
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Fig. 9.1. — Beam appearance (a) and scheme (b)

a) theoretical determination of stresses
At transverse bending normal stresses at any pothe cross section of the
beam are determined by the formula:

o= iIM Y, (9.1)
whereM — bending moment in the considered sectigr;axial moment of inertia of
section;y — ordinate of a point in which stress is defined.

It is easy to determine the sign of tension byNhdiagram (the diagram of M
should be plotted on the stretched fibers).

From a formula 9.1 it is visible that gt 0,0 =0, and aty = g: g=0"".

The stress-strain condition research in beams shbatson a neutral axis
(»=0) deformation of pure shift takes place (fig. 9i2). o__ :\0 =71, where

Omax Omin — pPrincipal stresses acting (are directed) atreylead5° toward beam axes;
T — shear stress.
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Fig. 9.2. — Stresses in a point at Q>0



Shearing stress is determined by Zhuravsky's famul

_QL§
r—l R (9.2)
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where Q — shear force in the considered sedijp8;, d — geometrical characteristics of
section (accepted from range for rolling profilesss-sections (for the double-T section)).

b) experimental determination of stresses

Electric tensiometers (wire sensors of ohmic rasist) are widely used. The
sensor is pasted by special glue on the studiddcgim the set points (fig. 9.1).

The results of measurements of stresses are peaocbgsa computer. As a re-
sult, we obtain experimental stress values at 1®pof the beam.

[I1. Order of carrying out tests
1. To get acquainted with the resistance straiggaund tensiometer.
2. To study the device and work of a laboratoryt,umitechnique of measurement of
stress by means of electrotensometry.
3. To sketch the scheme of a beam, to measurézttgesith an accuracy of 1 ma;
b; ¢; m; |; h) specified in the fig. 9.1, b. To switch on a cotgowand in no-load con-
dition of a beam to take consistently indication$ § strain gauge) for all sensors
pasted in sections | II, 1ll.
4. To load a beam loading &f and again to take indications for the correspamdin
sensors.
5. Determine the experimental values of the stress.
To enter data of calculation in table 9.1.

| V. Processing of results of an experiment
1. Using the statics equations, basic reactiotseoSupports are determined.
2. Plot diagrams of shearing forces and bending embsn
3. From a range of rolling profiles (for the I-be&n.14) geometrical characteristics
are written out.
4. Stresses in the studied points (of the considseetions) is determined by formu-
las (9.1-9.2). In one of sections ptodiagram. Results of calculation are entered in
table 9.1.
5. The results received analytically and experiminare compared. The errors % is
determined by a formula:

theor
0'_ —

ex
Cﬁ p
theor

g

0= [100%. (9.4)

V. Conclusions
The conclusions should answer the questions pogétkelpurpose of laborato-
ry work.
After analyzing the table of experimental data, gam make sure that the ex-
perimental plot of normal stresses is almost agditdine. So the hypothesis of flat
sections (Bernoulli hypothesis) should be confirmed
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Comparingag™and g*® showing that the results are the same or slighifly d

ferent from each other. This allows us to draw actasion about the permissible ap-
plication of those hypotheses and simplificatiomat tare accepted in the theory of
transverse bending.

Table 9.1

Stresses

Mea;;;etment o Jtheor, % discrepancy

MPa MPa

Sections

-1l 14

HI-111 9

Control questions
1. What are the hypotheses and assumptions takbe theory of bending?
2. What is the hypothesis of flat sections?
3. How are the normal stresses distributed ovehénght of the beam section?
4. What is the stress state of the material atsthdied points on the beam sur-
face?
5. What is the position of neutral layer of a beam?
6. Formulate a common goal of laboratory work.
7. What is the formula determined by the normaldieg stress at any point in the
cross section of the beam?
8. Why formula for the shear stresses in bendiedotam is used?
9. What is the direction of the main stresses atdkiel of the neutral layer of the
beam and by what formula they are determined?
10. What measuring instruments are used in labgratork?
11. What is measured by means of the sensorsaresest
12. How are located (in relation to the longitudiiagis of the beam) sensors used
to measure the deformation of fibers?
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13. Show where the cross section of the beam paseshear?
14. Describe the construction and principle of apen of the sensor.
15. What kind of condition of strength for the nalrand shear stresses?

LABORATORY WORK Ne 10
Deter mination of deformationsin a metal beam at transver se (uniplanar)
bending

|. Work purpose: Theoretically and experimentally to define deflens and
angles of rotation of the specified beam sections.

|I. Content of work
The metal I-beam is loaded with a fof€eapplied to the console. Deflections
should be defined in sectiofs1, and rotation angles in sectidhsA (fig. 10.1).
Moving the center of gravity of the beam sectiom idirection perpendicular to
the axis of the beam is called the deflection ef ltleam in this section or deflection
of the beam section. The angle at which each sectitates relative to its original
position is called the section rotation angle.
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Fig. 10.1. — Beam patterns



a) theoretical determination of deflections and deg of rotation

Deflections and angles of rotation of the set sastiare defined by method of
initial parameters.

For any section of "z" on the site of AB the unsedrequation of deflections
will have an appearance:

2 R (z-Q°
El y,=Ely,+ EJG, Oz- F? + A 5 9 ; (10.1)

where: El, — rigidity of a beam at a bené,; y,— initial parameters, i.e. angle of ro-

tation and deflection, respectively, at the begigrof coordinates (section «0»).
For determinatiorg, and y, we use a condition of fixing of a beam.

F@&

as z= a El,y,=ELY, + ELG [A- 0,
as z= ar | Fla+1)’ R, (192
El.y, =ELY, + ElLg,(a+1)- 5t A6 =0.
Having solved the system (10.2) equations, we defihg, and El,y,, and
then ,; y,.

We define a deflection of section "1" from the ea (10.1) under a condi-
tion z=a+bh, i.e.

F(a+b) R,
6 6

We define an angle of rotation of basic section fi&fn the universal equation
of angles of rotation:

ELy, = ELY,+ E|X90(a+ b -

(10.3)

2
El.6,=El g, —%. (10.4)

b) experimental determination of deflections andgas of rotation

For measurement of deflections of sections "1", d0'a beam dial indicators
(indicators of hour type, needle indicators) with acuracy of 0,01 mm are used
(fig. 10.1). The device and the principle of work given in the section "Probing de-
vices").

We determine the size of deflections by a formula:

y =nlc; (10.5)

where n — indications of indicators (number of siions);c — the division value of the
indicator.

For determination of an angle of rotation of satti®" the device (fig. 10.2) is
used.
8



Fig. 10.2. — The device for determination of an dagf rotation (&)
1 —abar (h = 1500 mm), 2 —a plumb, 3 —a ruler

Owing to the smallnesses of deformations we catewlown:
g8 = B = %, rad. (10.6)
Approximately the angle of rotation of basic seatid" (fig. 10.2) is:
tg, =6, = % . (10.7)

whereYy, it is determined by a formula (10.5).

[I1. Order of carrying out tests

The device of needle indicators, their installataod technique of definition of
displacement with their help is studied.
1. The scheme of a metal beam (fig. 10.1) is slkeelcthe sizes are measured (a; b; 1),
specified on the scheme.
2. Tests are performed:
a) prior to the loading of the beam in all indiaatshall be set at zero,
b) smoothly without jerking (jumping) the beamastled with a loaé,
c) the indicator readings are taken, as well ashthrezontal offset (shift from initial
position) of the plumbZ).

| V. Processing of results of an experiment
1. On formulas (10.5; 10.6; 10.7) experimental galare definedy,; y,; &,; 8, and
results are entered in table 1.
2. Basic reactions from the statics equations afiaed.
3. Analytically on formulas (10.1; 10.2; 10.3; 1pa¥e definedy,; V;; 8,, 8, and re-
sults are entered in table 1.

4. Experimental and theoretical results are contpafe discrepancy % is deter-
mined by formulas:




theor Xp theor exp
Y=Y o 5 =9 4 0
Oy =" e —| 100 %; 0, == —|[LOO %
Yi i
Table 10.1
Counting
— on . The angles of
No. | Section Indications Igtlzvalllseloc?f to plumb sgftl;l(?r(l:;lor(]rir%f)iiscroe/o inc rotation of discroeA)anc
A y PNCY sections (rad) pancy
(mm)
indicators indicator Exp.| Theor. y)( Exp. | Theor. (6)
1 0
2 A
3 1

V. Conclusions
To give the analysis of experimental and theorktesults.

Control guestions
1. What parameters characterize deformation at@awnar bend?
2. What methods of determination of these parameleryou know?
3. What differential dependence between a deflecind the angle of rotation of sec-
tion of a beam exists?
4. Formulate the purpose of laboratory work.
5. Describe the type of installation and devicesdu® measurement of deflections
and angles of rotation of sections of a beam.
6. What method is applied to theoretical deternmomabf deflections and angles of
rotation of sections?
7. What is called rigidity of a rod at a bend?
8. What is initial parameters and from what codlisi they are defined?
9. How according to the indication of the indicatibe measured deflection is deter-
mined?
10. Explain why after unloading of a beam indicatsinowed initial counting?

LABORATORY WORK Ne 11
Resear ch of statically indeter minate beam

|. Work purpose: To confirm the possibility of theoretical calcutais of stat-
ically indeterminate beams using displacement eéopsti.e. to compare the results
of experimental determination of the moment of ping of the beam with the theo-
retical one. On the basis of experimental datastaldish a proportional dependence
of the beam deflection on the load.

|I. Content of work
Statically indeterminate beams are widely useckngineering practice, be-
cause they are more economical, allowing to peecéawvge loads, to cover large
spans. Such beams are produced by the introducfi@aditional support pins. In
10




these cases, the number of support reactions ex¢hechumber of possible statics
equations. This leads to the compilation of addaicequations related to the consid-
eration of deformations in beams. Additional equagiare generalized displacement
equations and can be solved in various ways.

For carrying out a research on this work desktagpaifation (fig. 11.1) which
represents the beam (1) made of strip steel oaAmgcdar lateral section is used. The
beam lies on two support (B)and (7)B. SupportA — isn't mobile, the suppo can
allow the beam to move (11). On a surface of a b@grthere is a centimetric mark-
ing from a support A to a support B that allowséd position of suspenders (9) and
(10). Except the hinge support the console G garétive form of rigide fixed sup-
port (pinching). A horizontal part of the consadeeixecuted in the form of a rail with
a millimetric marking from a support A towards arde

The beam deflects when loading suspenders (9), MDlateral sections (in-
cluding and sections at the supports) undergoes Tuogether with basic section A
the console (3) on a cornéy turns (fig. 11.2). The deviation is fixed by timelicator
(8). Return of the console to initial situation lwthe purpose of an exception of turn of
basic section A (embedded imitation) is made bynsexd load (6). Knowing the size
and the location of these loads, it is possiblgetiine the moment at the support A.

b)
Fig. 11.1. — Appearance (a) and scheme of instadat(b)
3 — beam; 2, 7 — supports; 3 — vertical part of ttensole; 4 — horizontal part of the console;
9, 10 — replaceable loads; 6 — mobile load, 9,6 N); 8 — indicator; 11 — bed

11
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Fig. 11.2. — Beam design diagram

a) theoretical determination of the moment at the supp

/IQ
F F,

M. 1
A
B
a b C

[=0.8 m

Fig. 11.3. — The calculated scheme of a beam

For determination of reaction of tiv, andR, we write down the system of
two equations:

>M =0; M,-R,0+F[(b+c)+Fk=0, (11.1)
— 2 3 Effb+c) 3

Vs =0; M O RaO7 ilb+o) R =0. (11.2)
2 6 6 6

The equation (11.1) represents the static equa#iod,the equation (11.2) —
geometrical.

Excepting R reaction, we come to the following expressiontfe moment at

the support A:
F(b+c)l?-(b+c)* |+ Be P- &
WL GEL (zz)] e - ¢) a1y

Being set by values (sizes) of forces efaid F, and also having chosen sizes
a, b,c, we define the moment at the support A.

b) experimental determination of the moment at the papt A
We load a beam by forces of &d k. For each case of loading we fix count-
ing (u) on the indicator (8).
12



Fig. 11.4. — Scheme for experimental determinatiohthe moment at the support A

By means of loads (6) we return indications of ithdicator in home (initial)
position that there corresponds equality to zero af section A. We fix counting,
on a scale of the console (fig. 11.4). The expeantalevalue of the moment of the,M
Is calculated on a formula:

M] =F, 0, (11.4)

I11. Order of carrying out tests

1. The indication of the indicator (8) is set to@and loads are prepardeb( Fy, F,).
2. The beam loads (witfy, andF,) and for each loading fix counting of the indicgld).
3. By means of load$-¢) return the indication of the indicator in homesiion (zero).
4. Define distances from loadSyf to support A.
| V. Processing of results of an experiment
1. For each case of loading is determined by adtar{iL1.4) support moment.
2. The scheme of dependence "F — u" is elaborated
3. The moment at the suppdnt’™ theoretically is determined by a formula (11.3).
4. Results of measurements and calculations aeeeshin table 11.1.
5. The % of discrepancy of experimental and themaktieterminations on a formula
is defined:
MY — M 2P
o=—A_——~-[100%
A
Table 11.1
. . Replacement | Indicator Moment,
No Dimensions, m loads. N readingU, N-m 06/
| |0 a b C f Fo F F> mm M g\eor M iXp °

1

2

3 0,8 0,33
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Notes:

1. It is possible to determin® " by instructions of the teacher (by a comparisoithoz

deformations).
2. To plot diagrams of lateral forces (Q) and begdnoments (M) in statically indetermina-
ble beam.

V. Conclusions
To give the answer to the questions posed at statemantsgarch objective.

Control questions
1. Which beams are called statically indeterminate?
2. What is the basic system?
3. Which restrictings imposes on the beam suppiint a/pinching?
4. How the experimental value of the moment\was determined?
5. How to determine the theoretical value gf"M
6. What supports are superfluous (redundant)?
7. What kind of movement corresponds to the moraépinching?
8. What measuring device was used in the experiment
9. What is the role of load acting on the console?
10. List the methods for determining displacement.
11. What analytical method was used in this worttettermine the moment of pinching?

LABORATORY WORK Ne 12
Resear ch of oblique (unsymmetrical) beam bending

1. Work purpose: Familiarization with the oblique (unsymmetricalndeng of the
cantilever beam and comparison of experimentalegatdi stresses, deflections with theo-
retical. Comparison of the results of oblique aadsvers¢uniplanar) bends.

|I. Content of work
Installation consists of two identical console beatoonsole). Section of
beams - an equilateral angles’. Beams are loadédRnforce. In the set sections and
points of sections stresses are defined, and atsdedined deflections of the end of
the console (fig. 12.1).

\ Ao

R

 AREAAARAAR AR

OIS

Fig. 12.1. — Scheme of installation
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a) theoretical determination of stress and deflectso

A. Unsymmetrical (obligue) bend. Unsymmetrical bend is called such type of
a bend when the plane of action of bending momesasuit match one of the main
central axes of inertia of lateral section of a.rbde unsymmetrical bend can be pro-
vided as a combination of two uni-planar bends.

4 Y
> |
| 7 X X
: )’k: Fx
T i |
- /,)ﬁk/_ l /
- P Fy
‘L_

Fig.12.2. — Unsymmetrical bend
Normal stresses in any point of section Z can beraned by a formula (12.1):

M
azi%yil—yx, (12.1)
X y
where Fy =F [sina, Fy =F [cosq, (12.2)

M, =F, [z= Fsina [z= Mlsina,
M, =F, [z= Fcosa [z= MUcosr

X, Y — point coordinates where stresses is defined.

We will accept the sign "+" or "-" in a formula (12 on deformation of a
beam, i.e. without connecting it with signs of atioates of a point and bending
moments.

In different sections of a beam at an unsymmetheald we will apply a method
of superposition of forces to determination of eetilons. We find (by different meth-
ods) a deflection from forcés andF,, and we find a full deflection on a formula

f=fd+ 1. (12.4)

The design diagram of a beam has an appearancéZfR).
Stresses in points 1, 2, 3 respectively will be:

(12.3)

M My
01:|—XY1‘—| X1
X y
M M
o =I—X Yo +I—yx2, where (12.5)
X y
M My
03 :‘I—X Ys= %
X y

15



My =My =Fy[la=Fy[b=Fcosula,

V
X1 =X3 = bcos45° - 8(2150 )
co

y1 =|y3| =bsin45, (12.6)

Vo
Xo = - b, cos45°,
2 cos45° 2

Yo =b2 coA45’, b2 22.

Ve
/ F=200 N
/ '
Z a=102m
{(=1.2m Y
e - o N

Fig. 12.3. — Scheme of a beam

Geometrical characteristics of section:
075x75x%8, 1, =948 cnt, |, =248 cnf, vg =2,15 cm.
We determine deflections of a free end of the clenlsp the known formula:
F P F0°
f=2t— = : (12.7)
3El, 3El,

Note:
To avoid torsion of a beam force of F is applied in a point C (the center of a bend),
which ison crossing of average lines of flanges of an angle.

B. Uni-planar bend. The design diagram of a beam has an appearancE2(#9;
We determine stresses in points 4 and 5 by a famul

M
O45 =% ~Ya5. (12.8)
X

We determine a deflection of a free end by a foemul

3
fofy = (12.9)
3EI,

16



Fig. 12.4. —Scheme of a beam

b) experimental determination of stresses and detflens
The stresses at the given points of the crossosesctire found by the method of
tensometry. For each point readings (counts) al lma means of electrotensometry
method before and after the load are taken. Therarpntal stress values are calcu-
lated using a computer.
We take deflections on indicators I, II, lll (fi§2.3—12.4).

[I1. Order of carrying out tests
1. With the help of a ruler with an accuracy of inrwe measure the dimensions of
the beam.
2. Set the indicator readings I, Il, 1l to zero.
3. For beams in the unloaded condition we write mofvthe tensometry readings for
each point of the cross-sections.
4. Load the beams with foréeand take tensometry readings (of indicators ILIIy,
using a computer.
5. The results are recorded in table 12.1.

| V. Processing of results of an experiment
1. By formulas (12.5) and (12.8) we determine strasd by formulas (12.4), (12.7)
and (12.9) deflections at an unsymmetrical andlangr bend.
3. We determine deflection value at an unsymmedtbead by a formula (12.4), and
we takefy on the indicator Ifx — on the indicator II.

17



Deflection value at uniplanar bend is determinedhayindicator IlI.

Table 12.1
i2)
I Type -g Stress, MPa Deflections, mm % discrepancy
3 o
m (&M F, N ofa 5
bend| 4 exp teor exp. theor. E
zZ o o o
fy fy f fy fy f
= |1
£
1,2 (1,02200] € | 2
7)
c 3
>
§ 4
1,21,021200| & - - - _
é 5
>

V. Conclusions
1. To give the analysis of results of experimeatal theoretical researches.
2. To compare stress and deflections an unsymrakéind uniplanar bends.

Control gquestions
1. What bend is called unsymmetrical? Where funchaahelifference between an un-
symmetrical and uniplanar bends?
2. What is the principle of independence of actbforces?
3. What purpose of work?
4. How to define theoretically normal stressesnatiesymmetrical bending?
5. What conclusions can be drawn on the basis mwipaoison of normal stress at an
unsymmetrical and uniplanar bends?
6. What condition of strengths at an unsymmetiegid?

LABORATORY WORK Ne 13
Resear ch of the unsymmetrical stretching of a straight-axis bar

|. Work purpose: Theoretically and experimentally determine the nmar
stresses at the designated points of the crogsisebetermine the position of the ze-
ro line. To confirm Hooke's law at off-center temsicompression and the law of dis-
tribution of normal stresses on the cross sectialmar (to plot their diagrams).

|I. Content of work
The installation is a rectangular strip with sessglued to its side surface.
Tests are carried out on the machine UMM-5 (fig1).3

18



a) b)
Fig. 13.1. — Scheme of the machine UMM-5 (a) ancktlayout of strain sensors (b)

a) theoretical determination of tension and poshiof the zero line (n.l.)

Fig. 13.2. — Scheme of off-center tension-compressi

The off-center (unsymmetrical) tension-compressgrompound resistance.
At the same time in its lateral section woft; M, M , i.e. N=F,
M, =FD M, =FIX, (13.1)
wherey., x- — coordinates of a point of application of forcefof

Normal stresses in any point of lateral sectiom dtar are determined by a for-
mula:

19



M
J=E+&y+—yx (13.2)

A I
X y
whereF — external forceA — the cross-section ardg, |, — the principal moments of

inertia of sectiony, y— the current coordinates (coordinate of pointenshstress is

defined).
Taking into account (13.1) formula for stress wake a form:
=5[1+ Y2y+¥‘]; (13.3)
A Iy Iy
PO : :
i2=-x; i2=-Y - radiuses of gyration.
«TAT YT A gy

From (13.4) we will receive segments which arelguthe zero line on coordi-
nate axes (fig. 13.2):

i j2
a =——; =-2X (13.4)
X i Yr
In our case the line of action of force passesutinoaxisx, then (13.3) and
(13.4) will take a form:
:E[“ X D‘]; (13.5)
A Iy
i2
a,=-—;a =, (13.6)
X

F
The analysis (13.5) shows that stresses changes thallinear law. The zero
line is parallel toy axis and its position doesn't depend on the diterce F (13.6).

b) experimental determination of stresses and posiiof the zero line
F LE

10mm

) SO S

b=

B

hi4 | hy4

v F

Fig. 13.3. — The geometric dimensions of the sectamd scheme of loading
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We determine stresses in the set points of the sefipnl3.3) by a tensome-
try method. For each point indications of a senaoestaken and we determine stress-
es by computer.

We takeF,, F,, F; loading with any step aiF. A maximum load €. ) on a

experimental bar, according requirement of testimg, < o,,), shouldn't exceed 80
kKN, (UMM-5 opportunities — 50 kN).

|11. Order of carrying out tests
1. To get acquainted with the device of the UMM-&chine.
2. By means of a ruler with an accuracy of 1 mmmeasure the sizes of section of a
bar ofh, band we define positions of sensors in section.
3. We take counting’s for each sensor in not loatate by computer.
4. We load a bar witl; forces AF — any) not exceeding,.x and we take counting
0N sensors.
5. We enter results in table 13.1.

| V. Processing of results of an experiment
1. We determine stresses in points: 1, 2, 3, 4 foyraula (13.5) for all loadings d;

and also we plot diagrams of this stresgg¥".

2. With the help of a computer, we take readingsesfsors before and after loading
and determine the experimental stress valaes.

4. We compare stresse$* ando®®, i.e. we define discrepancy percent.

5. We enter results in table 13.1.

Table 13.1
Geometrical characteristics Strl\f;: es,
No Fi, %
b, h, A, i§ : X points kN giheor oo discrepancy
cm | cm | cnf | oo cm i i
1
2
3
4

V. Conclusions
1. To specify whether Hooke's law at the off-cen&grsion-compression is carried
out.
2. To confirm a theoretical conclusion about positof the neutral line at the off-
center (unsymmetrical) tension-compression and diséribution law of normal
stress.

Control questions
1. What does mean the principle of independeneetdn of forces?
2. Formulate the work purpose.
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3. What type of deformation is called the off-cen&nsion-compression?

4. By what formula normal stresses in any poinliatéral section of a bar at the off-
center tension-compression are determined?

5. How normal stresses on lateral section of a diaithe off-center tension-

compression are distributed?

6. What position is occupied by the neutral line the plane of lateral section of a
bar) at the off-center tension-compression?

7. What experimental devices are used in experiancewhat directly were meas-
ured by them?

8. Why when testing in bar section the neutral isperpendicular one of the princi-
pal axes of inertia?

9. What mutual positioning of points of applicatiohforce, center of gravity of sec-
tion and neutral line?

10. Whether the distribution law of normal stressedateral section confirms expe-
rience (at off-center tension-compression bar)?

11. How experimental values of stress were rec@ived

12. What internal forces arise in a bar at thecefiter tension-compression?

13. What is called the core section?

14. Why do you need to know the shape of the cecean?

LABORATORY WORK Ne 14
Resear ch of stressesin a curved bar

|. Work purpose: Determination of stresses in a curved bar withitiplg of
their diagrams on section height.

I1. Content of work

Fig. 14.1. — Scheme of a curved bar
22



Curved bars are widely used in construction andetipgipment. Treat them:
hooks, eyes, links of chains, arches, rim of puslleyheels, etc.

Studies show that the bending distribution of ndreteesses in the cross sec-
tion, as well as the value of the maximum stregsése curved bars, other than in the

bars with a straight axis.

Installation represents a circular bar of radiugkaefhich is subject to stretch-
ing by F forces by the UMM-5 machine (fig. 14.1).

In horizontal section of a bar (A-A) in 9 pointyisers with the help of which
the stresses are defined.

a) theoretical determination of stresses
The bar and its sizes are specified on fig. 14.2.

s

Fig. 14.2. — Scheme of loading of a curved bar atglgeometrical sizes

In lateral section A—A 9 sensors wihstep are pasted.
In a curved bar there are at the same time nonredses from the longitudinal
(N) force and bending moment (M). Tension is deteeah by a formula:

g=N.My. (14.1)

A S p
whereN = F — longitudinal forced = b xh — bar cross-sectional ardd;= - FR —
bending moment in section A—A (the sign “-” meams turvature of a bar decreas-
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es); S = AM, — static moment of section w.r.t. neutral lineaghoor bendy, — dis-
tance from the neutral line to the center of gsaweitthe section; Y, = R-r); y — co-

ordinate point where stress is definggs=r +y — the distance from the center of the

curvature of the bar to the point where the stissdetermined (current radius);
r — the distance from the center of curvature torthatral line, depending on the
shape of the cross section of the bar.

For rectangular section:

(14.2)

Distance from the neutral line to a point in whithess is defined, it can be
found from expression:

Ya =—2+ Yo +A(N-1); (14.3)

wheren — number of a point in which stress is defindd; step with which sensors
are located.

Note: when determining stresses, it is necessary to consider signs of bending moment
(M) and coordinate of points (y) where stressesis defined.

The sizes and distances mentioned above are mivfen 14.3.

Fig. 14.3. — Geometrical sizes

b. experimental determination of stresses
Experimentally stress is defined by an electroteretoy method (by help of
computer).
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1. Order of carrying out tests.
1. To get acquainted with the machine device UMM-5.
2. By means of a ruler and a caliper with an acguE 0,1 mm we measurl bar
section sizes, and we define places of sensoexciios.
3. We take reading for each sensor in not loackd st
4. We load a bar with force &fand we take counting on sensors.
5. We enter results in table 14.1.

| V. Processing of results of an experiment
1. We determine stresses in points by a formulal§i4, 2, 3, ... 9 also we plot dia-
gramso,; O0,,; O.
2. We determinate by a formula (14.1) stresselsarsét points experimentally.
3. We compare stresses received experimentallyraadetically, we define discrep-
ancy percent.
4. We enter results in table 14.1.

Table 14.1
No Vi, ,Om On, O, 0[he0|’ Oexp’ %
mm mm MPa MPa MPa MPa discrepancy
1
2
3
4
5
6
7
8
9

V. Conclusions
1. To assess the theoretical and experimental data.
2. Compare the law of stress changes in a curvedvitia the law of stress changes
for a straight bar.

Control questions:
1. On what signs curved bars subdivide into cuberd of big and small curvature?
2. What formula for theoretical determination afesses in the studied points was
used?
3. How to determine stress in the set points erpanrtally?
4. To what law of distribution of stress does theved bar submit?
5. Where the zero line is in curved bar at pooid@en
6. How position of the zero line for the set curbed is defined?
7. Whether position of the zero line depends omfof lateral section of curved bar?
Prove that.
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LABORATORY WORK Ne 15
Resear ch of alongitudinal bend of arod in an elastic stage

|. Work purpose: To make observation over the phenomenon of lossadiil-
ity of a steel rod. To determine by practical cdaesation the value of critical force
and to compare its value with rated one. To cateutatical stress and to compare it
with a yielding limit (g, ).

|I. Content of work
The compressed rod of big flexibility at a certaatlue of the press force called
by critical loses a stable equilibrium. At the samee the rod with a straight axis is a
little bent. The type of a curve depends on a wdximg of its ends.
For performance of laboratory work the installatsimown in the fig. 15.1 is
used.

Fig. 15.1. — Installation scheme
1 — the examine a sample, 2 — the dynamometerti3e-indicator,
4 — the loading screw

a) Theoretical determination of critical force ancritical stress
At calculation of the critical forcg,, it is necessary to know flexibility of a rod
which is determined by a formula:

a=H (15.1)
Imin
where:l — rod lengthy — coefficient of reduction of length of a rod tted (to eta-
lon); imin — the minimum radius of inertia of section of d;ro

i — Imin-
- _\/%, (15.2)

I min — the minimum central moment of inertia of sectidr- rod cross-sectional area.
26



If A=A _,then the value of critical force is determinedBufer's formula:

lim?

F = 7Ely (15.3)
(#4t)
If A<A,,,thenitis necessary to use Yasinsky-Tetmayertadla:
F,=(a-bA)IA (15.4)

wherea andb — the coefficients defined from the reference bdekending on rod
material (for construction stee:= 314 MPa; b = 1,14 MPn
The extreme value of flexibility is determined bjoamula:

A, = E (15.5)
T,
Critical stress is determined by a formula:
F
g, =—. 15.6
o= (15.6)

b) experimental determination of critical force anetitical stress
Having fixed the studied sample (1), gradually wad a rod by means of the
screw (4) and we monitor indications of the indicqB8).
We determine experimental value of critical forgealformula:
F.® =nlc; (15.7)
wheren — number of divisions; — the scale division interval (tick spacing) oé tin-
dicator of a dynamometer.

|I1. Order of carrying out tests
1. By means of a caliper to measure the sizesd@fdisection of a rods with an accu-
racy of 0,1 mm, and a ruler — rod length, with aousiacy of 1 mm, we enter results
of measurements in tab. 15.1.
2. The sample is fixed in the device for tests. (1i§.1).
3. Gradually increasing loading we fix the maximdaviation of an indicator needle
of a dynamometer.
4. We determine by a formula (15.7) experimenttdy value of critical force.
5. Results are entered in table 15.1.

| V. Processing of results of an experiment
1. By practical consideration we determine criticate (15.7).

exp
exp — " cr

2. We determine critical stress,

3. We determine theoretically critical force antical stress (15.3); (15.6).
4. We compare experimental and theoretical values.

V. Conclusions
To specify in conclusions whether Euler's formwad compressed rod of big
flexibility is confirmed. To offer an explanationhy theoretical critical force is more
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than experimental. Whether the theoretical charaufta curvature of an axis of the
rod which lost stability is confirmed.

Table 15.1

Form of Fer

Length| Way of Critical force, Critical stress,

Ne L lateral | discrep
mm fixing H section A= _'u N crep- MPa
i ancy

and its theor exp theor exp

SIZGS I:CI’ FCF % O-CI’ acr
1 500 2

 Ah=
b=

2 | 350 1 de

a
N

3 | 350 0,7 (I:d:

4 | 350 0.5 Cz_o/:

Control guestions
1. Formulate the purpose of laboratory work.
2. What force is called critical and how behavesdbmpressed rod under this force?
3. How the way of fixing of a rod influence on thaue of critical force?
4. How the form of lateral section of a compressetiinfluence on the value of criti-
cal force (other things being equal)?
5. How critical force is defined? Write down Eueiormula for compressed rods.
6. By what formula the flexibility of a rod is deteined?
7. How the extreme flexibility is determined andesé it is used?
8. What experimental devices are used in laborat@nk and what they measure?
9. Represent the scheme of testing of a rod.
10. Was the critical stress (in a rod) exceeding kit of proportionality of a mate-
rial?
11. Is Euler's formula for practical purposes aggille?
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LABORATORY WORK Ne 16
Deter mination of dynamic coefficient at impact loading on beam
|. Work purpose: Determination of dynamic coefficient at impactdoay on
beam.

|I. Content of work

In "Strength of materials" the approximate theorynapact loading based on
two assumptions is considered, i.e. the blow (lsitconsidered inelastic and the
struck system is accepted with one degree of dyn&eedom.

The formulas received on the basis of these assomspapproximate and, ac-
tually, demand check.

In work the case at which the blow is directed pagicular to rod axil is in-
vestigated. Such impact loading is called uni-plana

Installation of CM-21M represents the steel beaatangular section lying on
two pivoted supports (fig. 16.1)

P——————

=

—

b)
Fig. 16.1. — Installation scheme
1 — beam, 2 — support, 3 — temporary magnet, 4adIfall), 5 — micrometer,
6 — the bad, 7 — the control panel
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Load (weight of G ) is kept over beam by meansofgorary magnet.

Static f;* and dynamicf;" deflections are measured by the micrometric
screw installed under beam 1.

Experimentally dynamic coefficierf ;" is determined by formula:

exp
Koo = fan_ (16.1)

f®
Theoretically dynamic coefficien;>" at blow is determined by formula
(fig. 16.2). The load falls on beam from some heafiH:

K =1 s ———
ftheor+ 1+n-<
(100

whereH — height of fall of the striking bodyG — the weight of the striking body
(ball); Q — the weight of the struck system (bearp):- the coefficient depending on
mode of fixing of beam and the place of impact poiload (ball) (in our casg=
17/35);fst— static deflection in the direction of blow.

For two-support bar the greatest static deflectiorthe middle of span, is
equal:

(16.2)

3
theor G [H

- _ 16.3
s 48EJ, (16.3)

- JHE +=

b=40mm

F
¥

If2

-
I=650mm

Fig. 16.2. — The scheme of the beam and its georoelimensions

[I1. Order of carrying out tests
1. Rotating the micrometric screw of micrometer, (g space between (5) and beam
cleans up (1). So that the get signal from alarmplan (7) panel. The electric con-
tour becomes isolated. Is fixelsh on micrometer (5) with accuracy up to 0.01 mm.
2. Load by the weight of (ball) is put on the midpoint of beam. Rotating ttmi-
crometric screw (5) is fixedhg).
3. Load (ball) orH height is established, previously having switchadhe (7) panel
temporary magnet (3).
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4. Having disconnected temporary magnet (3) thiefaléd to beam (1).
5. By means of micrometer (5) is fixel;f) at which there will be contact between
the (5) screw and (1) beam (the lamp shines).

| V. Processing of results of an experiment
1. Are determined stati¢;® and dynamicf ;" deflection of beam:
fo" =hy —hy; an = Nan =Ny
2. The dynamic coefficienk [ on formula (16.2) is calculated, where
G=mg (m=70gr, g=9,81m/se"k),
Q= =yOAO=yblht  (y=78,5kN/nf),
b, h, |- beam sizesf*" — is determined by formula (16.3) which can begra
formed to look:

mgl®
fsttheor — g . (164)
4EbH
Results of tests are entered in table 16.1.
Table 16.1
Ne | Height Statich % Dynamic % Dynamic %
N, deflections, discre- deflections, discre- coefficients Ftheor
mm mm pancy mm pancy cr
exp theor exp theor exp theor
fst 1:st fdin fdin Kdin Kdin
1
2
3
4

Control guestions
1. Why coefficient is called “dynamic” and whatharacterizes?
2. How the experimental value of dynamic coeffitieas been found in work?
3. Write formula for dynamic coefficient. Explaing parameters entering it.
4. How the ratio of weight of the striking body atie struck system influence the
value of dynamic coefficient?
5. What will be the simplified formula for dynangoefficient?
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