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INTRODUCTION
In the work the qualified engineer has to possdements of fundamental

knowledge of all-technical disciplines. The themadt mechanics belongs to such
disciplines. Tasks and methodical instructions @re of important sections of the
course devoted to studying of the motion of a nmt@oint in noninertial reference
systems. Methodical instructions allow the studdotstudy and apply theoretical
material to the solution of the practical taskslghamics of the relative motion of a
material point.
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REQUIREMENTSTO WRITING OF CALCULATED
GRAPHIC WORK

. CGW is carried out on single sheets of the Am&d.
. The order of writing the CGW: title page; a tagkh the indication of initial data

and schemes; the text of calculations with necgssgolanations and calculated
schemes; conclusion; bibliography.

. Drawings and schemes are carried out with acogrnd the rules of graphics and

scales according to the standard of «BrSTU».

A text part is carried out according to requieserts to fulfillment of text docu-

ments. Pages are numbered. Calculations are cautad a general view, values
of parameters are substituted. Numerical resulis thie indication of dimensions
of the received values written down. All calculagoare made to within a 100-th
(hundredths) of a unit.

SHORT THEORETICAL DATA

The relative motion of a material point is calléé motion of a point in the mo-

bile system of coordinates. L€ x,y;z; fixed (motionless) system of coordinates;
Oxyz moving system of coordinates (figure 1).

The second law of dynamics in tBgx,y;z; system:
ma=>F,, (1)
k=1

where a is absolute acceleration of a point, which is ¢qoahe geometrical

sum of transporg,, relativea, and Coriolisa. accelerations, i.e.:

a=3,+3 +3,. ?)
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Figure 1 — System of coordinates

Having substituted (1) in (2), we will receive thecond law of dynamics in the
Oxyz system, i.e. in a noninertial reference system:

e, =3 F, + @, + @, ©

where @_=-ma_, and ®@.=-ma. have dimension of force and are called

transport and Coriolis forces of inertia.
Projecting the equation (3) on the moving axe®xjfz, we will receive the dif-
ferential equations of the relative movement ofadenal point in the Cartesian axes:

M= R + Dy + D ;

My =D Fy + @y + P

mz=Y R, +®,+d ,k=1..n (4)

The equation (4) can also be written down in priges to natural axes.

If the point in moving system does not move, then=0, V. =0 and
@, =-2m(ew,xV,) = 0.

where w, — the angular velocity of transport rotation, — the relative velocity
of a point. Then (3) will take a form of the eqoatiof relative rest of a point:

i€+5=0 (5)

For example, we will consider the body which is sle®t move upon the land
surface (figure 2). The body is affected by forcBs:+ a body attractive force to the
center of earth@! — centrifugal force of inertia andl — normal reaction. ForceB

also@? causes the body pressure upon a land surfacetbfeead their equally effec-

tive G represents the body weight, i@=P + @".
4



Figure 2

Therefore at the solution of problems of a sta@csepting the system of coor-
dinates connected with earth for fixed, any coroest because of rotation of earth it
isn't entered. At motion of bodies on the land acefor near it with some relative ve-
locity V., there will be (will appear) a Coriolis accelegatiand force of inertia

@, =2mw)V, sin(ae \7r) (figure 3) corresponding to it.

Figure 3

In the northern hemisphere at the motion of a bindge @. seek to reject a
body from motion direction to the right. Laterakpsure of the train on rails, under-
mining of the right coast of the rivers, a deviatioom a vertical to the East of freely
falling body is explained by it.

Concerning the reference system connected withhEgdisted) we eliminate
forces acting on a moving body (Coriolis forcemdritia) that isn't always justified.

THE TASK FOR PERFORMANCE
|SCALCULATED GRAPHIC WORKS

The point (ball) of M attached to the spring fixeda point O, moves on the cy-
lindrical channel of a body of A. Body of A everrtytates(a = const) around a fixed
horizontal axlex; or a vertical axis of ;z In timepointt =0 (moment of time) the
point which was in rest begins the motion undersgteconditionsx,, V,.



At a preset value of angular velocity to receive:

1. Law of the relative motion of a poirEx(t). To determine amplitude and
the period ofT; of own fluctuations, and also the beats periodof

2. To determine coordinateand the velocity of the point and also point pres-
sureN upon a wall of channel in the set timepdintt, .

3. To plot diagrams of=x (t) for intervals ofl0,T;] and[0,T,].

4. To plot the diagrar=V(t) andN=N(t) for an interval {, T,].

5. To define at what values of angular veloaity the motion of a point stops

being oscillatory and the point makes the non-gicionotion.
6. To accept value of angular velociy= «,, for the non-periodic motion and

to find the equation of the motion of a poxitx*(t) . To determine passing time by a
point of all channel (graphically).

In a task the following designations are accepted: mass of a pointp — con-
stant angular velocity of a body Af ¢ — a spring rigidity coefficienty — length of not
deformed springxo — the initial coordinate of a point), — the initial velocity of a
point; t; — time for which necessary calculations are made.

For schemes with numbers No. 1, 2, 4, 8, 9, 1113214, the siza bodiesA,
radiusr of a bodyA in the scheme No. 7, lengtlfrod A) in the scheme No. 15, or the
sizeh of a bodyA in schemes No. 3, 5, 6, 10 to determine by a f@rauR,l,h=9

Numerical data for each variant choose accordingaldte 1. At the same time
(herewith) time oft; is set it (is specified) the teacher. Schemes sh@acording to
index number of the student in group (number ofdtuelent according to the teach-
er's magazine) on fig. 4.

Table 1 — Numerical data

0 m, c, lo, Xo, Vo,

of ijj‘;ms kg @ rad/s N/m r(r)l r$1 mjs a, deg
1 2 3 4 5 6 7 8
1 0,01 9 1 0,05 0,01 0 -
2 0,02 8 15 0,06 0,02 0,01 -
3 0,03 7,5 2 0,07 0,03 0,02 -
4 0,04 7 2,5 0,08 0,04 0,03 30
5 0,05 6,5 3 0,09 0,05 0,04 -
6 0,06 6 3,5 0,1 0,15 0,05 45
7 0,07 55 4 0,11 0,16 0,06 -
8 0,08 5 4,5 0,12 0,17 0,07 30
9 0,09 4,5 5 0,13 0,18 0,08 -
10 0,1 7 6 0,15 0,19 0,09 45
11 0,11 7,2 7 0,16 0,2 0,1 -
12 0,12 7,4 8 0,17 0,22 0,15 60
13 0,13 7,6 9 0,18 0,23 0,2 -
14 0,14 7,8 10 0,19 0,24 0,25 -
15 0,15 8 11 0,2 0,25 0,3 45
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Figure 4 — Initial schemes




EXAMPLE OF PERFORMANCE OF THE TASK
m=0,009 kg
w=9rad/s
C=0,1 N/m
[0=0,2m
a=30°
X=0,9 m
Vo=0,7 m/s
t,=0,16 s

Figure 5. — Initial scheme

Solution:

P =P-sing

NN Zg

Figure 6. — Calculated scheme

Rotation of a plate (lamell& around an axis of; impart (convey) to thév
point the transport motion. The motion of a pointtbe channel of a lamella - the
relative motion. We connect a moving system of dowmtesOxyzwith a lamella (the
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origin of coordinates in a poirfd fastenings of a spring). We will direct an axis
along an axis of the channel. An ayis in the drawing plane.

We apply the weighP =mg, elastic force of a sprindj:y and reactionN of a

wall of the channel to a poiM. As a walls smooth (there is no friction), thiinlies
in the plane a perpendicular axi§Oyzplane). The direction of it is unknown there-
fore we resolutiorN to componentdNy, Nz in the direction of axeg, z

As Oxyznoninertial frame of reference (the lamella ratatéor a research of the
relative motion of a point to forces acting on @npowe add transpor®_ and Corio-

lis @, forces of inertia.
®,=-ma,; &, =-ma.; F,=c(x-1,).

The vectol, is perpendicular the planes of vect@sandV,, that is, is paral-
lel to an axiz.

a. = 2w, V. [8in30 ;w,=w ; V, =X
a' =awrxsing
We work out the differential equations of the relatmotion of a point in pro-
jections toOxyzaxes:
mX = —Psing sina - Fy +O, siny

O:Ny—Psin¢ cosa+d>e cog ; *)

0=N, - Pcos¢—<DC;
At the same time it is considered tfeat, =0,a , =0 (the relative motion takes

place only along an axi§. From the second and third equations reactiysNz of
a wall of the channel (to a point) are defined.
For definition ®_ and @ it is also necessary to find the solution of thstf
equation of system. It takes a form:
mx = —mgsina sinwt —c(x~1,) + mafx sirfa
or
., [ C . 5 . . cl
x+(——wzsm asz—g sina sinwt +—2
m m
At the set numerical values

(3 - a)zsinzaj = 01000_ iy 2 g9 562
m 0.09

C .
As (m—wzsmz UJ >0, designate
(E—afsinzaj=kz;—gsina=A*;C—|°=
m m



At the same time
k=.90,561= 9,53 :

A =-9,8110,5- 4,9 £
o _10D,2

=22,22m /s*.

Then the equation takes a form:
X+k’x=A4"sin(wt)+D".

It is the ordinary heterogeneous linear differdnéiquation of the 2nd order
with constant coefficients.

Its common solution has an appearance:
X=X+ X,

where x, — the common solution of the uniform equatiey- the particular so-

lution of the heterogeneous equation.
The characteristic equation for this uniform diéfietial has an appearance:

A +k*=0.
Its roots
A, , = *Ki.
As roots imaginary, the common solutiephas an appearance:
x, =C,cogkt) +C, sir{kt)
We look for the particular solution in a view:
X, = Asin(at) +D.
Substituting the particular solution in the diffieti@l equation, we will receive:
~Aw’sin(wt) + k*Asin(at) +k’D =4 siawt) + D’
or
(—aF +K?)Asin(wt) +k*D=A4"sin(at) + D"
The particular solution will satisfy to the differt#al equation if:
(-« +k*)A=4 and kD =D".

From here
A -4.91
A= = . =-0,5m,
k?-af 9,563-¢
D" 22,22
=—=—"-=0,245m
k? 9,53
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The equation of the relative motion of a point rees a form:
x=C,coskt +C, sir{kt) + A siffat) +D .
Point velocity
Vv :% =-kC,sin(kt) + kC, cogkt) + Aw cofat).
We define constants of integration@f andC, from initial conditions:
att=0: x=0,9m, %, =0,m k

0,9=C, + 0,245,
0,7=9,53C, - 0,5]¢

From here
C,=0,9- 0,245 0,655 ;
) _0.7+ 0,509, 0,546m /s
9,53
Then

x=0,655co¢ 9,53+ 0,5465fn 983 0,497i)9 O,

x=-6,242sir( 9,58+ 5,203c¢s 993 4,736fdg 9 .
We substitute the common solution of the unifornuamn in an amplitude
form for what we enter (introduce) the followindostitution:

C1:aS|n,8; C2 =acoyl

Then the solution take a form:
x=asinB cogkt) +a co@ sifkt)=a sik{+/ .

At the same timea — amplitude of fluctuations(kt + B) — a phase of fluctua-
tions, g — an initial phase of fluctuations.
We substitute numerical values:
a=+/C:+C,2 =40,655 + 0,546= 0,858
L= arctg& =arctg 0,655_ 0,846rad = 50,2
C, 0,546
Law of the relative motion of a point:
x=0,853sin(9,58+ 0,846) 0,4974in)% 0,2
x=8,114co0s(9,53+ 0,846) 4,736¢0s)9 .
We determine coordinateand velocityx in timepointt =t, =0,16s.
x=0,34m; X=-6,58m /s
We build diagrams of a point in time<t<T,. Where the period of fluctuations

of T, is determined by a formuld:, =2 % S.
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Figure 7. — Dependence of change of:
a) coordinate on an interval [Q,]T b) velocity on an interval [04]

We look for the beats period ©f on a formula:
T, =3
©olal

where A = w-k: kz\/ﬁ—a)zlz‘sinza.
m

Thus, the beats period or the lower vibratory fiesgry will be:

- Ar
T,= ‘g_mjr— 24,34s
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Figure 8. — Dependence of coordinate on time oniaterval of time [0, ]

From the system equations (*) we define reactiars far timepoint £ =1.16
sec.:

Ny=0,09E9,8]]Sin(@1%)EI 0,16) 0,866 0,08 @ 0/34 0,5 0,86®,136N .

NZ:O,OQEQ,BECOS(QJ?D 0,1¢) 0,09[(2[9 6,88 sin30- 4ND

Reaction of a wall of a channel:

N = NZ+N?=,/(-0,13¢+ (4,0 = 4,01N

We investigate the non-periodic motion.

The motion will be non-periodic if roots of the cheteristic equation are valid,
that is:

W’ sin? a—E 0,

or 60>1/ —21 08s™
mII'l;ln a’ o 09

We acceptw=25c")w,
Then roots of the characteristic equation:

A, = i\/aﬂ‘»inza—£ = i\/252 Do,g—l—o =+./4514+ 6,782 .

m 0,09

Denote:
(afsinza—ﬁj=kf;—gsina= A*;C—IO=
m m

k?=4514s"; A'=-49In K ; D = 22,2k ¢
The differential equation take a form:
X—k’x=A'sin(wt)+D".
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We look for the solution of the differential equuatiin a form:
x=Ce" +C,e" + Asin(at)+D.
At the same time:

a=—A =491 g 007m:
k’+a&* 6,45+ 25
=-0 =22 g soom

We define constants, andC, .
x=AC.eM +A,Ce" +wlAcos(at) .

We substitute initial conditions:
at t=0: x=09m, %x,=0,M Kk

0,9=C,+C,- 0,492,

{O,7= 6,72C, - 6,72C,+ 251 0,00
From hereC, =0,734m, C,= 0,658n $
So
x=0,734>* + 0,658& °>* + 0,007sin(259) 0,492,

We determinéime t,— passing time by a point of all channel. We makieua-

tion one of the existing mathematical packages aD, Mathematica, etc.) or
graphically.

We define time of, graphically.
For this purpose we appoint length of the chan@el.a statement of the prob-

lema=5l,=1m.

Length of the channel on which the point on a ldaeloves:
s=a/sin¢)=1/0,5=2 m.

We plot the diagram of the non-periodic motion.rkrthe diagram it is visible

that the point will leave the channel through 0,18sec. It is important to note that
the solution fott >t, loses meaning.
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