

а – микроструктура износостойкого покрытия;

б – твердость покрытия и основы после наплавки ТВЧ; в – интенсивность износа покрытия из ДЛ сплава

Рисунок 2 – Микроструктура, твердость и износостойкость покрытия из ДЛ стружки SUJ2

Средняя интенсивность изнашивания защитных покрытий, работающих в условиях интенсивного абразивного изнашивания из диффузионно-легированной стружки SUJ2 в 2,5–3 раза ниже, чем у стали 45 подвергнутой предварительно закалке с низким отпуском.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- 1. Пантелеенко, Ф.И. Самофлюсующиеся диффузионно-легированные порошки на железной основе и защитные покрытия на них / Ф.И. Пантелеенко. Мн.: УП «Технопринт», $2001.-300~{\rm c}$.
- 2. Константинов, В.М. Диффузионно-легированные сплавы для защитных покрытий: дис. . . . д-ра техн. наук: 05.02.01 / В.М. Константинов. Минск, 2008. 475 л.
- 3. Ворошнин, Л.Г. Теория и практика получения защитных покрытий с помощью ХТО / Л.Г. Ворошнин, Ф.И. Пантелеенко, В.М. Константинов. 2-е изд., перераб. и доп. Минск: ФТИ; Новополоцк: ПГУ, 2001. 148 с.
- 4. Щербаков, В. Г. Некоторые аспекты использования отходов металлургического производства в качестве основы для получения наплавочных материалов / В. Г. Щербаков // Металлургия: республиканский межведомственный сборник научных трудов. – Минск: БНТУ, 2011. – Вып. 33, ч. 2. - С. 200-213.
- 5. Щербаков, В.Г. Получение диффузионно-легированных сплавов в подвижных порошковых средах из металлических отходов производства для индукционной наплавки и пути повышения их технологических свойств / В.Г. Щербаков // Литейные процессы. 2014. N013. C. 90—98.

УДК 539.3

ОСЕСИММЕТРИЧНОЕ ТЕРМОСИЛОВОЕ ДЕФОРМИРОВАНИЕ КОРОТКИХ ЦИЛИНДРИЧЕСКИХ ТЕЛ ПРИ НЕЙТРОННОМ ОБЛУЧЕНИИ

В.М. Хвисевич, А.И. Веремейчик, В.В. Гарбачевский Брестский государственный технический университет, Брест, Республика Беларусь

Воздействие температурного поля при одновременном интенсивном облучении высокоэнергетическими частицами приводит к появлению деформаций

термического расширения и окружных деформаций радиационного распухания. При этом появляются значительные напряжения, которые могут привести к разрушению нагруженного тела. Это требует разработки новых методов расчета конструктивных элементов, подверженных воздействию одновременной терморадиационной и механической нагрузки.

Объектом рассмотрения является сплошной короткий однородный цилиндр радиусом R и высотой H, который подвергается воздействию радиационной, температурной нагрузки и внешнего радиального и осевого давления.

В связи со спецификой заданных нагрузок и с учетом физической и геометрической симметрии напряженно-деформированного состояния (НДС) короткого цилиндра можно оценить, реализовав осесимметричную задачу теории упругости с учетом теплового и радиационного воздействия. Задача рассматривается в несвязанной постановке.

Дифференциальные уравнения (ДУ) равновесия имеют вид:

$$\begin{cases}
\frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_\theta}{r} + \frac{\partial \tau_{rz}}{\partial z} = 0, \\
\frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} + \frac{\partial \tau_{rz}}{\partial r} = 0,
\end{cases}$$
(1)

где $\sigma_r, \sigma_\theta, \sigma_z$ - радиальное, окружное и осевое напряжение, r – переменный радиус.

Граничные условия задачи:

при
$$\mathbf{r}=0$$
: $u_r=0$, $\frac{\partial u_z}{\partial r}=0$, при $\mathbf{r}=\mathbf{R}$: $\sigma_r=-P_1$, $\tau_{rz}=0$, при $\mathbf{z}=0$: $u_z=0$, $\tau_{rz}=0$, при $\mathbf{z}=\mathbf{H}$: $\sigma_z=-P_2$, $\tau_{rz}=0$,

при z = 0:
$$u_z = 0$$
, $\tau_{rz} = 0$, при z = H: $\sigma_z = -P_2$, $\tau_{rz} = 0$,

где P_1, P_2 — внешнее давление на боковой и торцевой поверхности соответственно.

Эмпирическая функция радиационного распухания, являющаяся функцией времени и температуры, принимается согласно [1]:

$$S(T(r),t) = 4.9 \cdot 10^{-51} \cdot (\Phi \cdot t)^{1.71} \cdot 10^{\frac{15490}{T} - \frac{5.98 \cdot 10^6}{T^2}},$$
 (2)

где t – время, Φ – нейтронный поток, T – температурное поле как функция координат:

$$T(r,z) = T_S + \frac{q_v}{4\lambda} (R^2 - r^2),$$
 (3)

 $T_{\scriptscriptstyle S}$ - температура на наружной поверхности, $q_{\scriptscriptstyle V}$ - объемное тепловыделение, являющееся функцией координаты z, λ - коэффициент теплопроводности ма-

териала,
$$q_v = \overline{q}_v \cdot K_z \cdot \cos\left(\frac{\pi H}{H + 2H_0} \cdot \frac{z}{H}\right)$$
, где $\overline{q}_v = 2,234 \cdot 10^8 \frac{Bm}{M \cdot spa\phi}$ - внутренний

объемный источник тепловыделения, $T_s = 700^{\circ} C$.

С учетом характеристик для материала ОХ16Н15М3Б [1] принимаем: $K_z=1,2,\,\Phi=2,81\cdot10^{19}\,\mathrm{нейтр./(cm^2\cdot ч)},\,\,\alpha=16\cdot10^{-6}\,\,\mathrm{град^{-1}},\,\,\nu=0,3\,,\,\,E=1,5\cdot10^{11}\,\,\,\Pi\mathrm{a},$ $\lambda = 12~{\rm BT/}~({\rm M}\cdot{\rm град})~[1]$. Размеры цилиндра: H=40 мм, R= 5 мм. Поверхности температурного поля и радиационного распухания для момента времени 1000 ч. приведены на рисунке 1.

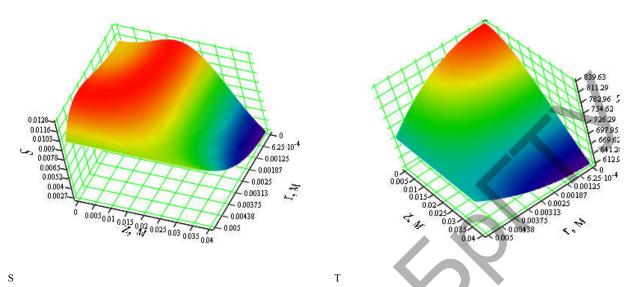


Рисунок 1 — Поверхности температуры и радиационного распухания в момент времени 1000 часов

Уравнения обобщенного закона Гука при механическом, температурном и радиационном нагружении:

$$\varepsilon_{r} = \frac{1}{E} \left(\sigma_{r} - \nu \left(\sigma_{\theta} + \sigma_{z} \right) \right) + \alpha \cdot T(r, z) + \frac{S(r, z)}{3},$$

$$\varepsilon_{\theta} = \frac{1}{E} \left(\sigma_{\theta} - \nu \left(\sigma_{r} + \sigma_{z} \right) \right) + \alpha \cdot T(r, z) + \frac{S(r, z)}{3},$$

$$\varepsilon_{z} = \frac{1}{E} \left(\sigma_{z} - \nu \left(\sigma_{\theta} + \sigma_{r} \right) \right) + \alpha \cdot T(r, z) + \frac{S(r, z)}{3},$$

$$\gamma_{rz} = \frac{\tau_{rz}}{G},$$
(4)

где α — коэффициент линейного расширения материала, $G = \frac{E}{2(1+\nu)}$ - модуль сдвига.

Геометрические соотношения Коши, связывающие перемещения и деформации, следующие:

$$\varepsilon_r = \frac{\partial u_r}{\partial r}, \quad \varepsilon_\theta = \frac{u_r}{r}, \quad \varepsilon_z = \frac{\partial u_z}{\partial z}, \quad \gamma_{zr} = \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r}$$
 (5)

Выразив компоненты напряжений рассматриваемой задачи через перемещения u_r, u_z , и решая совместно (4) и (5), получены выражения для напряжений. С учетом этих выражений ДУ равновесия запишем в виде системы равновесия второго порядка в перемещениях:

$$E\frac{1-\nu}{(1+\nu)(1-2\nu)}\frac{\partial^{2}u_{r}}{\partial r^{2}} + E\frac{\nu}{2(1-2\nu)(1+\nu)}\frac{\partial^{2}u_{z}}{\partial r\partial z} - E\frac{1-\nu}{(1+\nu)(1-2\nu)}\frac{1}{r}\frac{\partial u_{r}}{\partial r} - \frac{1}{r}\frac{\partial u_{r}}{\partial r} - \frac{1}{r}\frac{\partial u_{r}}{\partial r} - \frac{1}{r}\frac{\partial u_{r}}{\partial r} + \frac{E}{2(1+\nu)}\frac{\partial^{2}u_{r}}{\partial z^{2}} - \frac{1}{1-2\nu}E\alpha \cdot \frac{\partial T}{\partial r} - \frac{1}{1-2\nu}E\cdot \frac{\partial S}{\partial r} = 0,$$

$$E\frac{(1-\nu)}{(1+\nu)(1-2\nu)}\frac{\partial^{2}u_{z}}{\partial z^{2}} + E\frac{\nu}{2(1+\nu)(1-2\nu)}\frac{\partial^{2}u_{r}}{\partial z\partial r} + \frac{\nu}{2(1-2\nu)}\frac{E}{1+\nu}\frac{1}{r}\frac{\partial u_{r}}{\partial z} + \frac{E}{2(1+\nu)}\frac{\partial^{2}u_{z}}{\partial r^{2}} - \frac{1}{(1-2\nu)}E\alpha \cdot \frac{\partial T}{\partial z} - \frac{1}{(1-2\nu)}E\cdot \frac{1}{3}\frac{\partial S}{\partial z} = 0.$$

$$(6)$$

Решение такой системы ДУ второго порядка в частных производных возможно только численным путем. Для ее решения воспользуемся методом конечных разностей (МКР), позволяющим перейти от систем ДУ к их аналогам — системе алгебраических уравнений с неизвестными значениями перемещений u_r, u_z в контурных и внутриконтурных точках, применив пошаговое разбиение по времени и составив конечно-разностные уравнения для каждого из временных шагов. Составлена система конечно-разностных аналогов уравнений (6) для внутренних точек области. Получены выражения осевых и радиальных перемещений для контурных точек области в конечных разностях с использованием граничных условий. Расчет контурных значений неизвестных перемещений проводится через контурные и внутриконтурные точки, что позволило снизить объем вычислительных операций и позволило снизить шаг сетки, повысив точность результатов.

Решение системы уравнений, включающей неизвестные значения перемещений u_r, u_z в контурных и внутриконтурных точках, проводится в среде Mathcad 15. Для этого разработана соответствующая программа, позволяющая получать численное решение системы ДУ (6) с граничными условиями. Программа предоставляет возможность пользователю варьировать не только характеристиками материала и внешними воздействиями, но и шагом сетки и граничными условиями, что значительно расширяет возможности исследователю.

Получены значения компонент напряжения $\sigma_r, \sigma_\theta, \sigma_z$ и деформаций $\varepsilon_r, \varepsilon_\theta, \varepsilon_z, \gamma_{rz}$ в зависимости от координат r и z. Исследована их зависимость от времени облучения и свойств материала. Кроме того, проведено исследование влияния температуры и радиационного нагружения на напряжения, деформации и перемещения.

Проведено решение некоторых тестовых задач. Достоверность результатов, ввиду отсутствия аналитических решений такого рода задач, проверялась при отдельном механическом и температурном нагружении. Сравнение результатов с аналитическим решением задач теории упругости и теплопроводности [2, 3] подтвердило достоверность конечно-разностных схем.

Полученные результаты могут быть использованы при разработке и создании новых конструкций, а также позволяют оптимизировать форму и размеры существующих конструктивных элементов при температурных, силовых и ра-

диационных воздействиях.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- 1. Куликов, И.С., и др. Прочность тепловыделяющих элементов быстрых газоохлаждаемых реакторов / И.С. Куликов, Б.Е. Тверковкин. Мн., 1984. 143 с.
- 2. Тимошенко, С.П., и др. Теория упругости / С.П. Тимошенко, Дж. Гудьер. М., 1979. 576 с.
- 3. Коваленко, А.Д. Основы термоупругости / А.Д. Коваленко. Киев: Наукова думка, 1970.-239 с.

УДК 621.794.61

НАПРЯЖЕННОЕ СОСТОЯНИЕ ZrCN:DLC ПОКРЫТИЯ

Онысько С.Р.¹, Хвисевич В.М.¹, Чекан Н.М.², Акула И.П.²

- 1) Брестский государственный технический университет, Брест, Республика Беларусь;
- 2) Физико-технический институт НАН Беларуси, Минск, Республика Беларусь

Износостойкие покрытия стали неотъемлемым атрибутом современных металло- и деревообрабатывающих инструментов. Если до недавнего времени основным типом покрытия был нитрид титана, который использовался как универсальное покрытие для различных инструментов и условий обработки, то на сегодняшний день предпочтение отдается более специализированным покрытиям.

Авторами настоящей работы создан новый тип композиционных покрытий на основе нанокристаллического карбонитрида циркония и аморфного алмазоподобного углерода ZrCN:DLC [1]. В силу ряда особенностей роста твердых и сверхтвердых покрытий PVD методом, а также сильного различия температурных коэффициентов линейного расширения покрытия и основы, на которую оно наносится, в формируемом тонкопленочном материале возникают сильные внутренние напряжения, достигающие нескольких гигапаскалей.

Детальное описание метода получения ZrCN:DLC покрытия приводится в работе [2]. Покрытия осаждались на полированные пластины из инструментальной стали X12M и твердого сплава BK10.

Характер взаимодействия тонких пленок и покрытий с основой всецело определяет напряжения первого типа в такого рода системах. Отсутствие какихлибо сил в направлении нормали к основе и возможности свободной деформации в этом направлении позволяет рассматривать покрытие как двуосную напряженную систему. Для произвольно ориентированного кристаллита, развернутого в плоскости покрытия на угол ϕ и отклоненного от вертикали (нормали к плоскости основы) на угол Ψ , величина относительной деформации определяется выражением [3]:

$$\frac{d-d_0}{d_0} = \frac{1+\nu}{E}\sin^2\psi(\sigma_x\cos^2\phi + \sigma_y\sin^2\phi) - \frac{\nu}{E}(\sigma_x + \sigma_y),\tag{1}$$

где d_0 — межплоскостное расстояние для недеформированного кристаллита, E и ν модуль Юнга и коэффициент Пуассона соответственно.