УДК 517.953

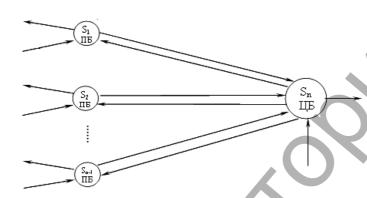
О ПРИМЕНЕНИИ НМ-СЕТЕЙ С ОГРАНИЧЕННЫМИ ВРЕМЕНАМИ ЗАЯВОК ПРИ ПРОГНОЗИРОВАНИИ ДОХОДОВ

Статкевич С.Э.

УО «Гродненский государственный университет имени Янки Купалы», г. Гродно

Сеть массового обслуживания (MO) представляет собой совокупность систем массового обслуживания (CMO), между которыми циркулируют заявки, переходя из одной СМО в другую. НМ (Howard-Matalytski)-сети являются расширением понятия сетей МО и позволяют находить ожидаемые доходы СМО сети. Заявка при переходе из одной СМО в другую приносит ей некоторый доход, а доход первой СМО уменьшается соответственно на эту величину. Они применяются в качестве моделей прогнозирования доходов различных объектов в экономике, транспортной логистике, страховании и др.

Рассмотрим банковскую сеть, изображенную на рис.1. На верхнем уровне банковской сети находится Центральный банк (ЦБ), ниже – крупные периферийные банки (ПБ) с их филиалами. Все межбанковские платежи проводятся Расчетным центром (РЦ) ЦБ с помощью банковской компьютерной сети через корреспондентские счета (КС), открывающиеся на ба-



лансе каждого банка. Каждый платеж оформляется в виде одного электронного платежного документа (ЭПД). Прием и обработка ЭПД осуществляются по мере их поступления.

Рисунок 1 - Открытая модель банковской сети

Каждый банк в течение дня видит состояния очередей своих платежей и мо-

жет в случайный момент времени отозвать ЭПД из очереди ожидания средств по денежным переводам при наличии ошибочных реквизитов в ЭПД либо в случае, когда для его проведения нет средств. В этом случае при моделировании доходов целесообразно применить НМ-сети с ограниченными временами ожидания заявок в очередях, которые позволяют найти ожидаемые доходы от переходов между состояниями банковской сети, соответствующих поступлению платежей (заявок) между банками, а также оптимальные резервы банков [1].

Для ожидаемых доходов систем сети получена система разностно-дифференциальных уравнений

$$\frac{dv_{i}(k,t)}{dt} = -\left[\lambda + \sum_{j=1}^{n} (\mu_{j} \min(k_{j}, m_{j}) u(k_{j}) + \theta_{j}(k_{j} - m_{j}) u(k_{j} - m_{j}))\right] v_{i}(k,t)$$

$$+ \sum_{j=1}^{n} \left\{\lambda p_{0j} v_{i}(k + I_{j}, t) + \left[\mu_{j} \min(k_{j}, m_{j}) u(k_{j}) p_{j0} + \theta_{j}(k_{j} - m_{j}) u(k_{j} - m_{j}) q_{j0}\right] v_{i}(k,t)\right\} +$$

$$+ \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij}\right] v_{i}(k - I_{i} + I_{j}, t) + \frac{1}{2} \left\{\left[\mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} + \theta_{i}(k_{i} - m_{i}) u(k_{i}) q_$$

$$+ \left[\mu_{j} \min(k_{j}, m_{j}) u(k_{j}) p_{ji} + \theta_{j}(k_{j} - m_{j}) u(k_{j} - m_{j}) q_{ji} \right] v_{i}(k + I_{i} - I_{j}, t) +$$

$$+ \sum_{\substack{c, s=1\\c, s \neq i}}^{n} \left[\mu_{s} \min(k_{s}, m_{s}) u(k_{s}) p_{sc} + \theta_{s}(k_{s} - m_{s}) u(k_{s} - m_{s}) q_{sc} \right] v_{i}(k + I_{c} - I_{s}, t) +$$

$$+ \sum_{\substack{j=1\\j=1}}^{n} \left[\mu_{j} \min(k_{j}, m_{j}) u(k_{j}) p_{ji} r_{ij}(k + I_{i} - I_{j}, t) -$$

$$- \mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{ij} r_{ji}(k - I_{i} + I_{j}, t) +$$

$$+ \theta_{j}(k_{j} - m_{j}) u(k_{j} - m_{j}) q_{ji} h_{ij}(k + I_{i} - I_{j}, t) +$$

$$+ \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{ij} h_{ji}(k - I_{i} + I_{j}, t) +$$

$$+ \lambda p_{0i} r_{0i}(k + I_{i}, t) - \mu_{i} \min(k_{i}, m_{i}) u(k_{i}) p_{i0} R_{i0}(k - I_{i}, t) -$$

$$- \theta_{i}(k_{i} - m_{i}) u(k_{i} - m_{i}) q_{i0} H_{i0}(k - I_{i}, t) + r_{i}(k), i = \overline{1, n},$$

где $k = (k,t) = (k_1, \ldots, k_n, t)$ – вектор состояний сети, $k_i(t)$ – число заявок в системе S_i в момент времени t, $i=\overline{1,n}$; $v_i(k,t)$ -полный ожидаемый доход, который получает система S_i за время t , если в начальный момент времени сеть находится в состоянии (k,0); λ -интенсивность поступления простейшего потока заявок в сеть; m_i -количество линий обслуживания в системе S_i ; μ_i^{-1} , θ_i^{-1} -соответственно среднее время обслуживания в каждой линии и среднее время ожидания заявки в очереди в системе S_i ; p_{ij} — вероятность перехода заявки после обслуживания в системе S_i в систему S_j ; q_{ij} – вероятность перехода заявки в очередь системы S_{j} , если время ожидания в очереди системы S_i истекло; $I_i - n$ -вектор с нулевыми компонентами, за исключением компоненты с номером i, которая равна 1; $r_i(k)$ – доход системы S_i в у.е. в единицу времени в течение времени пребывания сети в состоянии k; $R_{i0}\left(k-I_{i},t\right)$, $H_{\scriptscriptstyle i0}\left(k-I_{\scriptscriptstyle i},t
ight)$ – расходы системы $S_{\scriptscriptstyle i}$, когда сеть меняет свое состояние из $\left(k,t
ight)$ на $(k-I_i, t+\Delta t)$ соответственно из-за ухода заявки после обслуживания в ней во внешнюю среду и из-за ухода заявки из очереди этой СМО во внешнюю среду, которая не дождалась обслуживания в ней; $r_{0i}(k+I_i,t)$ – доход системы S_i , когда сеть меняет свое состояние с (k,t) на $(k+I_i,t+\Delta t)$ из-за прихода заявки из внешней среды в эту СМО; $r_{ij}(k+I_i-I_j,t)$, $h_{ij}(k+I_i-I_j,t)$ доходы системы S_i , когда сеть меняет свое состояние с (k,t) на $(k+I_i-I_j,t+\Delta t)$ соответственно из-за перехода заявки после обслуживания в системе S_i в эту систему и из-за перехода заявки, не дождавшейся обслуживания в системе S_i , из очереди этой системы в систему S_i .

В докладе рассматривается применение прямого метода и метода преобразований Лапласа для решения данной системы уравнений.

Список цитированных источников

1. Маталыцкий, М.А. Вероятностный анализ доходов в банковских сетях / М.А. Маталыцкий, А.В. Паньков // Вестник БГУ. Сер.1. Физика, математика, информатика. – 2004. - №2. – С. 86-91.