- E. Spafford and D. Zamboni. Data collection mechanisms for intrusion detection systems. CERIAS Technical Report 2000-08, CERIAS, Pardue University, 1315 Recitation Building, West Lafayette, IN, 2000.
- H. Debar, M. Becke & D.Simboni. A Neural Network Component for an Intrusion Detection System. In proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, (1992).
- C. Jirapummin and N. Wattanapongsakorn. Visual Intrusion Detection using Self-Organizing Maps, Proc. of Electrical and Electronic Conference (EECON-24), Thailand, Vol. 2, pp. 1343-1349, 2001.
- S.C. Lee and D.V. Heinbuch. Training a Neural Network Based Intrusion Detector to Recognize Novel Attacks. Information Assistance and Security, pp. 40-46, 2000.
- S. Hawkins, H. He, G. Williams, R. Baxter. Outlier Detection Using Replicator Neural Networks. Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery (DaWaK02) Lecture Notes in computer Science, Vol. 2454, Springer, Pages 170-180, ISBN 3-540-44123-9, 2002
- V. Golovko, O. Ignatiuk, Yu. Savitsky, T. Laopoulos, A. Sachenko, L. Grandinetti. Unsupervised learning for dimensionality reduction. Proc. of Second Int. ICSC Symposium on Engineering of Intelligent Systems EIS'2000, University of Paisley, Scotland, June 2000. Canada / Switzerland: ICSS Academic Press, pp. 140 144, 2000.
- 1999 KDD Cup Competition. <a href="http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html">http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html</a>

УДК 004.383

## Дунец А.П.

# НЕЙРОННЫЕ СЕТИ ПРЯМОГО РАСПРОСТРАНЕНИЯ С ДОПОЛНИТЕЛЬНЫМИ СВЯЗЯМИ

#### 1. Введение

На данный момент в области нейросетевого моделирования разработано и исследовано значительное количество моделей искусственных нейронных сетей. Эти НС успешно применяются для решения разнообразных практических задач [1]. Одними из самых популярных нейросетевых моделей являются НС прямого распространения. Их популярность обусловлена простой и регулярной структурой. Для данных НС разработано большое число алгоритмов обучения. Предлагаются разные функции активации нейронных элементов (НЭ) [1]. Получено множество теоретических результатов. В то же время сообщество исследователей не оставляет попыток улучшить эту, уже ставшую классической, НС.

В данной работе предлагается вариант модернизации нейронной сети прямого распространения. Модернизация основана на введении дополнительных связей между слоями. Модифицированная таким образом модель обучалась на данных задачи "Исключающее «ИЛИ»" и показала свою большую эффективность в сравнении с НС классической архитектуры.

### 2. Задача "Исключающее «ИЛИ»"

Задача "Исключающее «ИЛИ»" (рис. 1) — один из интересных теоретических вопросов, которые рассматриваются в нейросетевом моделировании. Эта задача возникает, если попытаться заменить элементы булевой логики нейросетевыми структурами. В работе [1] показано, что для элементов «И», «ИЛИ» это можно сделать, используя персептрон Розеблатта. В то же время элемент "Исключающее «ИЛИ»" построить на персептроне Розеблатта нельзя из-за того, что в основе персептрона лежит линейное преобразование информации, а задача "Исключающее «ИЛИ»" - нелинейная.

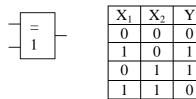


Рис. 1. Элемент "Исключающее «ИЛИ»" с таблицей истинности

В [1] для решения данной задачи используется много-

слойная нейронная сеть прямого распространения информации. Сеть содержит 3 слоя: распределительный слой и 2 обрабатывающих слоя. Обрабатывающие слои состоят из НЭ с пороговой функцией активации. Следует отметить, что пороговая функция в этом случае несколько неудобна для теоретического анализа. Это делает НС на ее основе сложными для применения к ним градиентных алгоритмов обучения. Целесообразно использовать сигмоидную функцию активации. При небольших допущениях она эквивалентна пороговой функции и при этом легче поддается анализу аналитическими методами:

$$y = \frac{1}{1 + e^{-S}},$$
 (1)

где

$$S = \sum_{i=1}^{n} \mathbf{\omega}_i \mathbf{x}_i - T.$$
 (2)

В этом выражении  $x_i$  - значение, которое подано на i-ый вход нейронного элемента,  $\mathbf{\omega}_i$  - значение весового коэффициента для i-го входа, T - значение порога НЭ.

В результате обучения НС получен результат, который приведен на рис. 2.

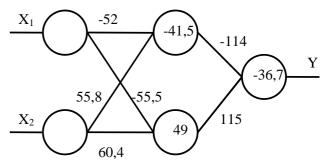


Рис. 2. Обученная НС классической архитектуры

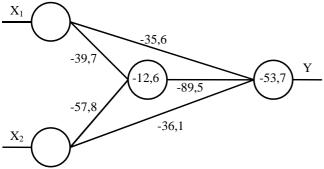
Полученная в результате НС содержит 3 обрабатывающих НЭ и всего 9 настраиваемых коэффициентов: 4 веса и 2 порога в скрытом слое и 2 веса и 1 порог в выходном слое.

**Дунец Андрей Петрович,** ст. преподаватель каф. интеллектуальных информационных технологий Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.

#### 3. Нейронная сеть с дополнительными связями

Приведенная в предыдущем пункте НС проста. Ее размерность по количеству настраиваемых коэффициентов равна 9, а по числу НЭ равна 3. Но данная задача может быть решена с применением нейросетевой модели меньшей размерности: 7 настраиваемых коэффициентов и 2 НЭ. В этом случае необходимо использовать архитектуру несколько отличную от классической – нейронную сеть прямого распространения с дополнительными связями. В этой архитектуре дополнительные связи образуются за счет соединения входного слоя с выходным (рис. 3). В данном варианте в скрытом слое достаточно одного нейрона.



**Рис. 3.** Обученная НС с дополнительными связями

Так как функционирование этой HC может быть представлено простой математической функцией, использовался алгоритм покоординатного спуска в пространстве настраиваемых коэффициентов.

Очевидно, что данная архитектура является менее сложной с вычислительной точки зрения, и при этом дает эквивалентный результат. Следует добавить, что как показали вычислительные эксперименты, НС с дополнительными связями обучается стабильнее на задаче "Исключающее «ИЛИ»" (рис. 4).



**Рис. 4.** Графики среднеквадратичной ошибки для рассмотренных архитектур

#### 4. Заключение

Таким образом, в данной работе рассмотрены две различные архитектуры НС прямого распространения. Приведены результаты вычислительных экспериментов обучения НС на задаче "Исключающее «ИЛИ»". Показано, что НС с дополнительными связями эффективнее: менее сложна и стабильнее обучается. В то же время данная работа не является окончательным заключением по данной теме. Целесообразно разработать алгоритм обратного распространения ошибки для данной архитектуры и для тестирования взять реальную задачу. Например, по распознаванию образов.

### СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ

1. Головко В.А. Нейроинтеллект: теория и применение. Книга 1: Организация и обучение нейронных сетей с прямыми и обратными связями. – Брест: БПИ, 1999 – 264 с.

УДК 004.032.26

Маньяков Н.В., Махнист С.Л.

# СРАВНЕНИЕ ЭФФЕКТИВНОСТИ АЛГОРИТМОВ ОБУЧЕНИЯ НЕЙРОННЫХ СЕТЕЙ НА ОСНОВЕ ГРАДИЕНТНЫХ МЕТОДОВ

Рассмотрим задачу обучения многослойной нейронной сети прямого распространения без обратных связей, заключающейся в минимизации функции невязки

$$\boldsymbol{E}_{S} = \frac{1}{2L} \sum_{k=1}^{L} \sum_{i,j=1}^{m_{N}} \left( y_{i_{N}}^{(N),k} - \boldsymbol{t}_{i_{N}}^{k} \right)^{2}$$

отклонений выходных значений последнего N-ого слоя сети  $y_{i_N}^{(N),k}$  от эталонных  $t_{i_N}^k-i_N$ -ого нейрона сети для k-ого образа. При этом выходные значения  $i_n$ -ого нейрона n-ого слоя сети для k-ого образа определяется рекуррентным соотношением:

$$\mathbf{y}_{i_n}^{(n),k} = \mathbf{F}_n \left( \mathbf{S}_{i_n}^{(n),k} \right),$$

где 
$$S_{i_n}^{(n),k} = \sum_{i_{n-1}=1}^{m_{n-1}} w_{i_{n-1}i_n}^{(n)} y_{i_{n-1}}^{(n-1),k} - T_{i_n}^{(n)}, \ i_n = \overline{1,m_n} \ , \ k = \overline{1,L} \ ,$$

 $y_{i_{n-1}}^{(n-1),k}$  - выходное значение  $i_{n-1}$  -го нейрона предыдущего слоя для k-ого образа (для первого распределительного слоя  $y_{i_1}^{1,k}$  совпадают с входными значениями сети),  $F_n$  - функция активация нейронов n-ого слоя. Множество выходных значений каждого слоя сети формирует вектор

$$Y^{(n),k} = \begin{pmatrix} y_1^{(n),k} & y_2^{(n),k} & \dots & y_{m_n}^{(n),k} & -1 \end{pmatrix}^T$$

Решая задачу обучения сети необходимо найти такие матрицы весовых коэффициентов

**Маньяков Николай Владимирович,** ст. преподаватель кафедры высшей математики Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.

**Махнист Сергей Леонидович,** студент 5-го курса факультета прикладной математики и информатики Белорусского государственного университета.

Беларусь, БГУ, 220050, г. Минск, пр. Ф.Скорины, 4.