- E. Spafford and D. Zamboni. Data collection mechanisms for intrusion detection systems. CERIAS Technical Report 2000-08, CERIAS, Pardue University, 1315 Recitation Building, West Lafayette, IN, 2000.
- H. Debar, M. Becke & D.Simboni. A Neural Network Component for an Intrusion Detection System. In proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, (1992).
- C. Jirapummin and N. Wattanapongsakorn. Visual Intrusion Detection using Self-Organizing Maps, Proc. of Electrical and Electronic Conference (EECON-24), Thailand, Vol. 2, pp. 1343-1349, 2001.
- S.C. Lee and D.V. Heinbuch. Training a Neural Network Based Intrusion Detector to Recognize Novel Attacks. Information Assistance and Security, pp. 40-46, 2000.
- S. Hawkins, H. He, G. Williams, R. Baxter. Outlier Detection Using Replicator Neural Networks. Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery (DaWaK02) Lecture Notes in computer Science, Vol. 2454, Springer, Pages 170-180, ISBN 3-540-44123-9, 2002
- V. Golovko, O. Ignatiuk, Yu. Savitsky, T. Laopoulos, A. Sachenko, L. Grandinetti. Unsupervised learning for dimensionality reduction. Proc. of Second Int. ICSC Symposium on Engineering of Intelligent Systems EIS'2000, University of Paisley, Scotland, June 2000. Canada / Switzerland: ICSS Academic Press, pp. 140 144, 2000.
- 1999 KDD Cup Competition. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

УДК 004.383

Дунец А.П.

НЕЙРОННЫЕ СЕТИ ПРЯМОГО РАСПРОСТРАНЕНИЯ С ДОПОЛНИТЕЛЬНЫМИ СВЯЗЯМИ

1. Введение

На данный момент в области нейросетевого моделирования разработано и исследовано значительное количество моделей искусственных нейронных сетей. Эти НС успешно применяются для решения разнообразных практических задач [1]. Одними из самых популярных нейросетевых моделей являются НС прямого распространения. Их популярность обусловлена простой и регулярной структурой. Для данных НС разработано большое число алгоритмов обучения. Предлагаются разные функции активации нейронных элементов (НЭ) [1]. Получено множество теоретических результатов. В то же время сообщество исследователей не оставляет попыток улучшить эту, уже ставшую классической, НС.

В данной работе предлагается вариант модернизации нейронной сети прямого распространения. Модернизация основана на введении дополнительных связей между слоями. Модифицированная таким образом модель обучалась на данных задачи "Исключающее «ИЛИ»" и показала свою большую эффективность в сравнении с НС классической архитектуры.

2. Задача "Исключающее «ИЛИ»"

Задача "Исключающее «ИЛИ»" (рис. 1) — один из интересных теоретических вопросов, которые рассматриваются в нейросетевом моделировании. Эта задача возникает, если попытаться заменить элементы булевой логики нейросетевыми структурами. В работе [1] показано, что для элементов «И», «ИЛИ» это можно сделать, используя персептрон Розеблатта. В то же время элемент "Исключающее «ИЛИ»" построить на персептроне Розеблатта нельзя из-за того, что в основе персептрона лежит линейное преобразование информации, а задача "Исключающее «ИЛИ»" - нелинейная.

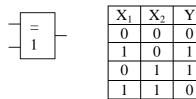


Рис. 1. Элемент "Исключающее «ИЛИ»" с таблицей истинности

В [1] для решения данной задачи используется много-

слойная нейронная сеть прямого распространения информации. Сеть содержит 3 слоя: распределительный слой и 2 обрабатывающих слоя. Обрабатывающие слои состоят из НЭ с пороговой функцией активации. Следует отметить, что пороговая функция в этом случае несколько неудобна для теоретического анализа. Это делает НС на ее основе сложными для применения к ним градиентных алгоритмов обучения. Целесообразно использовать сигмоидную функцию активации. При небольших допущениях она эквивалентна пороговой функции и при этом легче поддается анализу аналитическими методами:

$$y = \frac{1}{1 + e^{-S}},$$
 (1)

где

$$S = \sum_{i=1}^{n} \mathbf{\omega}_i \mathbf{x}_i - T.$$
 (2)

В этом выражении x_i - значение, которое подано на i-ый вход нейронного элемента, $\mathbf{\omega}_i$ - значение весового коэффициента для i-го входа, T - значение порога НЭ.

В результате обучения НС получен результат, который приведен на рис. 2.

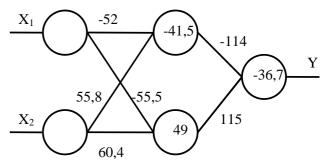


Рис. 2. Обученная НС классической архитектуры

Полученная в результате НС содержит 3 обрабатывающих НЭ и всего 9 настраиваемых коэффициентов: 4 веса и 2 порога в скрытом слое и 2 веса и 1 порог в выходном слое.

Дунец Андрей Петрович, ст. преподаватель каф. интеллектуальных информационных технологий Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.

3. Нейронная сеть с дополнительными связями

Приведенная в предыдущем пункте НС проста. Ее размерность по количеству настраиваемых коэффициентов равна 9, а по числу НЭ равна 3. Но данная задача может быть решена с применением нейросетевой модели меньшей размерности: 7 настраиваемых коэффициентов и 2 НЭ. В этом случае необходимо использовать архитектуру несколько отличную от классической – нейронную сеть прямого распространения с дополнительными связями. В этой архитектуре дополнительные связи образуются за счет соединения входного слоя с выходным (рис. 3). В данном варианте в скрытом слое достаточно одного нейрона.

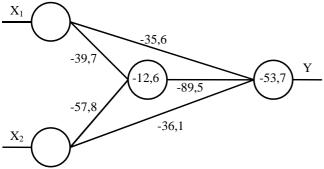


Рис. 3. Обученная НС с дополнительными связями

Так как функционирование этой HC может быть представлено простой математической функцией, использовался алгоритм покоординатного спуска в пространстве настраиваемых коэффициентов.

Очевидно, что данная архитектура является менее сложной с вычислительной точки зрения, и при этом дает эквивалентный результат. Следует добавить, что как показали вычислительные эксперименты, НС с дополнительными связями обучается стабильнее на задаче "Исключающее «ИЛИ»" (рис. 4).

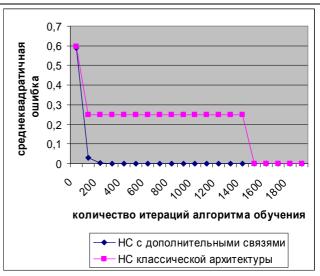


Рис. 4. Графики среднеквадратичной ошибки для рассмотренных архитектур

4. Заключение

Таким образом, в данной работе рассмотрены две различные архитектуры НС прямого распространения. Приведены результаты вычислительных экспериментов обучения НС на задаче "Исключающее «ИЛИ»". Показано, что НС с дополнительными связями эффективнее: менее сложна и стабильнее обучается. В то же время данная работа не является окончательным заключением по данной теме. Целесообразно разработать алгоритм обратного распространения ошибки для данной архитектуры и для тестирования взять реальную задачу. Например, по распознаванию образов.

СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ

1. Головко В.А. Нейроинтеллект: теория и применение. Книга 1: Организация и обучение нейронных сетей с прямыми и обратными связями. – Брест: БПИ, 1999 – 264 с.

УДК 004.032.26

Маньяков Н.В., Махнист С.Л.

СРАВНЕНИЕ ЭФФЕКТИВНОСТИ АЛГОРИТМОВ ОБУЧЕНИЯ НЕЙРОННЫХ СЕТЕЙ НА ОСНОВЕ ГРАДИЕНТНЫХ МЕТОДОВ

Рассмотрим задачу обучения многослойной нейронной сети прямого распространения без обратных связей, заключающейся в минимизации функции невязки

$$\boldsymbol{E}_{S} = \frac{1}{2L} \sum_{k=1}^{L} \sum_{i,j=1}^{m_{N}} \left(y_{i_{N}}^{(N),k} - \boldsymbol{t}_{i_{N}}^{k} \right)^{2}$$

отклонений выходных значений последнего N-ого слоя сети $y_{i_N}^{(N),k}$ от эталонных $t_{i_N}^k-i_N$ -ого нейрона сети для k-ого образа. При этом выходные значения i_n -ого нейрона n-ого слоя сети для k-ого образа определяется рекуррентным соотношением:

$$\mathbf{y}_{i_n}^{(n),k} = \mathbf{F}_n \left(\mathbf{S}_{i_n}^{(n),k} \right),$$

где
$$S_{i_n}^{(n),k} = \sum_{i_{n-1}=1}^{m_{n-1}} w_{i_{n-1}i_n}^{(n)} y_{i_{n-1}}^{(n-1),k} - T_{i_n}^{(n)}, \ i_n = \overline{1,m_n} \ , \ k = \overline{1,L} \ ,$$

 $y_{i_{n-1}}^{(n-1),k}$ - выходное значение i_{n-1} -го нейрона предыдущего слоя для k-ого образа (для первого распределительного слоя $y_{i_1}^{1,k}$ совпадают с входными значениями сети), F_n - функция активация нейронов n-ого слоя. Множество выходных значений каждого слоя сети формирует вектор

$$Y^{(n),k} = \begin{pmatrix} y_1^{(n),k} & y_2^{(n),k} & \dots & y_{m_n}^{(n),k} & -1 \end{pmatrix}^T$$

Решая задачу обучения сети необходимо найти такие матрицы весовых коэффициентов

Маньяков Николай Владимирович, ст. преподаватель кафедры высшей математики Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.

Махнист Сергей Леонидович, студент 5-го курса факультета прикладной математики и информатики Белорусского государственного университета.

Беларусь, БГУ, 220050, г. Минск, пр. Ф.Скорины, 4.