- необходимо стремиться к увеличению количества отбираемой воды из источников инфильтрационных, поскольку такая вода обладает более высоким качеством, чем вода поверхностная;
- очистка поверхностных вод на очистной станции в Петраше связана с большими технологическими затратами, чем на очистной станции в Василькове;
- воды с поверхностных водозаборов требуют более высоких экономических затрат, вложений, связанных с качеством воды в реке Супрасл;
- увеличение денежных инвестиций, направленных на охрану природы и на чистоту водной поверхности реки может отразиться на качестве отбираемой воды и на снижении стоимости её очистки.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- 1. Созанский М. Водопроводы и канализация в Польше. Традиция и современность. Польский Фонд Охраны Водных Ресурсов. – Познань-Быдгощ, 2002.
- 2. Габрышевский Т. Водопроводы. Варшава: Аркада, 1983.

Статья поступила в редакцию 02.05.2007

УДК 628.162

Брылка Е., Магрел Л., Пойта Л.Л., Волкова Г.А.

ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДА БЕСКИСЛОРОДНОЙ УТИЛИЗАЦИИ ОСАДКОВ КОММУНАЛЬНЫХ, ПРОМЫШЛЕННЫХ И ОРГАНИЧЕСКИХ СТОЧНЫХ ВОД

Введение

Твёрдые осадки в составе промышленных, коммунальных и органических сточных вод (ОСВ) составляют 2-3%. Их переработка и нейтрализация вредных примесей являются главными составными частями всех видов утилизации: биологической (кислородной и бескислородной); химической; термической.

Процесс биологической (кислородной) утилизации стоков является достаточно эффективным, хотя и энергоёмким. Метановая ферментация ОСВ (без кислорода) используется чаще для утилизации стоков более высокой концентрации, чем при кислородной ферментации. За последние годы в этой первой технологии заметен значительный прогресс (Кетра, 1993). Однако появление новых технологий выделения ОСВ из сточных вод в сравнении с общими технологиями их утилизации опоздало ровно на 30 лет (Кетра, 1993).

В северо-восточной части Польши утилизацию ОСВ осуществляют только 5 станций очистки. На них перерабатываются коммунальные и хозяйственно-бытовые стоки. Анализ работы этих станций свидетельствует, что в этой части Польши в сточных водах находится в среднем 24000 тонны органического вещества и примесей. Естественно, что такой объём ОСВ должен быть возвращён в природнохозяйственный оборот.

Процесс вторичного использования ОСВ связан с гарантией их санитарно-химической безопасности. Американское Агентство Охраны Природы (АОП) выделяет в этих процессах две группы:

- Процессы, позволяющие получать осадки высшего класса чистоты (класс A), которые могут быть использованы повторно в земледелии;
- процессы утилизации, позволяющие получать частично чистые осадки (класс В), которые могут быть использованы для внесения в почву, после их складирования и обогащения в специальных буртах. (Serafin, Tabarnacki 1992).

ОСВ разных технологических процессов имеют разные характеристики. Об их качестве свидетельствуют: химический состав, содержание органических составляющих и твёрдых примесей, степень растворения осадка в воде, реологические свойства, степень минерализации, фильтрация ОСВ и пригодность их для использования в качестве удобрений.

В соответствии с данными литературы (Bień 2002) главными параметрами ОСВ являются:

• степень водонасыщения осадка должна составлять более

99 % от его веса (осадок первичный, набухающий), а также менее 10 % – для осадка термической сушки.

- объёмный вес твёрдых фракций ОСВ должен составлять $1,05-2,5 \text{ кг/м}^3$;
- содержание органической фракции, способной к биологическому разложению, должно составлять 75% сухой массы свежеосаждённого ОСВ, до 45-55 % сухой массы переработанных ОСВ.
- содержание веществ, находящихся в навозах, должно составлять: азота 2–7% от сухой массы; фосфора и калия менее 2-7%; обычно в свежеосаждённых осадках содержание полезных веществ выше, чем в переработанных;
- содержание тяжёлых металлов очень изменчиво;
- содержание опасных органических составляющих очень низкое;
- содержание болезнетворных микробов обычно больше в ОСВ свежеосаждённых; чем в переработанных ОСВ.

Точное определение всех свойств и характеристик ОСВ требует времени и средств. Важнейшим показателем качества ОСВ является их санитарное состояние. Важны также показатели объёмного веса, теплоты сжигания, ценности некоторых компонентов в качестве удобрений.

Изменчивость химического состава ОСВ во многом определяется технологией очистки. Станции очистки, как правило, не проводят постоянного мониторинга качества ОСВ. Между тем, в ОСВ необходимо определять: реакцию рН; степень влажности; содержание органических и минеральных составляющих; кислотность и щёлочность; содержание летучих жирных кислот; содержание некоторых тяжёлых металлов.

Физико-химический состав осадков, выделенных из коммунальных вод, зависит от вида и количества стоков, поступающих в канализацию, а также от методов их очистки.

Жидкий органический навоз (ЖОН) является смесью твёрдых и жидких фракций метаболитов животных, а также остатков пищи, соломы и технологических вод, остающихся после мытья животных, полов в фермах, автопоилок, боксов и навозных каналов. Пропорция всех фракций в ЖОН для свиноферм составляет: кала — 40 %; мочи — 40 %; воды — 20 %. Свойства ЖОН отличаются значительными колебаниями, на которые в наибольшей степени влияют (Киtera 1994): виды животных и их возраст; виды кормов; способ очищения ферм

Волкова Галина Александровна, Брестский государственный технический университет. Беларусь, БрГТУ, 224017, г. Брест, ул. Московская, 267.

Таблица 1 Примериал писата	оиенки некоторых показателей	innouecea denvermanni OCR
1 иолица 1. Примерная шкала	оценки некоторых показателев	проиесси ферментации ОСБ

		, 11 ,				
Баллы Р	Номера выбранных показателей процессов ферментации					
	P 1	P 10	P 17			
	мг/дм ³	-	мг/дм ³			
	N – NH ₄ OCB	ВПК/щёлочность	XПК –Мп сточной воды			
10	>3 000	>0,05	>180			
9	2 700 – 3 000	0,05 - 0,08	180 – 300			
8	2 500 – 2 700	0.08 - 0.14	300 – 400			
7	1 900 – 2 500	0,14-0,23	400 – 530			
6	750 – 1 900	0,23 - 0,27	530 – 600			
5	600 – 750	0,27 - 0,37	600 - 700			
4	450 - 600	0,37 - 0,46	700 – 800			
3	350 - 450	0,46 - 0,65	800 – 900			
2	230 - 350	0,65 - 0,70	900 – 980			
1	<230	<0,7	<980			

от ЖОН; содержание в подстилочных слоях остатков корма и соломы; содержание воды; температура помещений; степень смешивания ЖОН с остатками кормов.

Грубая часть навоза состоит из соломы и подстилки и отделяется от жидкой фазы в специальных дробилках. Количество грубых примесей-засорителей должно составлять около 0,2 – 1,0 %. ЖОН является полидисперсной субстанцией, в которой твёрдая фаза находится в состоянии взвеси (Kutera 1990, Maćkowiak 1997). ЖОН во время хранения переходит в трехслойное состояние: верхняя часть – кожух, ниже находится жидкая фракция, ещё ниже – уплотнёный осадок.

В зависимости от количества воды ЖОН может быть уплотнён, слабоуплотнён, разбавлен, причём границей порога уплотнения навоза является содержание сухой массы 8 %.

ЖОН, разбавленный водой, имеет все основные свойства жидкости, хотя более уплотнён и имеет пластичную консистенцию. На основе этих показателей можно отличить ЖОН по происхождению: от крупного рогатого скота, свиней и птиц. (Kutera 1994).

Контроль эффективности применения метановой ферментации навозной жижи

Приведём основные параметры ЖОН, для которого можно применить безкислородную (метановую) ферментацию (Bień, 2002). В таком навозе должно быть:

- определённое содержание сухой массы, способное произвести необходимое количество ферментационного газа определенного состава;
- определённое содержание органических кислот;
- определённая реакция (рН).

В процессе ферментации стараются контролировать изменения в составе осадков, чтобы процесс ферментации шёл в направлении уменьшения содержания воды, а не стимулировал процесс гниения. При этом во время пребывания биомассы ЖОН в ферметационной камере 90% метаногенной субстанции должно перейти в биогаз. Минимальное время ферментации биомассы в камере и технологическая температура должны быть такими, чтобы поддерживался постоянный уровень численности метановых бактерий.

Уменьшение содержания органической субстанции определяется с помощью химической потребности в кислороде (ХПК) бихроматным методом или с использованием биохимического потребления кислорода (БПК), определяемых для жидкости над осадком.

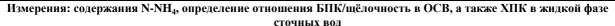
Среди других способов, применяемых для определения эффективности процессов ферментации ОСВ можно перечислить следующие (Furmańska 1995): определение степени денитрификации осадка; определение энзимной активности осадка; вычисление модуля стабильности осадка и индекса стабильности процесса.

На станциях утилизации сточных вод чаще всего используется так называемый критерий процентного разложения органической субстанции, который оценивается как техническая ферментация. В случае избытка ОСВ на станциях очистки СВ малой производительности, степень разложения органической субстанции в стоках составляет 30–40% (Skalmowski 1998). Контроль за ходом технологического процесса метановой ферментации ОСВ с помощью выше перечисленных показателей позволяет регулировать и управлять ими на разных технологических этапах. Дальнейшее совершенствование технологии очистки и контроля за ходом процессов связано с необходимостью замены множества разных показателей очистки одним (или несколькими) наиболее важным и информативным.

Прогнозирование процесса метановой ферментации перемешанных ОСВ

Изменения в ОСВ, происходящие в процессе метановой ферментации, можно оценить так называемым индексом эффективности. Для этого используется анализ показателей ферментации с ограниченным числом наиболее информативных признаков (Wójcik 1989).

На первом этапе исследуются первые вышеуказанные показатели ферментации и оцениваются их энергетические потенциалы. Эти показатели очень изменчивы и обычно мало связаны со временем ферментации.


На втором этапе исследуются и оцениваются следующие по очереди показатели ферментации и их потенциалы, которые уже более связаны со временем, а также с характером подаваемых в камеры осадков. При этом в оценках предусмотрено применение так называемой децимальной шкалы, т.е. чисел, сгруппированных в специальные ранги с учётом 10 % отклонений отметок. На этом этапе оценки опытных данных показателям, полученным при измерениях или анализах, присваиваются соответствующие баллы от 1 до10. При этом в каждом технологическом цикле одинаковые результаты оцениваются одинаковыми баллами и относятся к одному и тому же рангу. Частота появления результатов должна составлять 1/10 всех полученных результатов в технологическом процессе. По этой методике определяют 17 разных характеристик ОСВ.

Оценка в 1 балл указывает на плохую работу ферментационных камер, характеризует начало процесса или появление в процессе каких-то технологических отклонений.

Оценка в 10 баллов означает нормальное течение процесса ферментации и получение оптимальных результатов по окончании технологического пикла.

Некоторые показатели ОСВ с соответствующими пределами баллов качества ОСВ представлены в таблице 1.

На третьем этапе полученным результатам присваиваются дополнительные индексы: «индекс – A» и «индекс – B».

Присвоение баллов результатом анализов в соответствии с таблицей 1

Определение индекса IDN_E на основе формулы [1]

Рис. 1. Алгоритм определения IDN_E

Таблица 2. Пример вычисления IDN_E для смешанных ОСВ

Параметр	Единицы измерения	Показатель измерения	Балл Р [таб. 1]	
$N-NH_4$ OCB	$M\Gamma/$ д M^3	850	6	
БПК/щелочность	I	0,5	3	
ХПК – Mn жидкой фазы	мг∕дм³	540	6	
OCB				
Индекс эффективности:		50 %		

Таблица 3. Оценка пригодности применения индексов IDN_E и IDN_OE для процессов ферментации ОСВ в условиях застойных технологических режимов

Параметр	Последующие	N-NH ₄	БПК/	ХПК-М	Баллы			IND_E
	дни процесса	осадка	щёлоч-	жидкой				
			ность	фазы				
		$[мг/дм^3]$	-	[мг/дм ³]	N-NH ₄	БПК/	ХПК-	
					осадка	щёлочность	Мп жид-	
							кой фазы	
1 камера сме-	1	1100	0,48	1400	6	3	1	33
шанных ОСВ	10	1000	0,39	1300	6	4	1	37
	17	1300	0,32	800	6	5	3	47
	27	1800	0,25	650	6	6	5	57
	41	2100	0,18	300	7	7	8	73
2 камера сме-	1	800	0,40	1200	6	4	1	37
шанных ОСВ	10	1500	0,27	1100	6	6	1	43
	17	2200	0,25	900	7	6	2	50
	27	2100	0,21	700	7	7	4	60
	41	2300	0,19	350	7	7	8	73
3 камера сме-	1	1100	0,35	1200	6	5	1	40
шанных ОСВ	10	1950	0,24	1000	7	6	1	47
	17	1900	0,21	850	6	7	1	53
	27	2200	0,20	650	7	7	5	63
	41	2300	0,20	200	7	7	9	77

На четвёртом этапе зависимость между всеми показателями ферментации оценивается с помощью множественной корреляции и регрессии.

«Индекс — А» присваивается в баллах на основе данных содержания N- NH_4 в осадке; pH осадка, $X\Pi K$ осадка (выполненной бихроматным методом), влажности осадка, потери от прокаливания осадка (т.е. сухой массы OCB), по отношению (частного от деления) количества летучих жирных кислот к показателям щелочности и кислотности OCB; по количеству полученного N- NH_4 (аммиака).

«Индекс — В» присваивается при использовании только тех трех показателей, которые можно легко получить практически на каждой станции очистки сточных вод, а именно: при наличии содержания $N\text{-}NH_4$ в осадке, данных отношения летучих жирных кислот к показателям щелочности ОСВ, по значению ХПК, определённому перманганатным методом [Magrel, 2004].

На основе выше приведенных данных нами предложено использовать так называемый **индекс эффективности** процесса ферментации IND_E, который может быть формализован в виде формулы:

$$IND_E = [100*[P1+P2+P3))/30[1];$$

где IND_E – индекс эффективности процесса метановой ферментации смешанных OCB, (%);

P1 — баллы (таб.1), присвоенные данным по результатам измерений N-NH₄ в OCB;

Р2 – баллы (таб. 1), присвоенные данным по определению БПК на основе отношения: БПК/щёлочность;

Р3 – баллы (таб. 1), присвоенные данным, полученным в результате измерения ХПК перманганатным методом;

IND_Е для смешанных ОСВ – показатель степени разложения органической субстанции, позволяющий прогнозировать и контролировать работу ферментационных камер на станциях утилизации сточных вод в проточных и непроточных условиях.

Пример вычисления IDN_E на основе формулы [1] и алгоритма (рис. 1) представлен в табл. 2.

Индекс эффективности процесса ферментации выражается в %: чем он ближе к 100%, тем выше эффект метановой ферментации ОСВ [Magrel, 2004].

Оценка пригодности практического применения индекса IDN_E

Для проверки пригодности IDN_Е для процесса метановой ферментации ОСВ в табл. 3 представлены конкретные данные, полученные в условиях застойного режима стоков и при следующих пропорциях смешивания (Magrel, 2004):

1 камера – 2 дм 3 навозной жижи + 4 дм 3 – OCB (коммунальных вод) + 4 дм 3 ОСВ (из промышленных вод молокозаводов);

Таблица 4. Индекс эффективности некоторых станций утилизации сточных вод, использующих метод метановой ферментации ОСВ в районах северо-восточной Польши

	$N-NH_4$	БПК/щёлочность	ХПК-Мн	Баллы			
	OCB		Жидкой фазы				Индекс эффектив-
Параметры	мg/дм ³	-	мg/дм ³	N-NH ₄	ВПК/ щёлочь	ХПК-Мп жидкой фазы	ности [IND_E]
1 станция очистки	739	0,37	591	5	5	5	53
2 станция очистки	726	0,08	523	5	9	9	70
3 станция очистки	641	0,03	462	5	10	10	73

II камера -4 дм 3 навозной жижи +2 дм 3 ОСВ (коммунальных вод) +4 дм 3 ОСВ (вод промышленных молокозаводов);

III камера -4 дм 3 навозной жижи +4дм 3 – OCB (коммунальных вод) +2 дм 3 OCB (вод промышленных молокозаволов).

Значения IDN_Е метановой ферментации ОСВ на основе измерений 3-х выбранных показателей по 3-м технологическим камерам на больших станциях утилизации сточных вод для региона северо-восточной Польши приведены в таблице 4. Технологические процессы ферментации были непрерывными. Время пребывания ОСВ в камерах составляло от 20–30 дней. Камеры были ранее опробованы, испытаны и находятся в действующем состоянии, о чём свидетельствуют относительно ровные данные контроля хода технологических процессов. Индекс эффективности IDN_Е был устойчивым и составлял 53-73. Это значит, что процесс метановой ферментации ОСВ проходил правильно [Magrel, 2004]

Практические предложения:

Использованная литература и полученные результаты позволяют сформулировать следующие предложения:

- 1. ОСВ разного происхождения (полученные из коммунальных сточных вод, промышленных стоков молокозаводов и животноводческих ферм) могут быть смешаны и вместе использованы для метановой ферментации с последующим возвратом нейтрализованных ОСВ в природнохозяйственный оборот.
- 2. Для оценки процесса метановой ферментации предложен индекс эффективности IND_E, который может определяться при наличии следующих параметров: технологических процессов ферментации: количества N-NH₄ OCB; количества летучих жирных кислот; щёлочности ОСВ и жидкой фазы; XПК Мп для жидкой фазы стоков; степени стабильности смешанных ОСВ.
- 3. Индекс эффективности метановой ферментации ОСВ может найти применение при проектировании и эксплуатации ферментационных камер с осадками промышленных вод, смешанными с навозной жижей, а также при контроле технологических процессов в камерах.
- 4. Значение индекса эффективности выше 50% свидетельствует о нормальном течении процесса метановой ферментации ОСВ.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- BARTKIEWICZ B. (2002), Oczyszczanie ścieków przemysłowych, PWN, Warszawa.
- BIEŃ J. (2002), Osady ściekowe. Teoria i praktyka, Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
- BIÉŃ J., MATYSIAK B., WESTALŚKA K. (1999), Stabilizacja i odwadnianie osadów ściekowych, Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
- G. BURACZEWSKI G., BARTOSZEK B. (1990), Biogaz wytwarzanie i wykorzystanie, PWN, Warszawa.
- DYMACZEWSKI Z., OLESZKIEWICZ J. A., SOZAŃSKI M. M., (1997), Poradnik eksploatatora oczyszczalni ścieków, PZITS, Poznań.
- FURMAŃSKA M., PODEDWORNA J. (1995), Zmiany charakterystyki osadów w procesie wydzielonej stabilizacji tlenowej, materiały z I Międzynarodowej Konferencji Naukowo-Technicznej nt.: "Problemy gospodarki osadowej w oczyszczalniach ścieków", Częstochowa.
- KEMPA E. S. (1993), Przyszłościowa gospodarka osadami ściekowymi, mat. konferencyjne, nt.: "Problemy gospodarki osadowej w oczyszczalniach ścieków", Częstochowa.
- 8. KUTERA J., HUS S., (1990), Zasady zagospodarowania gnojówki i gnojowicy w rolnictwie terenów górskich z uwzględnieniem warunków ochrony środowiska, wydawnictwo Akademii Rolniczej we Wrocławiu, Wrocław.
- KUTERA J. (1994), Gospodarka gnojowicą, wydawnictwo Akademii Rolniczej we Wrocławiu, Wrocław.
- MAĆKOWIAK Cz. (1997), Wartość nawozowa osadów i odpadów z przemysłu spożywczego, materiały z konferencji nt. "Osady ściekowe przeróbka i wykorzystanie", Poznań.
- MAGREL L. (2004), Prognozowanie procesu fermentacji metanowej mieszaniny osadów ściekowych oraz gnojowicy, wydawnictwo Politechniki Białostockiej, Białystok.
- SERAFIN M., TABERNACKI J. (1992), Biochemiczne usuwanie azot i fosforu ze ścieków w świetle doświadczeń duńskich, Gaz, Woda i Technika Sanitarna 9/92.
- SKALMOWSKI K. (1998), Poradnik gospodarowania odpadami, Dashofer Holding Ltd. I Wydawnictwo Verlag Dashofer sp. z o. o., Warszawa.
- WÓJCIK A. R., LAUDAŃSKI Z. (1989), Planowanie i wnioskowanie statystyczne w doświadczalnictwie, PWN, Warszawa.

Статья поступила в редакцию 02.05.2007

УДК 628.337

Яловая Н.П.

РАЗРАБОТКА И ИСПЫТАНИЕ ЭЛЕКТРОКОАГУЛЯЦИОННОЙ ТЕХНОЛОГИИ ОЧИСТКИ МАЛОМИНЕРАЛИЗОВАННЫХ ПРИРОДНЫХ ВОД

Введение

Высокие темпы роста промышленного и жилищнобытового строительства в Республике Беларусь, возрастающий уровень благоустройства жилого фонда, увеличение объемов промышленного производства и усложнение технологических процессов в промышленности требуют резкого увеличения темпов развития водопроводного хозяйства и значительного улучшения качества воды, подаваемой потребителям.

Новым прогрессивным направлением в технологии очистки природных вод является применение электрохимических

Яловая Наталья Петровна, доцент кафедры инженерной экологии и химии БрГТУ.

Беларусь, Брестский государственный технический университет, 224017, г. Брест, ул. Московская, 267.