зитных потоков по второстепенной магистрали и левоповоротных потоков главной магистрали; низкая скорость проезда перекрестка транспортом одной магистрали за счет движения по кольцу; наличие дополнительных задержек и остановок на условных вторых стоплиниях у части транзитных и всех поворотных потоках.

Таким образом, выбрано планировочное решение, которое будет реализовано в качестве строительного проекта. Необходимо отметить, что сохранение специфики кольцевого перекрестка даст значительные преимущества (в том числе и снижение тяжести аварий) при отключении светофорной сигнализации.

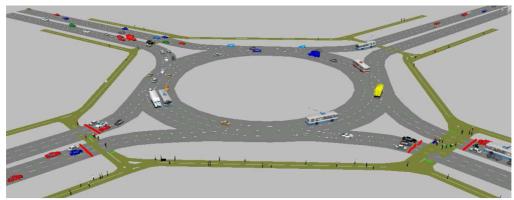


Рис. 8. Движение транспортно-пешеходных потоков при существующем варианте

Рис. 9. Движение транспортно-пешеходных потоков на стандартном перекрестке

Рис. 10. Движение транспортно-пешеходных потоков при разрезе центрального островка вдоль высоконагруженной магистрали Материал поступил в редакцию 17.12.07

KUZMENKO V.N. Reconstruction of ring crossings in one level

The task of a choice an optimum lay-out of the decision is considered at modernization of ring crossing. It is offered criterion of optimization - loss in road movement, which estimates not only variants of organization of road movement and parameters of loading, but also road conditions and specificity of disputed interaction on a crossroads. The proved choice a lay-out of the decision is made of possible alternatives.

УДК 656.13.08

Мозалевский Д.В.

СОЗДАНИЕ КОМПЬЮТЕРНОГО КОМПЛЕКСА ДЛЯ АВТОМАТИЗАЦИИ РАБОТЫ ИНЖЕНЕРА СМЭП

Введение. Функции формирования дислокации ТСОДД (дорожных знаков, светофоров, оборудования для их установки, дорожных контроллеров, ограждений, направляющих устройств, детекторов транспорта, информационных табло и панелей, управляемых знаков, искусственных неровностей и шероховатостей, дорожной разметки и пр.) разрабатываются для последующей интеграции в состав автоматизированного рабочего места (АРМ) инженера СМЭП. Функции учета деятельности подразделений, занимающихся установкой и содержанием ТСОДД, включаются в АРМ техника СМЭП и АРМ руководителя.

Функции планирования деятельности подразделений, обслуживающих ТСОДД, включаются в APM руководителя. Функции учета расходы материалов и иных затрат включаются в APM техника. Все функции могут быть по согласованию объединены.

Разрабатываемые технология и программное обеспечение предназначены для:

- создания, разработки и последующего формирования дислокации ТСОДД с использованием электронной карты УДС города, предоставляемой Заказчиком;
- отображения, визуализации и актуализации данных о дислокации ТСОДД на электронной карте УДС;
- создания базы данных и информационно-справочной системы по ТСОДД (место размещения, вид и способ крепления, пространственные и временные характеристики, история обслуживания, зона и сроки действия и пр.);
- предоставления справочной информации о дислокации ТСОДД (перечень и структура отчетов);
- подготовки заданий на производство работ по установке, монта-

Мозалевский Д.В., младший научный сотрудник Белорусского национального технического университета. Беларусь, БНТУ, 220027, г. Минск, пр. Ф. Скорины, 65.

жу и демонтажу ТСОДД, учета выполнения заданий на производство работ по установке ТСОДД;

учета выполнения работ по обслуживанию и заявок на обслуживание ТСОДД.

Разработка средств взаимодействия пользователя с программным комплексом включает функции оценки и отбора, а также просмотра информации в графическом режиме по объектам электронной карты и по карте в целом, внесения на карту информации об изменении (модернизации, устройству и пр.) ТСОДД, предоставления в диалоговом режиме по соответствующему иерархическому запросу информации о ТСОДД (все действия реализуются в качестве графических и текстовых пометок, изменения данных в базе данных и снабжаются текстовыми пояснениями и справками с единым источником ввода информации, т.е. с множественными просмотр, анализ и др. функции с копией БД, но не ввод информации.

- 1. Создание баз данных. Предлагаемое программное обеспечение содержит:
- 1 Макет исполнительной программы (стартовая);
- 2 Модуль автоматизации проектирования, учета и расстановки дорожных знаков;
- 3 Модуль автоматизации проектирования, учета инанесения дорожной разметки;
- 4 Модуль автоматизации паспортизации светофорных объектов;
- 5 Модуль проектирования светофорных объектов:
 - 5.1 Системных;
 - 5.2 Локальных.
- 6 Модуль автоматизации учета расхода материалов:
 - 6.1 При нанесении дорожной разметки;
 - 6.2 При расстановке дорожных знаков;
 - 6.3 При монтаже (демонтаже) светофорного объекта;
- 6.4 При установке ТСОДД (детекторов транспорта, ограждений, управляемых знаков переменной информации);
- 6.5 При модернизации (замене, установке, тестировании) контроллера:

Необходимо сделать оговорку, что учету подлежит способ крепления ТСР, место расположения, метод крепления, расходы по текущему обслуживанию и т.д.

- 7 Модуль автоматизации организации плановых осмотров, модернизации и ремонта (по видам технических средств системы и ТСОДД);
- 8 Разработка модуля совмещения ОДД для улиц (городских дорог);
 9 Разработка модуля совмещения ТСОДД для конфликтных объектов;
- 10 Модуль добавления и удаления информации, обмена с другими базами данных и графическими редакторами.

Все программные комплексы (как и обеспечение в целом) должны сопровождаться инструкциями пользователя.

- **2.** Базы данных. База данных (БД) ТСОДД состоит из 6 разделов (рис. 1):
- 1. Дорожные знаки (каталоги):
- 2. Оборудование по установке дорожных знаков и световой рекламы, управляемых дорожных знаков и расходные материалы;
- 3. Оборудование светофорных объектов (в том числе, дорожный контроллер, подключаемое информационное панно, детекторы транспорта и пр.);
- 4. Пешеходные ограждения и направляющие устройства;
- 5. Дорожная разметка;
- 6. Кабельные сети (способ проложения, канализация).

Разделы различаются структурой (количеством и содержанием полей БД). Общими являются координаты для нанесения их подоснову (электронную карту) с последующей их масштабной привязкой и некоторые активные поля (например, текущее состояние).

Номер ТСОДД в базе представляется по абсолютному номеру по всей системе.

Ввод информации может осуществляться отдельно по каждому разделу базы данных и активизироваться поочередно отдельно от других, а при общих изменяемых параметрах – в целом по базе.

Для работы с БД (сканирования и отображения ТСОДД, сортировки, формирования отчетов, нанесение на электронную карту) пользователю предоставляется возможность работать с любым

набором ТСОДД – от одного конкретного ТСОДД (например, дорожного знака) до всей базы данных в целом (одновременно со всеми разделами).

3. Состав отдельных разделов и подсистем. В подразделе дорожные знаки содержится следующая информация, необходимая для анализа и учета данных: Номер ТСОДД в БД; Статус (определена целесообразность установки; выполнен проект (задание), но не установлен; установлен; установлен взамен дорожного знака; установлен временно; установлен на сезон; выдано задание на демонтаж. но не демонтирован; демонтирован, взамен установлен дорожный знак; демонтирован; демонтирован на сезон (номер сезона); Принадлежность (ЖКХ, КУП «Минсктранс», СМЭП, Ж/Д и иная); Группа ДЗ по СТБ 1300-99 (отдельно для нестандартных ДЗ); Номер ТСОДД в группе по СТБ 1300 (или СТБ 1140 или ином); Информация ДЗ (значение скоростного режима, направления движения по полосам, наличие и величина уклона, скользкость и ровность, радиусы закруглений кромок проезжей части улиц и т.п.). Указывается метка наличия информационных табличек, установленных с ДЗ (количество табличек, наименование, категории надписей); Типоразмер ДЗ; Тип ТСОДД (плоский, объемный, светодиодный); Вид лицевой поверхности (окрашенный; со световозвращающей поверхностью из обычных или из высококачественных материалов; стекло одностороннее либо двустороннее; светодиодная матрица двух или односторонняя); Характеристики основания (оцинковка, алюминий, черный металл (загрунтованный), пластик, пластмассовый или металлический корпус); Режим работы (для объемного или светодиодного типа) (постоянный, мигающий, суточный, цикловой - для знаков переменной информации); способ установки (на стойке, светофорной колонке, опоре освещения, опора контактной сети, информационная колонна, наличие дополнительных кронштейнов и устройств). Таким образом, может указываться вид этого устройства: опора освещения (или контактной сети), какая она по форме (круглая, квадратная; 6- или 8-мигранная, СКЦ, ОА6 и прочие), опора контактной сети (без освещения); на троллейбусном кронштейне, растяжке либо типовом кронштейне (по какому проекту, маркировка конструкции); стена здания, сооружения, забор; павильон остановочного пункта общественного маршрутного транспорта либо может указываться инженерами любой другой способ установки и крепления. Указывается также диаметр опоры (в автоматическом режиме при создании базы данных существующих типовых опор либо пользователем); Высота установки и место размещения (пространственные координаты); Привязка места установки (район и сектор города; улица, ее тип и статус; четная или нечетная сторона улицы, перегон от и к) и непосредственное место установки (основная проезжая часть; въезд на улицу или съезд с нее; внутридворовые территории; местные проезды; пересекаемая улица; ближайший объект ориентирования (улица, номер дома) с расположением в поперечном профиле (правая или левая сторона улицы; слева или справа на разделительной полосе; над проезжей частью (посредине, слева, справа); на направляющем островке и пр.). Принадлежность к объекту УДС (номер и наименование объекта); Зона действия (по СТБ номер зоны действия для каждого ДЗ с координатной привязкой, описывающей зону действия, время действия); История обслуживания.

Отдельно выделен специфический блок по учету оборудования светофорных объектов. Он включает в себя:

- 1. Номер ТСОДД в БД;
- 2. Статус и принадлежность;
- 3. Группа ТСОДД (светофоры, контроллеры, оборудование для установки светофоров, коммутационное оборудование, экран светофора, табло вызова пешеходами (ТВП); детекторы транспорта; информационное табло (панно), средство связи (сотовой, радиосвязи); иное); 4. Тип ТСОДД:
- для светофоров (транспортный, пешеходный, трамвайный, железнодорожный);
- для контроллеров (АСС-УД, микропроцессорный, релейнотиристорный (УК), ДУМКА (СЛ,М,СР), БДК(Л,М,СЛ), другой тип);
- для оборудования по установке светофоров (колонка транспортная или пешеходная, кронштейн либо растяжка; опора контактной сети трамвая (троллейбуса) либо мачта освещения, консольная либо выносная опора);

Рис. 1. Основные составляющие базы данных по проектированию ОДД в системе САПР

- для коммутационного оборудования (шкаф коммутационный, коробка распределительная, клеммная, металлоконструкция для установки счетчиков или автоматов отключения (УЗО);
- для экранов (прямоугольный или усеченный высокий большой либо малый, низкий большой либо малый, цвет и размеры);
- для ТВП (размер, способ крепления и устройства);
- для детекторов транспорта (вид чувствительного элемента, способ устройства либо подключения и установки, количество на объекте либо расположение их по входам);
- для средств связи (вид связи, станция и пр.);
- иное оборудование.

Для каждого типа ТСОДД создается свой справочник номеров.

- 5. Марка ТСОДД. Для каждого типа ТСОДД может быть свой справочник марок и номеров нормативных документов;
- 6. Дополнительные сведения (покрытие и его состояние; способ установки (для дорожных контроллеров тип фундамента, способ ввода кабелей); высота установки и привязка места установки; принадлежность к светофорному объекту (номер и наименование объекта); принадлежность к объекту УДС (номер и наименование объекта); история обслуживания).

В разделе «История обслуживания» заносится полная информация о работах, выполняемых с данным ТСОДД (вид работ (из справочника работ); номер (или иного документа) и дата составления задания на выполнение работ; должность и Ф.И.О. лица, составившего задание; дата (число, месяц, год) и время выполнения работ (часы, минуты), а также и исполнитель работ (участок, звено, бригада, фамилия лица); Ф.И.О. лица, внесшего информацию в БД; номер акта о выполнении). Также ведется справочник работ, который разбит на пять основных составляющих:

- 1. Дорожные знаки (установка ДЗ на стойке, на кронштейне; на опоре; на стойке (временно); на кронштейне (временно); на опоре (временно); на ограждении; на здании; текущее обслуживание или аварийный ремонт или замена знака; монтаж знака, вместо демонтированного; демонтаж знака для установки взамен другого знака; демонтаж или перестановка знака; замена ламп в объемном знаке или светодиодной матрицы (моста, замена стекла); чистка, мойка, покраска знака с обратной стороны; поклейка мелких светоотражающих деталей и реставрация знака без демонтажа).
- 2. Оборудование для установки знаков (установка взамен другого оборудования с указанием демонтируемого оборудования; покраска стойки, кронштейна и хомутов; выравнивание стойки; демонтаж для установки взамен другого оборудования или полный демонтаж, установка на фундамент и прочее).
- 3. Оборудование светофорных объектов (техническое содержание объекта с контроллером; техническое обслуживание мигающих устройств и светофорных головок; покраска светофорной колонки, кабельного ограждения и металлорукавов, светофорных щитков;

- замена ТВП, ТПИ, УЗН, детекторов; ремонт колонки и т.п.; установка или устройство; установка взамен другого оборудования с указанием демонтируемого оборудования); демонтаж для установки взамен другого оборудования; демонтаж).
- 4. Ограждения и направляющие устройства, искусственные неровности (техобслуживание пешеходных ограждений, покраска и ремонт ограждений (с применением сварки или без), замена (демонтаж, монтаж) железобетонной или пластиковой тумбы, ее установка, либо установка взамен другого оборудования или демонтаж для установки взамен другого ограждения; устройство неровности, ее ремонт, нанесение на ней разметки, демонтаж).
- 5. Дорожная разметка (техобслуживание, нанесение, снятие пластика, нанесение поверх, и пр.).

Разрабатывается отдельная БД заявок и заданий на ремонт, установку, демонтаж и монтаж, а также отражающая и ведущая учет их выполнения. Перечень работ, включаемых в задание, выбирается из справочника работ. После выполнения работ информация о видах работ по отдельным позициям (выполнено либо не выполнено) заносится в базу с отображением конкретной привязки работ к ТСОДД и по факту выполнения ставится отметка. Используется следующая структура БД заданий: номер, тип (плановая, аварийная); дата и время проведения; требуемый вид работ; место выполнения работ, а также схема их выполнения (при необходимости и временная схема ОДД на период проведения работ); Ф.И.О. лица, выдавшего задание, и исполнителя (исполнителей); дата и время отметки об исполнении; Ф.И.О. лица, внесшего информацию в базу.

Отдельно формируется база данных заданий и заявок по возможным технологическим операциям (см. выше) и отчетов с указанием перечня проведенных работ, за требуемый период, и возможностью графической визуализации (диаграммами выполненных работ за выбранный период, графиками изменения количества устанавливаемых ТСОДД по годам, по месяцам, распределения количества ТСОДД по по разделам и группам, по конфликтным и линейным участкам УДС).

Отдельным модулем программа реализует следующие выходные документы, которые также могут быть отпечатаны или помещены на внешний носитель:

- ФОРМА 1 инвентаризация средств регулирования движения по светофорам;
- ФОРМА 2 инвентаризация средств регулирования движения по
- ФОРМА 3.1 установка средств регулирования движения за указанный период (светофоры);
- ФОРМА 3.2 установка средств регулирования дорожного движения за указанный период (дорожные знаки);
- ФОРМА 3.3 установка средств регулирования дорожного движения за указанный период (нанесение дорожной разметки);

ФОРМА 4 - акт на списание по типам знаков за указанный период (тоже по светофорам и иным ТСОДД с четкой дефектовкой и комплектацией);

ФОРМА 5 - перечень аварий и очагов за определенный период с указанием места и причин возникновения (в соответствии с карточкой).

4. Перспективы развития. Планируется, что пользователь системы будет иметь возможность вычертить (отредактировать или внести коррективы) карту участка улично-дорожной сети с нанесенными ТСОДД, перечень которых определяется полем фильтров (запросов), заявленных к исполнению. Карта отображается по отдельным элементам (объектам) с необходимым уровнем детализации (названия улиц, контуры домов, опоры освещения, контуры светофоров и дорожных знаков и т. п.), наносящимися на нее в качестве дополнительной послойной подосновы, готовится и заполняется Исполнителем в рамках данного договора или по отдельному договору (стоимость данных работ оговаривается с Заказчиком отдельно и не входит в данный объем работ).

Исполнитель сможет вычертить электронную карту (по координатам): со всеми светофорами и оборудованием для их установки ДЗ, ДР, ОДЗ, ДЗМО, ДК, Д(П)Т, световой рекламой; со всеми демонтированными ДЗ, светофорами и пешеходными ограждениями, искусственными неровностями; с кабельными сетями и канализацией; паспорта светофорных объектов (цикл регулирования, режим работы светофорных объектов) и прочее в стандартных, воспринимаемых системой, пакетах (Autodesk (Autocad), CorelDraw и др.). Представление ТСОДД на карте может быть в нескольких вариантах (контур; контур с номером ТСОДД по нормативному документу и в БД, контур с номером ДЗ по СНБ и указанием типа и текста).

Необходимо отметить, что при внедрении системы, либо специалистами СМЭП либо проектировщиком, в пустую базу данных можно перенести имеющиеся в СМЭП данные по дислокации ТСОДД и размещению кабельных сетей, а также в дальнейшем разрабатывать и вносить изменения по дислокации в соответствии с требованиями эксплуатирующей ТСОДД организации (обслуживать и в дальнейшем наполнять БД, модернизировать ее).

Более того, сейчас идет работа над совмещением данной проектной системы с исследовательской системой, разработанной также в БНТУ, которая позволяет оптимизировать светофорные циклы, рассчитывать и строить планы координации, автоматически формируя шаблонные формы для ввода в дорожный контроллер.

Вывод. Конечно, не все функции предложенного комплекса сейчас реализованы, но уже сейчас можно констатировать, что его внедрение позволит:

- снизить трудоемкость и повысить оперативность учета текущей хозяйственной деятельности СМЭП, учета расходных материалов;
- повысить оперативность деятельности служб по организации и управлению движением, а также эффективность и рентабельность работы СМЭП;
- снизить трудоемкость сбора, обработки и хранения информации, используемой в деятельности СМЭП, в систематизированном и удобном для пользователя виде;
- снизить временные затраты и формализовать функции расчета и проектирования конфликтных объектов.

Однако на сегодняшний день необходимо внедрить методики определения эффективности, определения потерь в дорожном движении, чтобы приведенные в программе расчеты были легитимны.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- Буданов А.Н., Печерский М.П. Открытые системы и управление движением транспорта. - М.: ЗАО "РТСофт" «Открытые системы», 2000 (www.rtsoft.ru).
- Врубель Ю.А. Потери в дорожном движении. Мн.: Изд-во БНТУ, 2003.
- 3. Капский Д.В., Кот Е.Н. Концепция развития автоматизированных систем управления дорожным движением в Республике Беларусы// Научно-технический журнал «Вестник БНТУ» Минск, 5'2005. с. 63—66.
- В.Т. Капитанов, Е.Б. Хилажев. Управление транспортными потоками в городах. – М.: Транспорт, 1985.
- 5. http://www.trlsoftware.co.uk/products/

Материал поступил в редакцию 17.12.07

MOZALEVSKI D.V. Creation of a computer complex for automation of job of the engineer SMEP

The task of development of the automated workplace (ARM) of the engineer SMEP is considered [special installation - operation the enterprise]. Functions of the account of activity of divisions engaged in installation and the contents TSODD. The technology and program maintenance intended for a workplace (ARM) of the engineer SMEP is developed.

УДК 519.854.2

Шуть В.Н.

РЕШЕНИЯ ЗАДАЧИ КОММИВОЯЖЕРА ЭЛЛИПСНЫМ СУЖЕНИЕМ

1. Постановка задачи. Знаменитая задача коммивояжера была поставлена еще в 1834 году. В своей области (оптимизация дискретных задач) задача коммивояжера служит своеобразным полигоном, на котором испытываются все новые методы комбинаторной оптимизации [1, 2].

Классическая постановка задачи коммивояжера выглядит следующим образом:

Имеется N городов, которые должен обойти коммивояжер с минимальными затратами. При этом на его маршрут накладывается два ограничения:

- маршрут должен быть замкнутым, то есть коммивояжер должен вернуться в тот город, из которого он начал движение;
- в каждом из городов коммивояжер должен побывать точно один раз, то есть надо обязательно обойти все города, при этом, не побывав ни в одном городе дважды.

Для расчета затрат существует матрица условий, содержащая затраты на переход из каждого города в каждый последующий, при этом считается, что можно перейти из любого города в любой другой кроме того же самого (в матрице как бы вычеркивается диагональ). Целью решения является нахождения маршрута, удовлетворяющего всем условиям и при этом имеющего минимальную сумму затрат.

2. Алгоритм движения от периферии к центру. Алгоритм данного метода состоит из семи этапов.

Этап 1. Поиск и последовательное включение в маршрут городов, находящихся в самых отдаленных точках местности.

Первоначально определяется самый западный город и включается в маршрут. Далее поочередно находятся крайние северный, восточный и южный города. После выполнения данных действий возникает ситуация, когда маршрут представляет из себя путь, соединяющий два, три или четыре города. Ситуация с двумя или тремя городами возникает в случае когда, например, крайний восточный город является одновременно и крайним южным городом.

Включение городов в маршрут происходит следующим путем: определяется направленность дуги. Дугой будем называть часть всего пути, соединяющую непосредственно только два города. Направленность показывает ориентацию ребра многоугольника (части маршрута), для разделения не включенных в маршрут точек на внешние и внутренние. Вычисляется направленность путем простого сравнения координат точек. Всего допускаем четыре направленности: северозападная, северо-восточная, юго-западная и юго-восточная.

Кроме того, для дуги рассчитывается ее длина по следующей

формуле:
$$I = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$$
 , где x_1 , y_1 , x_2 , y_2 –