Для определения значений температуры T(y,t) необходимо выполнить переход от безразмерных величин к размерным в соответствии с соотношениями

$$\mathbf{x} = \boldsymbol{\varepsilon} \boldsymbol{l} , \ \boldsymbol{t} = \boldsymbol{a} \boldsymbol{h}^2 \boldsymbol{\tau} , \ \boldsymbol{T} = \boldsymbol{T}_{cp} - \boldsymbol{\theta} (\boldsymbol{T}_{cp} - \boldsymbol{T}_0) .$$
 (17)

С помощью предложенной методики можно определить температуру T на нагреваемой поверхности в момент времени, при котором тепловой слой достигает теплоизолированной поверхности. Зная этот момент времени, легко находится скорость распространения теплового слоя по толщине пластинки.

Рассмотренный метод решения задачи нестационарной теплопроводности отличается простотой и наглядностью; результаты, полученные с его помощью, для относительно простых тел достаточно хорошо согласуются с точным аналитическим решением. Данный метод может быть применен и к более сложным задачам, в частности, когда на поверхности контакта с внешним тепловым воздействием задаются нелинейные условия [4]. Полученное при решении задачи теплопроводности распределение теплового поля используется в

дальнейшем как одно из исходных данных для решения задачи термоупругости по определению напряжений, перемещений и деформаций в твердых телах.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1966 г. 735 с.
- 2. Лыков А.В. Теория теплопроводности. М.: Высшая школа. 1967 г.
- 3. Беляев Н.М., Рядно А.А. Методы нестационарной теплопроводности. – М.: Высшая школа, 1978.
- 4. Методы решения нелинейных задач теплопроводности. Коздоба Л.А. - М.: Наука. 1975 г.
- 5. Карслоу Б., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 487 с.
- Веремейчик А.И. Определение двухмерных температурных полей с помощью пакета «Математика». // Вестник БГТУ.- Машиностроение, автоматизация, ЭВМ. № 4, 2001. C.55-58.

УДК 539.3

Босяков С.М.

ТЕРМОУПРУГИЕ НАПРЯЖЕНИЯ, ВОЗНИКАЮЩИЕ В ЦИЛИНДРЕ ПОД ДЕЙСТВИЕМ СТАЦИОНАРНОГО ТЕМПЕРАТУРНОГО ПОЛЯ

Фундаментальные исследования напряженнодеформированного состояния тел, находящихся под действием стационарных осесимметричных температурных полей, нашли свое отражение в известных монографиях [1-5] и многих других работах. Однако, решение конкретных задач, связанных с определением термоупругих напряжений при установившемся температурном процессе, когда температура является функцией координат, представляет интерес в настоящее время.

Рассмотрим цилиндрическое тело вращения, опирающееся на абсолютно жесткую и гладкую плоскость, находящееся под действием стационарного температурного поля $t=t\left(z,r\right)$, где ось z совпадает с осью вращения. В этом случае термоупругие напряжения найдем из общего решения неоднородных уравнений Дюамеля-Неймана в цилиндрических координатах с помощью формул осесимметричной деформации для тел, нагруженных по поверхности нормальным давлением $K\alpha t$ [1, 2]:

$$\begin{split} \boldsymbol{R}_{r} &= \frac{\partial}{\partial z} \left(\boldsymbol{\sigma} \nabla^{2} \boldsymbol{U} - \frac{\partial^{2} \left(\boldsymbol{U} - \boldsymbol{T} \right)}{\partial \boldsymbol{r}^{2}} - \nabla^{2} \boldsymbol{T} \right), \\ \boldsymbol{B}_{\beta} &= \frac{\partial}{\partial z} \left(\boldsymbol{\sigma} \nabla^{2} \boldsymbol{U} - \frac{1}{r} \frac{\partial \left(\boldsymbol{U} - \boldsymbol{T} \right)}{\partial \boldsymbol{r}} - \nabla^{2} \boldsymbol{T} \right), \\ \boldsymbol{Z}_{z} &= \frac{\partial}{\partial z} \left((2 - \boldsymbol{\sigma}) \nabla^{2} \boldsymbol{U} - \frac{\partial^{2} \left(\boldsymbol{U} - \boldsymbol{T} \right)}{\partial z^{2}} - \nabla^{2} \boldsymbol{T} \right), \\ \boldsymbol{R}_{z} &= \boldsymbol{Z}_{r} = \frac{\partial}{\partial r} \left((1 - \boldsymbol{\sigma}) \nabla^{2} \boldsymbol{U} - \frac{\partial^{2} \left(\boldsymbol{U} - \boldsymbol{T} \right)}{\partial z^{2}} \right), \end{split}$$

где $K = 3\lambda + 2\mu$ - утроенный модуль всестороннего растя-

жения (или сжатия), $\lambda = E\sigma/(1+\sigma)(1-2\sigma)$, $\mu = E/2(1+\sigma)$, E – модуль продольной упругости, σ – коэффициент Пуассона, α – температурный коэффициент линейного расширения, $\nabla^2 = \frac{\partial^2}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} + \frac{\partial^2}{\partial \mathbf{r}^2}$.

В формулах (1) функции U и T выбирают в виде, удовлетворяющем следующим уравнениям [1, 2]:

$$\nabla^2 \frac{\partial T}{\partial z} = \frac{2\mu K\alpha t(z, r)}{\lambda + 2\mu},$$
 (2)

$$\nabla^2 \nabla^2 \boldsymbol{U}(\boldsymbol{z}, \boldsymbol{r}) = 0. \tag{3}$$

Обратимся к случаю, когда температура изменяется по следующему закону

$$t = t_0 \left(1 - a \left(\frac{r}{R} \right)^n \right) \left(1 - b \frac{z}{H} \right). \tag{4}$$

Здесь \boldsymbol{t}_0 – температура на поверхности цилиндра в точке, совпадающей с началом координат, \boldsymbol{R} – радиус цилиндра, \boldsymbol{H} – высота цилиндра, \boldsymbol{n} - действительное число, \boldsymbol{n} > 0 ; \boldsymbol{a} , \boldsymbol{b} – коэффициенты, определяемые экспериментальным путем.

Заметим, что функция температур (4) позволяет с достаточной точностью описать распределение температуры в телах вращения, находящихся под действием плазменной струи (электрической дуги). На рис. 1 показано поле температур (t_0 =1300 K, n=6, a=0,6, b=0,925) в цилиндре, линейные размеры которого соответствуют рабочему столику вакуумно-плазменной установке ВПУ-2М (R=0,038 м, H=0,04 м).

Босяков Сергей Михайлович. К. физ.-мат. н., ст. преподаватель каф. теоретической и прикладной механики Белорусского государственного университета.

Беларусь, БГУ, 220050, г. Минск, пр. Ф. Скорины, 4.

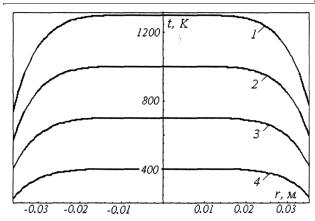


Рис. 1. Распределение температур в цилиндре:1 - z/H = 0; 2 - z/H = 1/4; 3 - z/H = 1/2; z/H = 3/4.

В частном случае функции T(z,r) и U(z,r) возьмем в форме:

$$T = C_1 + C_2 z \ln r + C r^2 z \left(\frac{1}{4} - \frac{a r^2}{(n+2)^2} \left(\frac{r}{R} \right)^n \right) \left(1 - \frac{b}{2} \frac{z}{H} \right),$$

$$C = \frac{2GK\alpha t_0}{\lambda + 2G}$$

$$U(z, r) = \left(C_3 + C_4 z + C_5 z^2 + C_6 z^3 \right) \ln r, \qquad (6)$$

где C_i , $i = \overline{1,6}$ - произвольные постоянные решения, которые определяются из краевых условий на поверхности тела.

Подставим (5), (6) в (1). После несложных преобразований получим следующие выражения для нормальных и касательных напряжений:

$$R_{r} = -\frac{C}{2} \left(1 - \frac{2a}{n+2} \left(\frac{r}{R} \right)^{n} \right) \left(1 - b \frac{z}{H} \right) + \frac{C_{4} - C_{2} + z(2C_{5} + 3C_{6}z)}{r^{2}} + 6C_{4}\sigma \ln r,$$

$$B_{\beta} = -\frac{C}{2} \left(1 - \frac{2a(1+n)}{n+2} \left(\frac{r}{R} \right)^{n} \right) \left(1 - b \frac{z}{H} \right) - \frac{C_{4} - C_{2} + z(2C_{3} + 3C_{4}z)}{r^{2}} + 6C_{4}\sigma \ln r,$$

$$Z_{z} = -C \left(1 - b \frac{z}{H} \right) \left(1 - a \left(\frac{r}{R} \right)^{2} \right) + 6C_{6} (1 - \sigma) \ln r,$$

$$R_{z} = Z_{r} = \frac{Cbr}{2H(2+n)} \left(2a \left(\frac{r}{R} \right)^{n} - 2 - n \right) - \frac{2(C_{5} + 3C_{6}z)\sigma}{r}.$$

Константы $\pmb{C}_4-\pmb{C}_2$, \pmb{C}_5 и \pmb{C}_6 найдем из условий $\pmb{Z}_z=\pmb{R}_r=-\pmb{K}\pmb{\alpha}\pmb{t}$, $\pmb{Z}_r=0$ при $\pmb{z}=0$ и $\pmb{r}=\pmb{R}$. В результате получим

$$C_4 - C_2 = R^2 \left(\frac{C(2+n-2a)}{2(2+n)} + \frac{(C-K\alpha t_0)(1-a)\sigma}{\sigma - 1} - Kt_0\alpha(1-a) \right)$$

$$C_5 = \frac{bCR^2(2a-2-n)}{4H(2+n)\sigma}, C_6 = \frac{(C-K\alpha t_0)(1-a)}{6\ln R(\sigma - 1)}. \quad (9)$$

Другое частное решение T(z,r) для поля температур (4), удовлетворяющее уравнению (2), запишем в следующем виле

$$T = C_1' + z \ln r \left(C_2' + z C_3' \right) +$$

$$+ Cr^2 z \left(\frac{1}{4} - \frac{ar^2}{(n+2)^2} \left(\frac{r}{R} \right)^n \right) \left(1 - \frac{b}{2} \frac{z}{H} \right).$$

В этом случае частное решение уравнения (3) возьмем в форме

$$U(z,r) = \frac{C_4'z}{\sqrt{r^2+z^2}}.$$

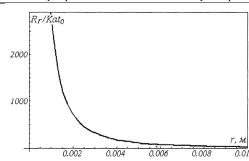
В этом случае, согласно формулам (1), напряжения будут равны:

$$R_{r} = -\frac{C}{2} \left(1 - \frac{2a}{n+2} \left(\frac{r}{R} \right)^{n} \right) \left(1 - \frac{bz}{H} \right) - \frac{C_{2}' + 2C_{3}'z}{r^{2}} + \frac{C_{4}' \left(2z^{4} \left(1 - 2\sigma \right) + 2r^{4} \left(1 + \sigma \right) - (rz)^{2} \left(11 + 2\sigma \right) \right)}{\left(r^{2} + z^{2} \right)^{3} \sqrt{r^{2} + z^{2}}},$$

$$\begin{split} B_{\beta} &= -\frac{C}{2} \left(1 - \frac{2a(1+n)}{n+2} \left(\frac{r}{R} \right)^{n} \right) \left(1 - \frac{bz}{H} \right) + \frac{C_{2}' + 2C_{3}'z}{r^{2}} - \\ &- \frac{C_{4}' \left(r^{2} - 2z^{2} \right) (2\sigma - 1)}{\left(r^{2} + z^{2} \right)^{2} \sqrt{r^{2} + z^{2}}}, \\ Z_{z} &= -C \left(1 - a \left(\frac{r}{R} \right)^{n} \right) \left(1 - \frac{bz}{H} \right) + \\ &+ \frac{C_{4}' \left(4z^{4} \left(\sigma - 2 \right) - 2r^{2}z^{2} \left(4 + \sigma \right) + r^{4} \left(2\sigma - 1 \right) \right)}{\left(r^{2} + z^{2} \right)^{3} \sqrt{r^{2} + z^{2}}}, \\ R_{z} &= Z_{r} = -\frac{2C_{3}'}{r} - r \left(\frac{bc}{2H} \left(1 - \frac{2a}{2+n} \left(\frac{r}{R} \right)^{n} \right) + \\ &+ \frac{3C_{4}'z \left(r^{2} - 4z^{2} + 2\sigma \left(r^{2} + z^{2} \right) \right)}{\left(r^{2} + z^{2} \right)^{3} \sqrt{r^{2} + z^{2}}} \right). \end{split}$$

Произвольные постоянные $C_2^{'}$, $C_3^{'}$ и $C_4^{'}$ найдем с помощью выше указанных граничных условий

$$C_{2}' = R^{2} \left(K \alpha t_{0} \left(1 - a \right) - \frac{C \left(2 - 2a + n \right)}{2 \left(2 + n \right)} - \frac{2 \left(1 + \sigma \right) \left(1 - a \right) \left(C - K \alpha t_{0} \right)}{2 \sigma - 1} \right),$$



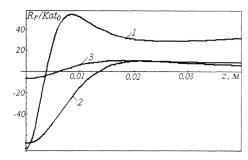
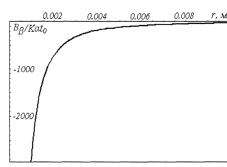


Рис. 2. Зависимость безразмерного напряжения $R_r/K\alpha t_0$ от координат r и z: 1 – r/R = 1/3; 2 – r/R = 2/3; 3 – r/R = 3/4



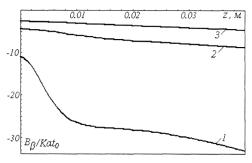
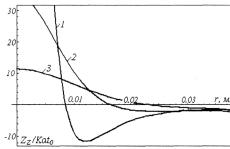


Рис. 3. Зависимость безразмерного напряжения $B_{\beta}/K\alpha t_0$ от координат r и z: 1 - r/R = 1/3; 2 - r/R = 2/3; 3 - r/R = 3/4



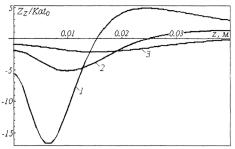
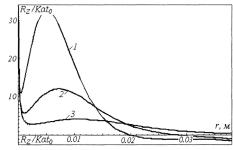


Рис. 4. Зависимость безразмерного напряжения $Z_z/K\alpha t_0$ от координат r и z:1-z/H=r/R=1/3; 2-z/H=1/2, r/R=2/3; 3-z/H=r/R=3/4



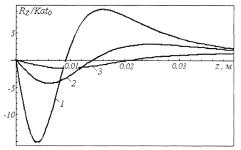


Рис. 5. Зависимость безразмерного напряжения $R_z/K\alpha t_0$ от координат r и z:1-z/H=r/R=1/3; 2-z/H=1/2, r/R=2/3; 3-z/H=r/R=3/4

$$C_{3}' = \frac{\boldsymbol{bR}^{2}\boldsymbol{C}(2+\boldsymbol{n}-2\boldsymbol{a})}{4\boldsymbol{H}(2+\boldsymbol{n})}, C_{4}' = \frac{\boldsymbol{R}^{3}(\boldsymbol{C}-\boldsymbol{K}\boldsymbol{\alpha}\boldsymbol{t}_{0})}{2\boldsymbol{\sigma}-1}.$$
 (11)

Заметим, что напряжения, определяемые по формулам (8), а также (10) (кроме ${m Z}_z$), неограниченно возрастают при ${m r} o 0$.

Проведем расчет напряжений с помощью (10) для меди по следующим усредненным константам: $\langle \boldsymbol{E} \rangle = 84$ ГПа, $\langle \boldsymbol{\sigma} \rangle = 0.34$, $\langle \boldsymbol{\alpha} \rangle = 16.7 \cdot 10^{-6}$ 1/град [6]. На рис. 2-5 показаны зависимости напряжений \boldsymbol{R}_r , $\boldsymbol{B}_{\boldsymbol{\beta}}$, \boldsymbol{Z}_z и $\boldsymbol{Z}_r = \boldsymbol{R}_z$ от координат в плоскости, проходящей через ось цилиндра.

Из рис. 2-5 следует, что нормальные и касательные напряжения превосходят температурное давление $K\alpha t_0$ и существенно зависят от координат r и z. Исключение составляют нормальное напряжения R_r и B_{β} , которые описываются практически одинаковыми кривыми в любом сечении, перпендикулярном оси z (см. рис. 2, 3).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Мелан Э., Паркус Г. Термоупругие напряжения, вызываемые стационарными температурными полями. М. 1958.

УДК 621.311

Никитин В.Л.

- Боли Б., Уэйнер Дж. Теория температурных напряжений. М 1964
- 3. Карслоу Д., Егер Д. Теплопроводность твердых тел. М. 1964.
- 4. Новацкий В. Теория упругости. М. 1975.
- 5. Подстригач Я.С., Коляно Ю.М. Обобщенная термомеханика. Киев. 1976.
- Таблицы физических величин. Справочник. Под редакцией И.К. Кикоина. М. 1976.

УМЕНЬШЕНИЕ ЭКСЕРГЕТИЧЕСКИХ ПОТЕРЬ ПРИ РАБОТЕ КОТЛОАГРЕГАТОВ

Известные методы анализа работы котельных установок, основанные на применении различных коэффициентов полезного действия (КПД), имеют существенный недостаток - с помощью этих КПД трудно, а в ряде случаев и невозможно определить место возникновения той или иной потери энергии и причины её возникновения. Поэтому, анализ работы котельной установки, кроме: 1) материального баланса, позволяющего определить количество рабочего тела, участвующего в каждом отдельном процессе и 2) теплового баланса, с помощью которого определяется количество теплоты, отводимой или подводимой в процессе работы, должен включать 3) эксергетический баланс, позволяющий определить эффективность каждого процесса с точки зрения получения максимальной полезной механической работы, а также потери работы в каждом отдельном процессе, вызванные той или иной реальной необратимостью. Уравнение эксергетического баланса составляется подобно тепловому балансу в целом и для отдельных процессов. В этом уравнении учитывается только работоспособная в данных условиях окружающей среды часть энергии (эксергия). В общем виде эксергия израсходованной теплоты Q, горячего источника будет иметь вид [1]

$$\boldsymbol{E}_{q} = \boldsymbol{Q}_{z} - \boldsymbol{T}_{0} \cdot \Delta \ \boldsymbol{S}_{z}, \tag{1}$$

где ${\it T}_0$ - абсолютная температура окружающей среды как бесконечно ёмкого холодного источника, К;

 ΔS_{z} - уменьшение энтропии горячего источника, вызванное отводом теплоты Q_{z} .

Эксергия отданной каким-либо теплоносителем теплоты определяется через его энтальпию \boldsymbol{i} и энтропию \boldsymbol{s}

$$\Delta \boldsymbol{E}_{m} = \boldsymbol{G} \cdot \left[\boldsymbol{i}_{1} - \boldsymbol{i}_{2} - \boldsymbol{T}_{0} \cdot (\boldsymbol{s}_{1} - \boldsymbol{s}_{2}) \right], \tag{2}$$

где индексами 1 отмечаются начальное и 2 - конечное состояние теплоносителя; \boldsymbol{G} - его масса.

В том случае, когда в процессе подводится теплота различных потенциалов, что бывает в комбинированных энергетических установках, израсходованная эксергия определяется как сумма их эксергий

$$\Delta E_{usp} = E_q + \sum \Delta E_{noo} , \qquad (3)$$

где $E_q\,$ - эксергия, отведённая от горячего источника теплоты;

$$\sum \Delta E_{no\delta}$$
 - эксергия, подведённая от других источников.

Эксергетический анализ процесса горения, представляющий собой применение основных законов термодинамики к техническим задачам, позволяет лучше понять возникающие в этом процессе термодинамические потери. Как показано в [2], потери эксергии при сжигании топлива в топочном устройстве складываются из двух частей: из потерь эксергии в процессе горения и из потерь эксергии при охлаждении продуктов сгорания (т.е. при теплопередаче и потери с уходящими газами). При этом, величина потерь эксергии при горении зависит от двух параметров: от коэффициента избытка воздуха и температуры воздуха. Потери эксергии растут с увеличением коэффициента избытка воздуха и уменьшаются при увеличении температуры воздуха, т.е. при горении в предварительно подогретом воздухе. Как видно из эксергетического анализа работы котлоагрегата, приведённого в [2], котёл оказывается источником больших эксергетических потерь, что вообще не находит отражения в энергетическом КПД котла. К этим потерям относятся:

- 1. Потери эксергии при горении (~ 30 %);
- 2. Потери эксергии при теплопередаче (~ 25 %);
- 3. Потери эксергии с уходящими газами (~ 5 %).

На рис.1 представлены потоки эксергии и анергии в котле, соответствующие горению без подогрева воздуха при температуре уходящих газов 150^{0} C.

Как видно из рис.1, водяному пару передаётся только небольшая часть эксергии топлива, причём энергия, воспринятая водяным паром в форме тепла, состоит из эксергии меньше, чем наполовину. Следовательно, все меры по улучшению работы энергетических установок должны быть направлены прежде всего на уменьшение больших потерь эксергии в котлоагрегатах.

Для снижения потерь эксергии, возникающих в котлах при горении топлива и при передаче тепла от продуктов сгорания к водяному пару, имеются два эффективных мероприятия: промежуточный перегрев пара и комбинированный подогрев воздуха и питательной воды. Обе эти меры приводят к повышению среднетермодинамической температуры T_m рабочего тела при восприятии тепла. При этом повышается температурный уровень пара в котле, что снижает потери эксергии при передаче тепла от продуктов сгорания к пару за счёт уменьшения температурного напора и тем самым, повышает эксергетический КПД котла. Но упомянутые мероприятия являются очень затратными, как в конструктивном, так и в эксплуатационном отношении.

Никитин Вячеслав Леонидович. Начальник Восточной районной котельной №1, филиала РУП Брестэнерго, Брестские тепловые сети, аспирант Брестского государственного технического университета. Беларусь, БГТУ, 224017. г. Брест, ул. Московская, 267.