ОБ АСИМПТОТИЧЕСКОМ ПОВЕДЕНИИ ПАРАМЕТРА ОДНОГО ИЗ РАСПРЕДЕЛЕНИЙ ВЕРОЯТНОСТЕЙ РЕЧНОГО СТОКА

Волчек А.А., Махнист Л.П., Рубанов В.С.

Брестский государственный технический университет, г. Брест, РБ, vig_bstu@tut.by

The article is supposed to give a theoretical foundation of asymptotic behavior of mathematical waiting for one of the even probabilities of many years oscillation of the river flow, widely used in the practice of hydrological calculations.

Введение

Рассмотрим марковский процесс для описания колебаний речного стока, используемый в стохастической гидрологии.

Пусть \overline{V} — среднегодовой расход воды, а V_t — расход воды в момент времени t. Тогда, полагая $X_t = (V_t - \overline{V})/\overline{V}$, процесс многолетних колебаний стока можно описать с помощью стационарного решения стохастического дифференциального уравнения (СДУ) Орнштейна-Уленбека с непрерывным временем [1]:

$$dX_t = -kX_t dt + \sigma dW_t \tag{1}$$

где W_t — стандартный винеровский процесс, $\sigma = C_V \sqrt{2k}$, σ — интенсивность «белого шума», C_V — коэффициент изменчивости речного стока, k^{-1} — время релаксации речного стока.

Уравнению (1) соответствует уравнение Фоккера-Планка, т.е. прямого уравнения Колмогорова $\frac{\partial p}{\partial t} = k \frac{\partial}{\partial x} (xp) + \frac{\sigma^2}{2} \frac{\partial^2 p}{\partial x^2}, -\infty < x < +\infty,$

где коэффициент k определяется по формуле $k=-\ln r$, так как автокорреляционная функция колебаний стока имеет вид $e^{-k\tau}$, а r- коэффициент автокорреляции годового стока.

Пусть в начальный момент времени t=0 сток равен y, а x_* – некоторое фиксированное значение стока. Выясним, за какой промежуток времени значение V будет находиться в полуинтервале $[x_*,\infty)$ при условии, что $y\in [x_*,+\infty)$. Решить эту задачу можно с помощью обратного уравнения Колмогорова. Так как случайные колебания стока, описываемые СДУ (1), однородны по времени, то для двумерной плотности вероятности справедливо соотношение $p(x,t\mid y,0)=p(x,0\mid y,t)$.

Обратное уравнение Колмогорова для процесса (1) имеет вид

$$\frac{\partial}{\partial t} p(x, t \mid y, 0) = -ky \frac{\partial}{\partial y} p(x, t \mid y, 0) + \frac{1}{2} \sigma^2 \frac{\partial^2 p(x, t \mid y, 0)}{\partial y^2}.$$
 (2)

Пусть T — момент времени, в который значение V покинет промежуток $[x_*, +\infty)$.

Тогда
$$prob(T \ge t) = G(y,t), \ G(y,t) = \int_{x_0}^{+\infty} p(x,t \mid y, 0) dx.$$

Интегрируя (2) по x на интервале от x_* до $+\infty$, получаем

$$\frac{\partial G(y,t)}{\partial t} = -k y \frac{\partial G(y,t)}{\partial y} + \frac{\sigma^2}{2} \frac{\partial^2 G(y,t)}{\partial y^2}.$$

Учитывая условия отражения на бесконечности и поглощения в точке $y = x_*$, получим следующие краевые условия:

$$G(y,t)\big|_{y=x_*}=0, \quad \frac{\partial G(y,t)}{\partial y}\bigg|_{y=+\infty}=0.$$

Так как функция 1-G(y,t) является распределением случайной величины T, то среднее время достижения границы x_* определяется соотношением

$$T_1 = -\int_0^{+\infty} t \frac{\partial G(y,t)}{\partial t} dt = \int_0^{+\infty} G(y,t) dt.$$

Интегрируя (2) по t на интервале от 0 до $+\infty$ и учитывая, что

$$\int_{0}^{+\infty} \frac{\partial G}{\partial t} dt = G(x, +\infty) - G(x, 0) = -1,$$

получаем следующее уравнение для T_1 :

$$\frac{1}{2}\sigma^2 \frac{d^2 T_1}{dy^2} - k y \frac{dT_1}{dy} = -1, \text{ при } \frac{dT_1}{dy} (+\infty) = 0, T_1(y) \Big|_{y=x_*} = 0.$$

Введя безразмерные величины $kT_1 = \theta_1$, $y \frac{\sqrt{2k}}{\sigma} = \frac{y}{C_v} = \xi$, $x_* \frac{\sqrt{2k}}{\sigma} = \frac{x_*}{C_v} = \xi_*$,

приходим к уравнению

$$\frac{d^{2}\theta_{1}}{d\xi^{2}} - \xi \frac{d\theta_{1}}{d\xi} = -1, \quad \frac{d\theta_{1}}{d\xi} (+\infty) = 0, \quad \theta_{1}(\xi) \Big|_{\xi = \xi_{*}} = 0.$$
 (3)

Уравнение (3), приведенное в [1], при решении различных прикладных задач, например в [2], интегрировалось численными методами. В [3] получено точное решение уравнения (3), представленное в виде степенного ряда:

$$\theta_1(\xi) = S_1(\xi) - S_1(\xi_*) \,, \tag{4}$$

где
$$S_1(\xi) = \sum_{k=1}^{+\infty} \left(\frac{\pi}{2}\right)^{\left\{\frac{k}{2}\right\}} \frac{(-1)^{k-1} \xi^k}{(k-1)!!k}$$
, а $\{t\}$ — дробная часть числа t .

Об асимптотическом поведении решения уравнения модели

В [4] получены условия для вычисления суммы сходящегося ряда в соотношении (4) с заданной степенью точности. Анализ полученных результатов и их программной реализации позволяет сделать вывод о необходимости исследования асимптотического поведения решения (4) и соответствующих рядов.

Функция $\theta_1(\xi)$ является возрастающей на всей числовой прямой, так как $\frac{d\,\theta_1}{d\,\xi} = \frac{0.5 - \varPhi(\xi)}{\varPhi(\xi)}\,,$ где $\varPhi(\xi) = \frac{1}{\sqrt{2\pi}}\int\limits_0^\xi e^{-\frac{t^2}{2}}dt$ — интеграл вероятностей,

 $\varphi(\xi) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^2}{2}}$ – плотность стандартного нормального распределения.

Исследуем функцию $\theta_1(\xi)$ на вогнутость и выпуклость.

Так как
$$\frac{d^2\theta_1}{d\xi^2} = \frac{0.5 - \varPhi(\xi)}{\varPhi(\xi)} \xi - 1$$
, то $\frac{d^2\theta_1}{d\xi^2} < 0$, если $\xi \le 0$.

Учитывая, что для любого $\xi>0$ выполняется

$$\int_{\xi}^{+\infty} \frac{(t^2+1)e^{-\frac{t^2}{2}}dt}{t^2} = \frac{e^{-\frac{\xi^2}{2}}}{\xi} \text{ и } \int_{\xi}^{+\infty} \frac{(t^4+4t^2-3)e^{-\frac{t^2}{2}}}{(t^2+3)^2}dt = \frac{\xi e^{-\frac{\xi^2}{2}}}{\xi^2+3}, \text{ получаем}$$

$$\sqrt{\frac{\pi}{2}} - \int_{0}^{\xi} e^{-\frac{t^2}{2}}dt = \int_{\xi}^{+\infty} e^{-\frac{t^2}{2}}dt < \int_{\xi}^{+\infty} \frac{t^6+6t^4+9t^2+6}{t^2(t^2+3)^2}e^{-\frac{t^2}{2}}dt = \int_{\xi}^{+\infty} \frac{2(t^2+1)e^{-\frac{t^2}{2}}}{3t^2}dt + \int_{\xi}^{+\infty} \frac{(t^4+4t^2-3)e^{-\frac{t^2}{2}}}{3(t^2+3)^2}dt = \frac{2e^{-\frac{\xi^2}{2}}}{3\xi} + \frac{\xi e^{-\frac{\xi^2}{2}}}{3(\xi^2+3)} = \frac{(\xi^2+2)e^{-\frac{\xi^2}{2}}}{\xi(\xi^2+3)} \text{ или}$$

$$\frac{0,5-\Phi(\xi)}{\varphi(\xi)} < \frac{\xi^2+2}{\xi(\xi^2+3)}.$$

Заметим, что выполняется равенство:

$$\int_{\xi}^{+\infty} \frac{(t^2 - 1)e^{-\frac{t^2}{2}}dt}{(t^2 + 1)^2} = -\frac{te^{-\frac{t^2}{2}}}{t^2 + 1} \bigg|_{\xi}^{+\infty} + \int_{\xi}^{+\infty} \frac{tde^{-\frac{t^2}{2}}}{t^2 + 1} = \frac{\xi e^{-\frac{\xi^2}{2}}}{\xi^2 + 1} - \int_{\xi}^{+\infty} \frac{t^2 e^{-\frac{t^2}{2}}dt}{t^2 + 1}$$

Тогда для $\xi > 0$ получаем

$$\sqrt{\frac{\pi}{2}} - \int\limits_0^\xi e^{-\frac{t^2}{2}} dt = \int\limits_\xi^{+\infty} e^{-\frac{t^2}{2}} dt > \int\limits_\xi^{+\infty} \frac{(t^4 + 2t^2 - 1)e^{-\frac{t^2}{2}} dt}{(t^2 + 1)^2} =$$

$$= \int\limits_\xi^{+\infty} \frac{(t^2 - 1)e^{-\frac{t^2}{2}} dt}{(t^2 + 1)^2} + \int\limits_\xi^{+\infty} \frac{t^2 e^{-\frac{t^2}{2}} dt}{t^2 + 1} = \frac{\xi e^{-\frac{\xi^2}{2}}}{\xi^2 + 1} \text{ или } \frac{0, 5 - \varPhi(\xi)}{\varPhi(\xi)} > \frac{\xi}{\xi^2 + 1}.$$
Таким образом, для любого $\xi > 0$ выполняется неравенство
$$\frac{\xi}{\xi^2 + 1} < \frac{0, 5 - \varPhi(\xi)}{\varPhi(\xi)} < \frac{\xi^2 + 2}{\xi(\xi^2 + 3)}.$$

Следовательно, для любого $\xi > 0$ выполняется неравенство $-\frac{1}{\xi^2+1} < \frac{0,5-\varPhi(\xi)}{\varPhi(\xi)} \xi - 1 < -\frac{1}{\xi^2+3}, \text{ т.е. } \frac{d^2\theta_1}{d\xi^2} < 0 \text{ , и функция } \theta_1(\xi) \text{ является выпуклой на всей числовой прямой.}$

Так как
$$\frac{d^3\theta_1}{d\xi^3} = \frac{0.5 - \varPhi(\xi)}{\varPhi(\xi)}(\xi^2 + 1) - \xi$$
 , то $\frac{d^3\theta_1}{d\xi^3} > 0$, если $\xi \le 0$.

Учитывая, что
$$0 < \frac{0,5-\varPhi(\xi)}{\varPhi(\xi)}(\xi^2+1)-\xi < \frac{2}{\xi(\xi^2+3)}$$
 для любого $\xi>0$,

то $\frac{d^3\theta_1}{d\xi^3} > 0$ и функция $\frac{d^2\theta_1}{d\xi^2}$ является возрастающей на всей числовой прямой.

Заметим, что для любого $\xi \ge \xi_* > 0$ выполняется

$$\theta_{1}(\xi) = \int_{\xi_{*}}^{\xi} \frac{0, 5 - \Phi(t)}{\varphi(t)} dt \ge \int_{\xi_{*}}^{\xi} \frac{t dt}{t^{2} + 1} = \frac{1}{2} \ln \frac{\xi^{2} + 1}{\xi_{*}^{2} + 1}$$

$$\theta_1(\xi) = \int_{\xi_*}^{\xi} \frac{0.5 - \Phi(t)}{\varphi(t)} dt \le \int_{\xi_*}^{\xi} \frac{(t^2 + 2)dt}{t(t^2 + 3)} = \int_{\xi_*}^{\xi} \frac{2dt}{3t} + \int_{\xi_*}^{\xi} \frac{tdt}{3(t^2 + 3)} = \frac{1}{6} \ln \frac{t^6 + 3t^4}{t_*^6 + 3t_*^4}.$$

Следовательно, $\frac{1}{2}\ln\frac{\xi^2+1}{{\xi_*}^2+1} \leq \theta_1(\xi) \leq \frac{1}{6}\ln\frac{t^6+3t^4}{t_*^6+3t_*^4}$ для любого $\xi \geq \xi_* > 0$.

Так как для любого
$$\xi \ge 0$$
 $\frac{0,5-\varPhi(\xi)}{\varphi(\xi)} < \frac{\xi^2+2}{\xi^3+3\xi}$, то

$$\frac{d^4\theta_1}{d\xi^4} = \frac{0.5 - \varPhi(\xi)}{\varPhi(\xi)}(\xi^3 + 3\xi) - (\xi^2 + 2) < 0 \text{ , т.е. функция } \frac{d^3\theta_1}{d\xi^3} \text{ является убывающей на интервале } [0; + \infty) \text{ .}$$

Учитывая условие $\frac{d^3\theta_1}{d\xi^3}\bigg|_{\xi=0} = \sqrt{\frac{\pi}{2}}$ и то, что $\frac{d^3\theta_1}{d\xi^3} > 0$ имеем

$$0 < \frac{0,5 - \Phi(\xi)}{\varphi(\xi)}(\xi^2 + 1) - \xi \le \sqrt{\frac{\pi}{2}}$$
или
$$\frac{\xi}{\xi^2 + 1} < \frac{0,5 - \Phi(\xi)}{\varphi(\xi)} \le \frac{\sqrt{\frac{\pi}{2}} + \xi}{\xi^2 + 1}.$$
 Следовательно, $\ln \sqrt{\xi^2 + 1} \le S_1(\xi) \le \sqrt{\frac{\pi}{2}} \operatorname{arctg} \xi + \ln \sqrt{\xi^2 + 1}$ (5)

для любого $\xi \geq 0$. Учитывая то, что $\arctan \xi < \frac{\pi}{2}$ и $\sqrt{\frac{\pi^3}{8}} \approx 1,97$, имеем неплохое приближение функции $S_1(\xi)$ при больших значениях $\xi > 0$:

$$\ln \sqrt{\xi^2 + 1} < S_1(\xi) < \ln \sqrt{\xi^2 + 1} + 2.$$

Так как функция $\frac{d\theta_1}{d\xi}$ является убывающей и вогнутой вверх функцией на интервале $[0;+\infty)$, то для любого x $(0 \le x \le \xi)$ выполняется неравенство 48

$$y_1(x) \leq \theta_1'(x) \leq y_2(x)$$
, где $y_2(x) = \frac{\theta_1'(\xi) - \theta_1'(0)}{\xi} x + \theta_1'(0)$ – уравнение прямой проходящей через точки $(0, \theta_1'(0))$ и $(\xi, \theta_1'(\xi))$, а

 $y_1(x) = (\theta_1'(\xi)\xi - 1)x + \theta_1'(\xi)(1 - \xi^2) + \xi$ — уравнение касательной к кривой θ_1' в точке $(\xi, \theta_1'(\xi))$.

Тогда
$$\frac{\xi^2}{2} + \frac{0.5 - \varPhi(\xi)}{\varPhi(\xi)} \left(\xi - \frac{\xi^3}{2} \right) < \int\limits_0^\xi \frac{0.5 - \varPhi(t)}{\varPhi(t)} dt < \left(\sqrt{\frac{\pi}{2}} + \frac{0.5 - \varPhi(\xi)}{\varPhi(\xi)} \right) \frac{\xi}{2}$$
 следовательно,

$$0.8278 \approx 0.5 + \frac{0.5 - \varPhi(1)}{2 \varphi(1)} < S_1(1) < \sqrt{\frac{\pi}{8}} + \frac{0.5 - \varPhi(1)}{2 \varphi(1)} \approx 0.9545$$
 и, кроме то-

го, $S_1(1) \approx 0.9019$, используя (4).

Тогда для любого $\xi > 1$ имеем:

$$\ln \sqrt{\xi^2 + 1} + S_1(1) - \ln \sqrt{2} < S_1(\xi) < \ln \sqrt[6]{\xi^6 + 3\xi^4} + S_1(1) - \ln \sqrt[6]{4} . \tag{6}$$
 Учитывая, что $\ln \sqrt[6]{\xi^6 + 3\xi^4} < \ln \sqrt{\xi^2 + 1}$, получим

 $\ln\sqrt{\xi^2+1}+S_1(1)-\ln\sqrt{2} < S_1(\xi) < \ln\sqrt{\xi^2+1}+S_1(1)-\ln\sqrt[6]{4}$, что позволяет вычислять значения функции $S_1(\xi)$ с точностью не большей чем $\ln\sqrt{2}-\ln\sqrt[6]{4}=\ln\sqrt[6]{2}\approx 0,1155$.

Заключение

Предложено теоретическое обоснование асимптотического поведения математического ожидания одного из одномерных распределений вероятностей многолетних колебаний речного стока, широко используемого в практике гидрологических расчетов.

Анализ методики получения неравенств (5), (6) позволяет получить асимптотическое представление решения рассматриваемой модели с помощью изучения его производных более высокого порядка, что может послужить темой дальнейших исследований.

Список использованных источников

- 1. Найденов, В.И. Нелинейные модели колебаний речного стока / В.И. Найденов, В.И. Швейкина // Водные ресурсы. М., 2002. Том 29, № 1. С. 62–67.
- 2. Волчек, А.А. Сравнительная оценка марковских и нелинейных моделей годового стока рек Беларуси / А.А. Волчек, С.И. Парфомук // Вестник Брестского государственного технического университета. Брест, 2006. № 5: Физика, математика, информатика. С. 56–60.
- 3. Волчек, А.А. О решении одной стохастической модели многолетних колебаний речного стока / А.А. Волчек, И.И. Гладкий, Л.П. Махнист, С.И. Парфомук // Вестник Брестского государственного технического университета. − Брест, 2008. − № 5: Физика, математика, информатика. − С. 84–87.
- 4. Волчек, А.А. О сходимости решения одной малопараметрической модели многолетних колебаний речного стока / А.А. Волчек, Л.П. Махнист, В.С. Рубанов // Вестник Брестского государственного технического университета. − Брест, 2009. − № 5: Физика, математика, информатика. − С. 2−5.