Гашко В.И.

К ВОПРОСУ ПРОЧНОСТИ НАКЛОННЫХ СЕЧЕНИЙ НЕРАЗРЕЗНЫХ ПРЕДНАПРЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ БАЛОК

Сопротивление железобетонных элементов изгибу с поперечной силой является перспективной проблемой теории железобетона, решение которой приводит к повышению надежности и снижению металлоемкости строительных конструкций.

Создание расчетной модели, описывающей работу конструкции при одновременном действии среза, изгиба и продольных усилий, до сих пор вызывает сложности в развитии теории железобетона.

Методы расчета прочности железобетонных конструкций большинства стран предполагают раздельный расчет наклонных сечений на действие поперечных сил, изгибающих моментов и продольных сил (в первую очередь из-за простоты применения). Это метод предельных усилий (СНиП 2.03.01-84) [1], классическая модель ферменной аналогии (W.Ritter-E.Mörsch) [2, 3], сочетание ферменной и арочной моделей [4].

Активные исследования по созданию моделей расчета наклонных сечений при действии поперечных и продольных сил, изгибающих моментов проводились научными школами проф. Залесова А.С. [5-10], проф. Климова Ю.А. [11-13], проф. Рочняка О.А. [14, 15].

К числу малоисследованных относятся так же вопросы о сопротивлении действию поперечных сил статически неопределимых балочных элементов. Это широкий класс конструкций, объемы применения которых в мостостроении, многоэтажном промышленном и жилом строительстве в последнее время существенно возросли.

Следует отметить, что СНБ 5.03.01-02 [16], СНиП 2.03.01-84, нормы США и Канады, Еигосоde-2 при расчете прочности по наклонным сечениям не делают существенного различия между элементами с однозначной эпюрой изгибающих моментов и статически неопределимыми конструкциями. Однако наличие изгибающих моментов разных знаков в зоне действия значительных поперечных сил может привести к изменению расчетной схемы, принятой в нормативных документах.

По данным немногочисленных исследований, напряженное состояние приопорных зон при двузначной эпюре изгибающих моментов имеет характерные особенности, прежде всего возможное наличие в зоне среза двух растянутых и двух сжатых зон, участка с нулевым значением изгибающего момента, а в некоторых случаях - образование и распространение наклонных трещин с выходом на грани элемента

Рассмотрим особенности разрушения приопорных зон элементов с разнозначной эпюрой изгибающих моментов по имеющимся экспериментальным данным.

По результатам работ, выполненных в НИИЖБ [17], получены данные о механизме разрушения балок с одно- и двузначной эпюрой изгибающих моментов при действии поперечной силы. В этих опытах варьировался пролет среза. Отмечено, что при пролете среза больше четырех, между грузом и опорой образовывались и получали развитие две наклонные трещины, каждая из которых проходила в пределах зоны действия моментов одного знака. С уменьшением пролета среза наблюдали разрушение балки по одной наклонной трещине, развивающейся в зонах действия моментов разных знаков. В балках с малым пролетом среза (меньше 1,33) разрушение было вызвано раздавливанием сжатой полосы бетона.

Исследования двуконсольных балок без поперечной арматуры [18] показали, что в вершине наклонной трещины могут возникать растягивающие напряжения, при этом наклонная трещина становится неустойчивой, выходит на грани элемента и может привести к внезапному разрушению конструкции. Это вызывает существенное снижение прочности элементов с двузначной эпюрой изгибающих моментов в сравнении с однопролетными.

Результаты изучения влияния преднапряжения продольной арматуры на несущую способность наклонных сечений однопролетных балок изложены в работах [19, 20, 21, 22]. Опыты показали, что пред-

варительное напряжение, не внося принципиальных изменений в схему работы элемента, отдаляет момент образования наклонных трещин и увеличивает несущую способность по наклонным сечениям.

В предварительно напряженных элементах опасная наклонная трещина, развивается по более низкой траектории, при этом высота зоны бетона над ней увеличивается, а длина проекции на продольную ось элемента уменьшается. Нижний конец наклонной трещины в растянутой зоне отдаляется от опоры, и происходит постепенное распространение трещин вдоль продольной арматуры на большой длине.

Наибольший рост разрушающей нагрузки происходит при увеличении предварительного напряжения до 0,5 f_{yk} , с дальнейшим его увеличением рост замедляется. Рост количества поперечной арматуры снижает эффект предварительного напряжения.

Предварительное напряжение продольной арматуры, расположенной в сжатой зоне балок, не оказывает существенного влияния на несущую способность по наклонному сечению.

Согласно результатам опытов, изложенных в работе [23], предварительное напряжение арматуры уменьшает главные растягивающие напряжения в бетоне и увеличивает их наклон к оси балки. Напряжения в хомутах значительно уменьшаются с увеличением преднапряжения продольной арматуры и вплоть до разрушения остаются ниже предела текучести.

Действующие в ребрах сжимающие напряжения увеличиваются благодаря предварительному напряжению. Несущая способность ребра балки при наклонных сжимающих усилиях снижается из-за напрягаемого арматурного элемента. Однако в экспериментах использовали максимально тонкие ребра, так как сжатые раскосы отказывают после достижения призменной прочности бетона. По мнению авторов, в преднапряженных железобетонных конструкциях сжимающие напряжения в наклонных сжатых раскосах не являются определяющими для расчета.

Vecchio, F.J., Collis, M.P. and Aspiotis, J. [24] провели испытания армированных панелей размерами 890 x 890 мм, толщиной 70 мм из высокопрочного бетона. Образцы имели ортогональное армирование (рис. 1). Для армирования опытных образцов использовали горячекатаные стержни периодического профиля.

В условиях чистого сдвига начальные трещины образовывались под углом около 45°. В образцах с большим количеством арматуры трещины имели меньшую ширину раскрытия и располагались ближе друг к другу. После того, как напряжения в поперечной арматуре достигали предела текучести, происходило изменение наклона трещин (угол наклона к продольной арматуре был более острым).

При действии на образцы среза и двуосного сжатия (рис. 2) происходило существенное возрастание усилий, приводящих к образованию начальных трещин. При этом диагональные трещины появлялись перед разрушением и имели малую ширину раскрытия. Предельное сопротивление образцов сдвигу выросло на 38%, а разрушение характеризовалось взрывообразным разрушением сжатого бетона диагональных подкосов. Перед разрушением не происходило переориентации диагональных трещин.

Влияние формы поперечного сечения на сопротивление однопролетных балок действию поперечных сил отражено в работах [25, 26]. Установлено, что в элементах таврового и двутаврового сечения наклонные трещины образуются в ребре и развиваются по направлению к сжатой полке. Достигнув ее, они либо сразу проникают вглубь полки, либо следуют вдоль ее нижней грани с последующим проникновением в сжатую полку.

При сильно развитых сжатых полках распространение трещины и разрушение бетона происходит по некоторой ограниченной поверхности в пределах ширины полки, в элементах с широкими полками перед разрушением возможно образование продольных трещин в месте примыкания свесов к ребру.

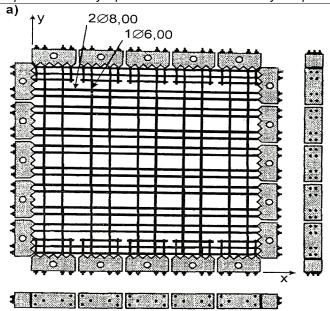
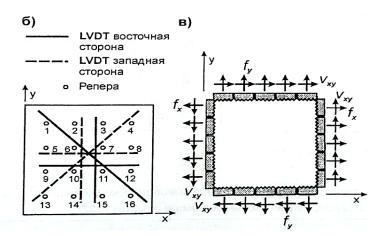



Рис. 1. Конструкция и армирование образцов (а), схема размещения измерительных приборов (б) и схема приложения нагрузок (в) в испытаниях [24]

При наличии поперечной арматуры, с увеличением относительной ширины сжатой полки разрушающая нагрузка вначале резко возрастает, а затем ее рост замедляется. С увеличением относительной высоты полки разрушающая нагрузка возрастает равномерно. В целом сжатые свесы существенно увеличивают разрушающую нагрузку по наклонному сечению (в полтора раза и более).

При наличии в сжатой полке замкнутых хомутов сопротивление элемента действию поперечных сил значительно повышается из-за включения в работу всей полки даже при большой ее ширине.

Полных и систематизированных исследований влияния формы сечения и преднапряжения продольной арматуры на несущую способность наклонных сечений неразрезных балок не проводилось.

Как видно из вышесказанного, в статически неопределимых элементах наличие двузначной эпюры моментов в зоне действия значительных поперечных сил и преднапряжение продольной арматуры оказывают существенное влияние на характер разрушения по наклонным сечениям, а существующие методы расчета не отражают в полной мере особенностей работы наклонных сечений данных конструкций.

Автор считает, что необходимы дальнейшие исследования работы статически неопределимых предварительно напряженных элементов для выявления характера разрушения и разработки методов оценки несущей способности наклонных сечений.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. СНиП 2.03.01-84*. Конструкции бетонные и железобетонные. Нормы проектирования. – М.: Стройиздат, 1985.

- Mörsch E. (1909): Concrete Steel Construction, McGraw-Hill, N.Y., 368 pp (English translation by E.P. Goodrich, from 3rd.ed. of Der Eisenbeton, 1st ed., 1902).
- 3. Ritter W. Die Bauweise Hennebique. Schweizerische Bauzeitung (Zürich), Feb., 1899.
- Aoyama H. (1992): "Design Philosophy for Shear in Earthquake Resistance in Japan." Proc. Symp. on Concrete Shear in Earthquake, Houston, pp. 407-418.
- Баранова Т.И., Залесов А.С. Расчет прочности коротких консолей на действие поперечной силы //Бетон и железобетон. – 1976, №9 - с.32-33.
- 6. Гвоздев А.А., Залесов А.С., Титов И.А. Силы зацепления в наклонных трещинах//Бетон и железобетон. 1975, №7 с.44-45.
- Залесов А.С., Попов Г.И., Усенбаев Б.У. Расчет прочности приопорных участков балок на основе двублочной модели//Бетон и железобетон. – 1986, №2 - с.34-35.
- Залесов А.С. Деформационная модель железобетонных элементов при действии поперечных сил – Инженерные проблемы современного железобетона. РААиС. Иваново, 1995, - с.113-120.
- Залесов А.С., Климов Ю.А. Прочность железобетонных конструкций при действии поперечных сил. – Киев: Будивельник, 1989. - 104 с.
- Залесов А.С., Чистяков Е.А., Ларичева И.Ю. Деформационная расчетная модель железобетонных элементов при действии изгибающих моментов и продольных сил //Бетон и железобетон. – 1996, №5 - с.16-18.

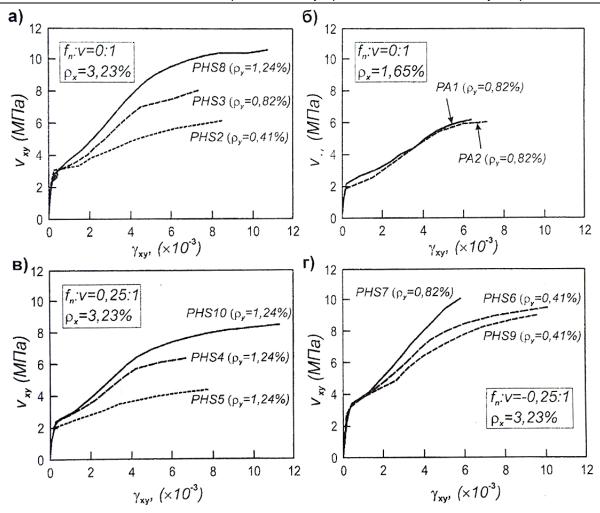
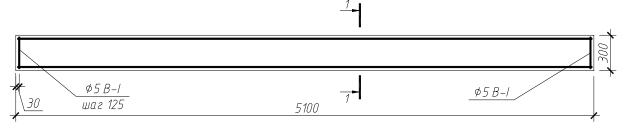


Рис. 2. Диаграммы "V_{ху}-V_{ху}" полученные в испытаниях [24] (а), (б) – чистый сдвиг, (в) – двухосное растяжение и сдвиг, (г) – двухосное сжатие и сдвиг

- 11. Климов Ю.А. Внутренние усилия в наклонном сечении при расчете прочности железобетонных элементов//Бетон и железобетон. 1990, №1 с.16-18.
- Климов Ю.А. Методы расчета железобетонных элементов при совместном действии изгибающих моментов и поперечных сил//Бетон и железобетон. – 1992, №10 - с.19-21.
- Климов Ю.А. Развитие методов расчета железобетонных конструкций по предельным состояниям в рамках создания норм Украины. – Инженерные проблемы современного железобетона. РААиС. Иваново, 1995. - с.143-147.
- Васильев П.И., Рочняк О.А. Сопротивление железобетонных элементов поперечным силам. – Минск., Наука и техника, - 1978, - 88 с.
- 15. Васильев П.И., Рочняк О.А., Яромич Н.Н. Влияние характера трещинообразования на сопротивление железобетонных элементов поперечной силе. // Совершенствование методов расчета и исследование новых типов железобетонных конструкций. Межвузовский тематический сборник трудов. Ленинград: ЛИ-СИ, 1981, №10, с. 19-25.
- СНБ 5.03.01-02. Бетонные и железобетонные конструкции. Мн.: Минстройархитектуры, 2003.
- 17. Зиганшин Х.А. Прочность железобетонных элементов по наклонным сечениям при эпюрах изгибающих моментов, характерных для консольных и неразрезных балок.- Дис.на соиск.уч.ст.к.т.н. М., 1982. 253 с.
- Васильев П.И., Рочняк О.А., Яромич Н.Н. Некоторые особенности сопротивления железобетонных элементов с разнозначными эпюрами изгибающих моментов действию поперечных сил.- Известия ВУЗов, "Строительство и архитектура", 1983, N 3.- с. 8-11.

- Дмитриев С.А., Дмитрюкова Е.И. Влияние предварительного напряжения и конструктивных особенностей элементов на прочность наклонных сечений// Новое о прочности железобетона. – М., 1977 - с.93-115.
- Пукелис П.И. О влиянии предварительного напряжения продольной арматуры на сопротивление железобетонных балок действию поперечных сил./ Автореферат дисс. на соиск. уч. ст. к.т.н. – Каунас, 1963. - 30с.
- 21. Светлаускас В.А. Исследование прочности преднапряженных железобетонных элементов на действие поперечных сил //Железобетонные конструкции. Вильнюс, 1979. с.37-40.
- 22. Старишко И.Н., Залесов А.С., Сигалов Э.Е. Несущая способность по наклонным сечениям предварительно напряженных изгибаемых элементов // Изв.ВУЗов, "Строительство и архитектура" М., 1976 с. 38-53.
- Leonhardt F., Walther R., Dilger W. Schubversuche an Durchlauftragern. Deutscher Ausschuss fur Stahlbeton, Heft 163. – Berlin, 1964. - 138 st.
- Vecchio, F.J., Collis, M.P. and Aspiotis, J. (1994): "High Strength Concrete Elements Subjected to Shear." ACI St. J., Jul.-Aug. 1994, pp. 423-433.
- Игнатавичус Ч.В. Исследование прочности железобетонных прямоугольных и тавровых балок по наклонному сечению. Автореферат дисс. на соискание уч.ст.канд.т.н. – Вильнюс, 1973 - 15с.
- Маилян Р.П., Польской П.П., Залесов А.С. Влияние сечения и вида бетона на прочность наклонных сечений железобетонных балок // Вопросы прочности, деформативности и трещиностойкости железобетона, вып.6. – Ростов н/Д, 1978. - с.23-28.

Материал поступил в редакцию 07.01.08


GASHKO V.I. To a question of durability of inclined sections of the not cut previously intense ferro-concrete beams.

The results of the various authors on researches of character of job of at - basic zones of the not cut previously intense beams are considered depending on the form of cross section and size of a preliminary pressure. The existing methods do not reflect to the full feature of their job.

УДК 624.041.62

Гашко В.И.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ НАКЛОННЫХ СЕЧЕНИЙ НЕРАЗРЕЗНЫХ ПРЕДНАПРЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ БАЛОК

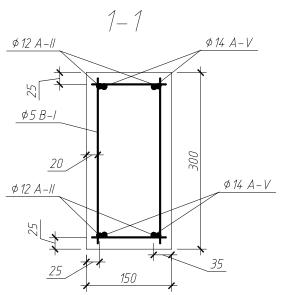


Рис. 1. Конструктивное решение опытных балок

Вопросы сопротивления неразрезных предварительно напряженных железобетонных элементов изгибу с поперечной силой являются малоизученной проблемой теории железобетона. Задачей настоящих экспериментальных исследований явилось изучение механизма и получение количественных характеристик сопротивления таких балок изгибу с поперечной силой.

Опыты проведены на железобетонных двухпролетных балках прямоугольного сечения. Варьируемыми факторами являлись относительный "пролет среза" (следовательно, изменялось отношение опорного и пролетного моментов) и величина предварительного напряжения верхней и нижней продольной арматуры.

Для выполнения экспериментальных исследований были изготовлены 14 железобетонных балок основной группы; размеры поперечного сечения по проекту составляли 150х300 мм, общая длина балок - 5100 мм.

После опытного изучения работы балок основной группы некоторые из них были испытаны по однопролетной схеме с загружением одной сосредоточенной силой, эти балки отнесены к дополнительной группе опытных образцов.

Объем экспериментальных исследований приведен в таблице 1. Конструктивное решение опытных балок показано на рис. 1.

Опытные образцы в зависимости от величины предварительного напряжения продольной арматуры имеют в обозначении арабские цифры от 1 до 5: 1 - без преднапряжения продольной арматуры, установленной в верхней и нижней зонах балки; 2 - величина преднапряжения продольной арматуры верхней и нижней зон составляет соответственно 0,55 и 0,55 f_{yk} ; **3** - величина преднапряжения арматуры верхней и нижней зон соответственно 1,0 и 1,0 f_{yk} ; **4** - величина преднапряжения арматуры верхней и нижней зон соответственно 0,55 и 1,0 f_{yk} ; **5** - величина преднапряжения арматуры верхней и нижней зон соответственно 0 и 1,0 f_{yk} .

Римские цифры в обозначении опытных балок указывают относительный "пролет среза": $I-1,5;\,II-3,0;\,III-4,5.$

Балки армировались продольной стержневой арматурой 2 \oslash 14 мм класса A-V в верхней и нижней зонах, установленной, как отмечено выше, с предварительным напряжением, а также обычной продольной арматурой по 2 \oslash 12 мм класса A-II у верхней и нижней грани.

В качестве поперечной арматуры в образцах использовалась проволока \emptyset 5 мм класса В-I, шаг поперечных стержней принят равным 125 мм по всей длине балки. Продольная, без преднапряжения и поперечная арматура объединялись в сварные непрерывные каркасы. Зона передачи напряжений на длине анкеровки преднапряженной арматуры усиливалась металлическими спиралями.

Основные конструктивные характеристики опытных железобетонных балок приведены в таблице 2.

Примененные для балок продольные арматурные стержни Ø 14 мм класса A-V соответствовали ГОСТ 5781-82, арматура Ø 12 мм класса A-II - ГОСТ 5781-82, поперечная арматура Ø 5 мм B-I - ГОСТ 6727-80. Физико-механические характеристики арматуры определялись по стандартной методике с использованием разрывных машин МУП-50, УМЭ-10.