где *М* – количество точек области перекрытия, *I*₁ и *I*₂ – яркость точек 1-го и 2-го кадра в соответствующей позиции в области перекрытия.

Заключение. Предложенные алгоритмы имеют следующее преимущество применительно к обработке топологических слоев ИС и их шаблонов, представленных в виде множества перекрывающихся кадров: не требуется больших вычислений для формирования полного изображения. Эксперименты показали возможность автоматического определения координат совмещения кадров изображения ИС.

Выбор той или иной схемы склейки зависит от степени и характера погрешностей, вносимых устройством ввода. Приведенные варианты первого алгоритма расположены в порядке повышения требований точности к устройству ввода и соответственно снижения вычислительной нагрузки на аппаратную часть системы обработки изображений.

Использование дополнительной коррекции сшивки позволило получить необходимые данные для дальнейшей работы по восстановлению принципиальной электрической схемы ИС и значительно повысило качество работы проектировщиков СБИС.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- Brown, L.G. A survey of image registration techniques / L.G. Brown // ACM (Assoc. Comput. Mach.) Comput. Surv. – 1992. – No. 24 (4). – P. 325-376.
- Абламейко, С.В. Комбинированный метод оперативной координатной привязки аэрокосмических снимков и цифровых моделей карт / С.В. Абламейко, С.П. Боричев, А.Н. Крючков // Анализ цифровых изображений. Минск: ОИПИ НАН Беларуси, 2002. Вып. 1. С. 122-130.

- Миллер, Б.М. Компенсация сдвига изображения при съемке с использованием ПЗС в режиме задержки и интегрирования / Б.М. Миллер, Е.Я. Рубинович // Информационные процессы. – 2007. – Т. 7, № 1. – С. 45-54.
- Zhang, Z. A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry / Z. Zhang // Artificial Intelligence Journal. – 1995. – Vol. 78. – P. 87-119.
- Chimitt, William J. Scene recons ruction from partially overlapping images with use of composite / W.J. Chimitt, Jr.G. Hassebrook, L.G. Hassebrook // J. Opt. Soc. Am. A. – 1999. – No. 16 (9). – P. 2124-2135.
- Прэтт, У. Цифровая обработка изображений / У. Прэтт; пер. с англ. – М.: Мир, 1982. – Кн. 2. – 480 с.
- Leitao, Helena C.G. Information contents of fracture lines / Helena C.G. Leitao, Jorge Stolfi // Proc. WSCG'2000, 8th Intl. Conf. in Central Europe on Computer Graphics, Visualization and Digital Interactive Media, Czech Republic, 7- 11 February, 2000. Univ. of West Bohemia Press, 2000. – Vol. 2. – P. 389-395.
- Withers, J.A. Tracking Cell Splits and Merges / J.A. Withers, K. A. Robbins // Proc. of the IEEE Southwest Symposium on Image Analysis and Interpretation, San Antonio, USA, 8-9 April, 1996. – P. 117-122 [Electronic resource]. – 1996. – Mode of access: http://visual.cs.utsa.edu/research/chaos/pubs/splits/splits.html. – Date of access: 11.07.200.
- Аваков, С.М. Оптико-механические комплексы для бездефектного изготовления фотошаблонов 0,35 мкм и 90 нм / С.М. Аваков [и др.] // Фотоника (прил. к журн. «Электроника НТБ». – 2007. – № 6. – С. 35-39.

Материал поступил в редакцию 07.12.14

DOUDKIN A.A. Layout restoring algorithms for a task of integrated circuits r e-design

Approximate algorithms are proposed to form a complete set of image raster image frames topology layers of integrated circuits. The algorithms are based on the use of specific heuristics that provide a combination of overlapping areas without the use of reference points, and contribute to the qualitative analysis and the correct reconstruction of the topology of integrated circuits. The choice of a bonding scheme depends on the extent and nature of the errors introduced by the input device.

УДК 681.4

Дудкин А.А.

АЛГОРИТМ ОБЪЕДИНЕНИЯ МАТРИЧНЫХ ИНТЕГРАЛЬНЫХ СХЕМ В СИСТЕМУ НА КРЕМНИЕВОЙ ПЛАСТИНЕ

Введение. Одним из перспективных направлений микроэлектроники является создание систем на кристалле, (СнК, SOC, System-On-Chip) интегрирующих на одном чипе процессоры, логические, запоминающие устройства и др. элементы [1-7]. Подобное объединение возможно посредством генератора изображений ЭМ-5299, разработанного концерном «Планар». Этот генератор позволяет использовать методику формирования слоев металлизации на пластине, исключающую применение шаблонов, и позволяющую формировать рисунок по всей поверхности пластины посредством специального лазера. Одной из задач программного обеспечения этого генератора является объединение годных интегральных схем (ИС) в виде системы на кристалле. Исходным для решени этой задачи является описание полупроводниковой пластины с заданием информации о годности расположенных на ней ИС, результатом - информация для управления соединением исправных ИС, расположенных на пластине, в систему.

В статье предложено описание пластин булевыми матрицами, которое позволило свести решение задачи объединения годных ИС (реконфигурации) к поиску максимальных подматриц, целиком состоящих из исправных ИС. Предложен алгоритм реконфигурации и рассмотрен пример проектирования. Применение математического аппарата работы с булевыми матрицами позволяет проводить оптимизацию объединения и получать решения, превосходящие аналоги. Кроме того, благодаря использованию математического аппарата работы с булевыми матрицами алгоритм объединения обладает высоким быстродействием [8].

Описание топологии пластины

Кристаллическая пластина является подложкой, на которой располагаются те же самые не соединенные между собой цифровые устройства, из которых состоят однородные структуры. Эти устройства являются элементами пластины.

Для описания системы ИС на пластине вводится система прямоугольных координат из осей X и Y. Пересечение осей координат совпадает с центром пластины. ИС располагаются в виде прямоугольной матрицы с некоторым шагом по x и по y. Расположение ИС на пластине задается парой чисел. Первое число является номером строки, второе число – номером столбца. ИС находится на пересечении строки и столбца. Размещение микросхемы на пластине задается координатами точек привязки микросхемы в системе координат пластины.

Таким образом, кристаллическая пластина имеет матричную структуру, состоящую из *k* строк и *I* столбцов, где *k*≥*n*, *l*≥*m*. На пересечении строки со столбцом этой матрицы также располагается один ее элемент. Каждый элемент пластины либо исправен, либо неисправен.

Кристаллическая пластина представляется в виде булевой матрицы S размерностью $k \times l$. Элемент s_{ij} этой матрицы, расположенный на пересечении строки с номером i со столбцом с номером j($1 \le i \le k$, $1 \le j \le l$), соответствует элементу кристаллической пластины. Если *s_{ij}*=1, то элемент кристаллической пластины, находящийся на пересечении *i*-й строки с *j*-м столбцом, исправен, иначе этот элемент неисправен и *s_{ij}*=0.

Алгоритм реконфигурации. Алгоритм состоит из следующих основных этапов.

- 1. Анализ карты дефектов кристалла и определение место расположения годных, негодных и частично годных ИС.
- 2. Определение связных областей частично годных ИС.
- 3. Для каждой такой связной области решается задача получения максимального числа годных ИС путем их реконфигурации.
- 4. Для каждой новой ИС выполнить верификацию.
- Для каждой новой ИС выдать информацию для технологического оборудования для выполнения соединения.

Ниже описано решение основной задачи алгоритма, решаемой на шаге 3 – поиска максимальных подматриц, целиком состоящих из исправных ИС.

Пусть A(i,j;r,t) – подматрица матрицы S, где $1 \le i < r \le k$, $1 \le j < t \le l$, состоящая из элементов матрицы S, находящихся соответственно на пересечении строк с номерами i, i+1, i+2, ..., r со столбцами с номерами j, j+1, j+2, ..., t.

Подматрица *A*(*i*,*j*;*r*,*t*) матрицы *S* называется единичной, если и только если все ее элементы равны единице.

Подматрица A(i,j,r,t) матрицы S называется правильной, если или $r-i+1 \le n$, $t-j+1 \le m$, или $r-i+1 \le m$, $t-j+1 \le m$.

Правильная единичная подматрица A(i,j;r,t) матрицы S называется максимальной, если и только если в матрице S не существует правильной единичной подматрицы A(g,h;p,c) такой, что $(p-g+1)\times(c-h+1)>(r-i+1)\times(t-j+1)$.

Одна из задач, связанная с размещением однородных структур на кристаллической пластине, сводится к следующей логикокомбинаторной задаче на булевой матрице.

В булевой матрице *S* необходимо найти, если это возможно, максимальную правильную единичную подматрицу *A*(*i*,*j*; *r*, *t*).

Поиск максимальных правильных единичных подматриц булевой матрицы, генерируемых ее нулевым элементом, описан ниже.

Пусть в булевой матрице S имеется элемент $s_{ij}=0$, где $1 \le i \le k$, $1 \le j \le l$. По элементу s_{ij} матрица S делится на подматрицы $A_1(1,1;k,j-1)$, $A_2(1,j+1;k,l)$, $A_3(1,1;i-1,l)$, $A_4(i+1,1;k,l)$. Следует заметить, что если j=1, то подматрица A_1 является пустой. Если j=1, то пустой оказывается подматрица A_3 .

Утверждение 1. Если элемент S_{ij} булевой матрицы S равен нулю, то максимальная правильная единичная подматрица матрицы S существует, если существует максимальная правильная единичная подматрица хотя бы в одной из ее подматриц $A_1(1,1;k,j-1)$, $A_2(1,j+1;k,l)$, $A_3(1,1;i-1,l)$, $A_4(i+1,1;k,l)$. При этом максимальная правильная единичная подматрица матрицы S равна наибольшей из максимальных правильных единичных подматриц матриц $A_1(1,1;k,j-1)$, $A_2(1,j+1;k,l)$, $A_3(1,1;i-1,l)$, $A_2(1,j+1;k,l)$, $A_3(1,1;i-1,l)$, $A_4(i+1,1;k,l)$, $A_3(1,1;i-1,l)$, $A_4(i+1,1;k,l)$, $A_3(1,1;i-1,l)$, $A_4(i+1,1;k,l)$,

Доказательство. Если S_{ij} является единственным нулевым элементом в матрице S, то максимальную правильную единичную подматрицу матрицы S нужно искать среди наибольших правильных подматриц $A_1(1,1;k,j-1)$, $A_2(1,j+1;k,l)$, $A_3(1,1;i-1,l)$, $A_4(i+1,1;k,l)$. Если же в матрице S присутствует больше одного нулевого элемента, то искомую подматрицу нужно искать среди правильных единичных подматриц A_1 , A_2 , A_3 , A_4 .

Операция деления булевой матрицы по нулевому элементу распространяется на подматрицы матрицы S. Пусть задана подматрица A(g,h;p,c) матрицы S, и в этой подматрице имеется нулевой элемент s_{ij} , где $g \leq i \leq p$, $h \leq j \leq c$. Элемент s_{ij} делит матрицу A(g,h;p,c) на подматрицы $A_1(g,h;p,j-1)$, $A_2(g,j+1;p,c)$, $A_3(g,h;i-1,c), A_4(i+1,h;p,c)$. Если j=1, то подматрица A_1 является пустой. Если i=1, то пустой оказывается подматрица A_3 .

Утверждение 2. Если элемент S_{ij} булевой подматрицы A(g,h;p,c) матрицы S равен нулю, то максимальная правильная единичная подматрица подматрицы A(g,h;p,c) существует, если существует максимальная правильная единичная подматрица хотя бы в одной из ее подматриц $A_1(g,h;p,j-1)$, $A_2(g,j+1;p,c)$, $A_3(g,h;i-1,c)$, $A_4(i+1,h;p,c)$. При этом максимальная правильная единичная подматрица матрицы A(g,h;p,c) равна наибольшей из максимальных правильных единичных подматриц матриц $A_1(g,h;p,c)$.

Доказательство этого утверждения аналогично доказательству утверждения 1.

Ниже приведен декомпозиционный метод поиска максимальных единичных подматриц матрицы *S*.

Идея метода поиска максимальной правильной единичной подматрицы матрицы S состоит в следующем.

В матрице S ищется нулевой элемент S_{ij}. Если в матрице S такого элемента нет, то сама матрица S является искомой подматрицей.

Если нулевой элемент S_{ij} найден, то матрица S разделяется (декомпозируется) на подматрицы $A_1(1,1;k,j-1)$, $A_2(1,j+1;k,l)$, $A_3(1,1;i-1,l)$, $A_4(i+1,1;k,l)$. Не пустые подматрицы объединяются в множество F.

Из множества *F* удаляются все матрицы, которые не являются правильными. Если после этого окажется, что *F*=Ø, то в матрице S отсутствуют максимальные единичные подматрицы. В множестве *F* останутся только правильные матрицы.

В множества *F* определяются единичные подматрицы и среди них выбираются максимальные. Из максимальных единичных матриц множества *F* сформируется множество *R* – множество решений рассматриваемой задачи. Из множества *F* удаляем все единичные матрицы. Если окажется, что *F*=Ø, то это означает, что в множестве *R* содержатся матрицы, являющиеся решением рассматриваемой задачи.

Если *F*≠Ø, то в этом случае в множестве *F* находятся правильные матрицы, содержащие нулевые элементы. Последовательно перебираются матрицы из *F*.

В очередной матрице S_u , взятой из множества F, выбирается некоторый нулевой элемент. Матрица S_u декомпозируется по этому элементу точно так же, как матрица S была разделена по элементу S_{ij} . Из полученных в результате декомпозиции матриц формируется множество F_u так же, как из подматриц A_1 , A_2 , A_3 , A_4 матрицы Sбыло сформировано множество F.

Далее множество F_u анализируется так же, как это было сделано для множества F. В множестве F_u находятся только не пустые подматрицы. Из множества F_u удаляются все матрицы, которые не являются правильными. Если при этом оказывается, что $F_u = \emptyset$, то рассмотрение матрицы S_u завершается. Матрица S_u удаляется из множества F.

Если $F_{u}\neq\emptyset$, то определяется, какие из матриц множества F_{u} являются единичными. Из этих единичных подматриц выбираются максимальные. Если или множество R – пусто, или эти максимальные подматрицы равны своими размерами матрицам, содержащимся в множестве R, то эти подматрицы добавляются в множество R. Если своими размерами они превосходят матрицы из множества R, то ими заменяются матрицы, находящиеся в этом множества R, то ими заменяются матрицы, находящиеся в этом множества R, то ими заменяются матрицы, находящиеся в этом множестве. Если размеры этих матриц меньше размера матриц из множества R, то множество R остается без изменения. Из множества F_{u} удаляются единичные матрицы. Матрицы, оставшиеся в множестве F_{u} , добавляются в множество F и, рассмотрение матрицы S_{u} завершается. Матрица S_{u} удаляется из множества F. Выполняется переход к следующей матрице из множества F.

Процесс поиска максимальных правильных единичных подматриц матрицы S завершается после того как множество F окажется

пустым. Искомые матрицы находятся в множестве *R*. Если *R*=Ø, то рассматриваемая задача не имеет решения [1-3]. Пример. Дана матрица

Следовательно, k=5, l=8. Пусть m=3, n=4. Выбераем в матрице S элемент $s_{24}=0$. Разделяем матрицу S по этому элементу и получим матрицы

Матрица A_3 не является правильной, поэтому $F=\{S_1=A_1, S_2=A_2, S_3=A_4\}$. Последовательно просматриваем матрицы из этого множества. Выбираем матрицу S_1 . В этой матрице единственный нулевой элемент S_{12} . Разделим матрицу S_1 по этому элементу. Получим

$$B_{1}(1,1;5,1) = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, B_{2}(1,3;5,3) = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, B_{3}(1,1;0,8) = \emptyset,$$
$$B_{4}(2,1;5,3) = \begin{bmatrix} 1&1&1\\1&1&1\\1&1&1\\1&1&1\\1&1&1 \end{bmatrix}$$

Из рассматриваемых матриц матрица B_3 является пустой. Остальные матрицы – единичны, но только одна из них B_4 является правильной. Она же является и максимальной. Включаем ее в множество R. Из множества F удаляется матрица S_1 . Выбирается следующая матрица S_2 из множества F и т.д. В результате в множество R будут добавлены еще две матрицы $C_3(3,1;5,4)$, $D_1(1,5;3,8)$. Все матрицы в множестве R являются решением рассматриваемой задачи размещения.

Подсистема реконфигурирования/ Предложенный алгоритм реконфигурирования положен в основу работы одноименной подсистемы аппратно-программного комплекса объединения матричных ИС в систему на кремниевой пластине, разработанной в ОИПИ НАН Беларуси совместно с БГУИР.

Основные функции подсистемы следующие:

- выбор по заданному критерию последовательности реконфигурируемых ИС;
- выбор вида реконфигурации в зависимости от типа дефекта реконфигурируемой ИС и ИС-источника резервного блока;
 реконфигурация ИС.
- Поддерживается обработка следующих типов дефектов:

Физика, математика, информатика

- ячейка,
- кластер,
- строка,
 столбен
- столбец,
- совокупность строк,
- совокупность столбцов,
- часть строки,
- часть столбца,
- комбинация строк и столбцов.

В подсистеме формируется библиотека резервных блоков, из которой на основе по заданному критерию выбираются резервные блоки:

- реконфигурация ИС;
- верификация полученного описания.

Пример проектирования. Положим, что типовая ИС, представленная своими контактными площадками, изображена на рис. 1 (контактные площадки привязаны к системе координат, в которой и описываются прямоугольники ее составляющие). Контактные площадки типовой ИС помечены своими именами. Описание данной типовой ИС в текстовом виде представляется файлом с именем «Mk1.txt». В этом файле содержится следующий текст:

Mk1

110,90,3, 200, A(250,50), C(250,650); @ 90,110,2, 200, B(50,250), D(850,250);

Первая строка содержит имя типовой ИС, которое совпадает с

именем файла без расширения «txt», содержащего это описание. Вторая строка, помеченная символом «#», содержит описание групп площадок с именами *A*, *C*. Третья строка, помеченная символом «@»,содержит описание групп площадок с именами *B*, *D*. Числа 110 и 90 второй строки задают ширину и высоту площадок групп *A*, *C* в микронах. Число 3 этой же строки задает число площадок в этих группах. Число 200 задает расстояние между центрами площадок в микронах. Пара чисел (250,50) задает координаты центра площадки A1, пара чисел (850,250) задает координаты центра площадки C1. Аналогичный смысл имеют числа третьей строки. Числа этой строки задают следующую информацию:

90, 110 - ширина и высота площадок групп В, D;

2 - число площадок в этих группах;

200 – расстояние между центрами площадок групп *B*, *D*; (50,250) – координаты центра площадки *B*1; (850,250) – координаты центра площадки *D*1.

 $\begin{array}{c|cccccc}
Y & C1 & C2 & C3 \\
\hline
B2 & \Box & \Box & \Box \\
B1 & \Box & \Box & \Box & \Box \\
0 & A1 & A2 & A3 & & \\
\end{array}$

Рис. 1. Типовая ИС, заданная своими контактными площадками

Координаты также задаются в микронах. Файл, задающий внутреннее представление типовой ИС и построенный по данному описанию будет иметь имя «Mk1.chp».

Описание пластины задается файлом с именем «Pl4.txt». Это описание имеет следующий вид:

PI4, Mk1, PII; 3, 3, (0,0), 1300, 1300, 20, 10;

Вестник Брестского государственного технического университета. 2014. №5

Рис. 2. Графическое представление системы исправных ИС, соединенных на пластине

РІ4 является именем пластины, Мк1 – именем типовой ИС, РІІ – именем списка неисправных ИС. Числа 3, 3 задают матрицу из ИС, которая располагается на пластине. Эта матрица состоит из 3-х строк и 3-х столбцов. Число 1300 является расстоянием по оси Х между ИС. Следующее число 1300 является расстоянием по оси У между ИС. Число 20 задает ширину шины, а число 10 длину отрезка шины, соединяющего основной прямоугольник шины с окном контактной площадки. Внутреннее представление пластины представляется файлом с именем «PI4.pls».

В описании пластины присутствует имя «PII». Следовательно некоторые ИС пластины неисправны. Список неисправных ИС находится в файле с именем «PII.txt». Этот список задается следующим текстом:

3,3#

2,2; 3,1;

В первой строке указываются размеры матрицы ИС, которые отделяются от второй строки символом «#». Во второй строке перечислены имена неисправных ИС. Так имя «2,2;» указывает, что ИС, расположенная на пересечении 2-й строки со 2-м столбцом, является неисправной. Второе имя «3,1;» указывает, что ИС, расположенная на пересечении 3-й строки с 1-м столбцом, является неисправной. Файл внутреннего представления списка неисправных ИС будет иметь имя «PII.spl».

Графическое представление рассматриваемой пластины в SOUформате будет сформировано в файле с именем «Pl4.sou», который будет записан в ту же директорию, в которой находится файл с именем «Pl4.pls». Сформированное изображение соединений можно просмотреть в редакторе GLE. Оно будет выглядеть так, как это изображено на рис. 2.

Предложенный алгоритм является составной частью современной технологии проектирования, согласно которой проектирование выполняется одновременно по четырем направлениям: разработка ПО, разработка RTL-кода, логический синтез, физический синтез. В процессе работы группы разработчиков обмениваются результатами проектирования. Существенным является то, что разрешен возврат на предыдущие стадии проектирования и корректировка результатов [9].

Заключение. Разработанный алгоритм применен при создании программного обеспечения для генераторов топологии интегральным схем для решения двух основных задач: отработки технологического процесса формирования рисунка соединений СБИС на пластине и проектирования цифровых устройств, размещаемых на пластине. Конечным результатом выполнения данной работы является аппаратно-программный комплекс, обеспечивающий создание СБИС по технологии бесшаблонного изготовления СБИС.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- Лабунов, В.А. Путь от Микро к Наноэлектронике / В.А. Лабунов // Информационные технологии в промышленности (ITI*2008): Тезисы докладов 5-й Междунар. науч.- техн. конф., 22–24 октября 2008 г., Минск. – Минск: ОИПИ НАН Беларуси, 2008. – С. 9–10.
- Немудров, В. Системы на кристалле. Проектирование и развитие / В. Немудров, Г. Мартин. – М.: Техносфера, 2004. – 216 с.
- Баранов, И.Л. Технология быстрого проектирования и производства систем на кремниевой пластине / И.Л. Баранов, А.Г. Черных, А.Б. Зимин // Информационные технологии в промышленности (ITI*2008): тезисы докл. 5-й Междунар. науч.- техн. конф., Минск, 22–24 октября 2008 г. – Минск: ОИПИ НАН Беларуси, 2008. – С. 113–114.
- 4. Бухтев, А.В. Методы и средства проектирования систем на кристалле / А.В. Бухтев // Chip news. – 2003. – № 4. – С. 4–14.
- Проектирование СБИС типа «Система на кристалле». Маршрут проектирования. Синтез схемы. Часть 1 / В. Стешенко [и др.] // Электронные компоненты. – 2009. – № 1. – С. 14–21. [Электронный ресурс]. – 2009. – Режим доступа: <u>http://dsol.ru/pdf/</u> <u>EK 1 2009.pdf</u>. – Дата доступа: 22.04.2009.

- Коноплев, В.Г. Реализация микропроцессорных систем на основе суперкристаллов и СБИС пластин / В.Г. Коноплев // Микроэлектроника. – 1988. – Т.17, вып. 5. – С. 432–438.
- Jerraya, A. Guest Editors' Introduction: Multiprocessor Systems-on-Chips / A. Jerraya, H. Tenhunen, W. Wolf // Computer. – July 2005. – Vol. 38, № 7. – P. 36–40.
- 8. New Covering Algorithms Implemented in Software System for Input Data Preparation for Single-Beam IC Layout Generator // S. Avakaw

[at al.] / Journal of Computational Optimization in Economics and Finance. – 2012. – Vol. 4, Iss. 2-3. – P. 161 – 176.

 Дудкин, А.А. Методы и алгоритмы перепроектирования интегральных микросхем / А.А. Дудкин // Вестник Брестского государственного технического университета. Физика, математика, информатика. – 2009. – № 5. – С. 62–66.

Материал поступил в редакцию 07.12.14

DOUDKIN A.A. Algorithm for combining matrix integrated circuit on silicon wafer system

A description of silicon chips based on Boolean matrices is proposed, that allows to reduce the solution of the task of combining reusable integrated circuit to search the maximum submatrices consisting entirely of good integrated circuits. Using the mathematical apparatus with Boolean matrices allows optimization of combining and obtain better task solutions in comparison of known ones. An algorithm for reconfiguration of the silicon chips is worked out, which is an integral part of modern technology of VLSI non-mask manufacturing.

УДК 004.032.26,004.4

Дудкин А.А., Ганченко В.В., Марушко Е.Е., Чарин С.Н.

КОНТРОЛЬ ТЕЛЕМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЦЕЛЕВОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ С ИСПОЛЬЗОВАНИЕМ НЕЙРОННЫХ СЕТЕЙ

Введение. Космическая телеметрия – это совокупность технологий, позволяющая производить дистанционный сбор информации о состоянии бортовых подсистем космических аппаратов (КА). В настоящее время в качестве основной физической среды передачи данных телеметрии с КА выступает радиоканал, которому свойственны ограниченные полоса пропускания, длительность сеанса связи и подверженность помехам, что снижает возможности наземных комплексов управления как в отношении мониторинга КА, так и управления им. С другой стороны, своевременное выявление нештатного поведения подсистем КА позволяет в ряде случаев скорректировать их состояние и тем самым, предотвратить развитие на борту аварийной ситуации, что повышает надежность функционирования КА.

В настоящее время телеметрия за редким исключением полностью передается на Землю, где, в случае возникновения на борту нештатных ситуаций (НШС), выполняется ее детальный анализ. Известны четыре метода мониторинга состояния подсистем КА по телеметрическим данным: адаптивный анализ ограничений с использованием относительной векторной регрессии, обнаружение аномалий в телеметрии с использованием метода главных компонент, диагностика и определение аномалий с использованием динамических байесовых сетей (гибридный метод), визуализация телеметрии на основе обнаружения точек перехода.

Надо отметить, что детерминированные алгоритмы не обеспечивают надежной идентификации НШС подсистем КА вследствие утраты той информации, которая содержится в нестационарных и флуктуационных составляющих диагностических сигналов. Нейросетевой подход для решения задач в области контроля, управления и распознавания телеметрической информации благодаря возможности обучения нейронные сети (НС) позволяет учесть не только случайный характер сигналов, но и особенности поведения конкретных подсистем в заданных условиях.

В статье рассматривается задача нейросетевого контроля телеметрической информации (ТМИ) целевой аппаратуры (ЦА) космического белорусского космического аппарата (БКА). Под ЦА понимают аппаратуру, которая обеспечивает выполнение стоящей перед КА, в частности задачу дистанционного зондирования Земли.

Контролируемые параметры ТМИ. Состояние ЦА БКА описывается следующей двухуровневой телеметрической информацией [1]:

- выходное напряжение;
- токопотребление;
- температурный режим.

Мнемосхема блока ЦА и расположение датчиков приведена на рис. 1, где T38-T52 –датчики температуры, МСС – многозональная съемочная система, ПСС – панхроматическая съемочная система, ВИП1 и ВИП2 – вторичные источники питания (основной и резервный), логические ядра А и Б – блоки управления.

ВИП обеспечивают токопотребление и входное напряжение бортового записывающего устройства (БЗУ) и контроллера межблочного обмена (КМО), основного контроллера мультиплексного канала обмена (МКО), телеметрии бортовой информационной системы, центрального процессора (ЦП) и запоминающих устройств.

Выходное напряжение включает напряжение ВИП ядра, основного ВИП БЗУ и КМО и резервного ВИП.

Состояние ЦА кодируется сигналами ТМ1-ТМ4 (табл. 1 и 2). Температурные телеметрические параметры приведены в табл. 3.

Таблица 1. Состояния ЦА по сигналам ТМ1, ТМ2

TM1	TM2	Описание
0	0	Сигналы управления в ЦА не поступали.
		Процессор и ПЛИС ядра ЦП загружены из основ-
		ных загрузочных банков.
0	1	В ЦА поступил сигнал управления 1 соответству-
		ющего ядра.
		Произведена перезагрузка процессора из резерв-
		ного загрузочного банка
1	0	В ЦА поступил сигнал управления 2 соответству-
		ющего ядра.
		Произведена перезагрузка ПЛИС ЯЦП из резерв-
		ного загрузочного банка
1	1	В ЦА поступил сигнал управления 3 соответству-
		ющего ядра.
		Произведена перезагрузка процессора из основно-
		го загрузочного банка.
		Произведено переключение на резервный источ-
		ник питания «ВИП ТМ и МКО»

Ганченко Валентин Вячеславович, кандидат технических наук, научный сотрудник Объединенного института проблем информатики НАН Беларуси.

Марушко Евгений Евгеньевич, младший научный сотрудник Объединенного института проблем информатики НАН Беларуси. Чарин Сергей Николаевич, начальник группа ЦУП БКА НИРУП «Геоинформационные системы» НАН Беларуси.