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I INFINITE SEQUENCES AND SERIES 

1.1 Series. Test for Divergence 
Infinite sequences and series were introduced briefly in A Preview of Calculus in 

connection with Zeno’s paradoxes and the decimal representation of numbers. Their 
importance in calculus stems from Newton’s idea of representing functions as sums 
of infinite series.  

Sequences 
A sequence can be thought of as a list of numbers written in a definite order: 

1 2 3, , ,..., na a a a  

The number 1a  is called the first term, 2a  is the second term, and in general na  is 

the n-th term. We will deal exclusively with infinite sequences and so each term na  

will have a successor 1na  . Notice that for every positive integer n there is a corre-

sponding number na  and so a sequence can be defined as a function whose domain is 

the set of positive integers. But we usually write na  instead of the function notation

( )f n  for the value of the function at the number n. 

The sequence  1 2 3, , ,..., na a a a  is also denoted by na . 

Some sequences can be defined by giving a formula for the n-th term. There are 
three descriptions of the sequence: one by using the preceding notation, another by 
using the defining formula, and the third by writing out the terms of the sequence (the 
Fibonacci sequence). Notice that it does not have to start at 1. 

Definition A sequence na  has the limit L  and we write lim n
n

a L


  if we can 

make the terms na  as close to L  as we like by taking n sufficiently large. If lim n
n

a


 ex-

ists, we say the sequence converges (or is convergent). Otherwise, we say the se-
quence diverges (or is divergent). 

If we try to add the terms of an infinite sequence  na  we get an expression of 

the form 

1 2 3 ... ...na a a a      (1) 

which is called an infinite series (or just a series) and is denoted, for short, by 

the symbol 
1

n

n

a




   or na . 

We use a similar idea to determine whether or not a general series (1) has a sum. 
We consider the partial sums 

1 1S a , 2 1 2S a a  , 3 1 2 3S a a a   , 

and, in general, 

1 2 3

1

...
n

n n i

i

S a a a a a


       (2) 
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These partial sums form a new sequence  nS , which may or may not have a 

limit. If lim n
n

S S


  exists (as a finite number), then, as in the preceding example, we 

call it the sum of the infinite series
na . 

Definition If the sequence  nS  is convergent and lim n
n

S S


  exists as a real 

number, then the series na  is called convergent and we write

1 2 3 ... ...nS a a a a      . 

The number S  is called the sum of the series. Otherwise, the series is called di-

vergent.  So when we write
1

n

n

a S




 , we mean that by adding sufficiently many 

terms of the series we can get as close as we like to the number S .  

Definition A series 1 2 3

1

...n n n k

k n

a a a a


  

 

      is called the remainder of the 

series and denoted by nR . The remainder nR  is the error made when the sum of the 

first n terms, is used as an approximation to the total sum. 
Example 1 An important example of an infinite series is the geometric series 

2 3 4 1 1

1

... ...n n

n

a aq aq aq aq aq aq


 



        . 

Solution Each term is obtained from the preceding one by multiplying it by the 
common ratio q . 

If 1q  , then ...nS a a a a na        . Since lim n
n

S


 does not exist, the 

geometric series diverges in this case. 
If 1q  , we have 

2 3 4 1... n
nS a aq aq aq aq aq         

2 3 4 ... n
nqS aq aq aq aq aq      . 

Subtracting these equations, we get n
n nS qS a aq   , 

(1 )

1

n

n

a q
S

q





 (3) 

If 1 1q   , we know from that 0nq   as n , so 

(1 )
lim lim

1 1

n

n
n n

a q a
S

q q 


 

 
 

Thus when 1q   the geometric series is convergent and its sum is
1

a
S

q



. 

If 1q   or 1q   , the sequence  nq  is divergent and so, by Equation 3, lim n
n

S


 

does not exist. Therefore the geometric series diverges in those cases. 
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We summarize the results of Example 1 as follows. 

The geometric series is convergent if 1q   and its sum is
1

a
S

q



. If 1q  ,  the 

geometric series is divergent. 

Example 2 Find the sum of the geometric series
1

3

5

n

n





 
 
 

 . 

Solution The first term is 1

3

5
a   and the common ratio is

3

5
q  . Since

3
1

5
q   , 

the series is convergent and its sum is

3
35

31 21
5

a
S

q
  
 

. 

Example 3 Show that the series
1

1

( 1)
n

n n




  is convergent, and find its sum. 

Solution This is not a geometric series, so we go back to the definition of a con-
vergent series and compute the partial sums. 

1

1 1 1 1 1
...

( 1) 1 2 2 3 3 4 ( 1)

n

n

k

S
k k n n



     
     . 

We can simplify this expression if we use the partial fraction decomposition 
1 1 1

( 1) 1k k k k
 

 
. 

Thus we have 

1

1 1 1 1 1 1 1 1 1 1
1 ...

( 1) 2 2 3 3 4 1 1

n

n

k

S
k k n n n n



         
                    

           
 ; 

1

1 1
1

( 1) 1

n

n

i

S
i i n



  
   

and so 

1
lim lim 1 1

1
n

n n
S

n 

 
   

 
. 

Therefore the given series is convergent and
1

1
1

( 1)
n

n n






 . 

Example 4 Show that the harmonic series
1 1 1 1

1 ... ...
2 3n n

      is diver-

gent. 
Solution For this particular series it is convenient to consider the partial sums 

2 4 8 2
, , ,..., ,..nS S S S  and show that they become large. 
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2

1
1

2
S   , 4

1 1 1 1 1 1 2
1 1 1

2 3 4 2 4 4 2
S

   
            

   
, 

8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 3
1 1 1

2 3 4 5 6 7 8 2 4 4 8 8 8 8 2
S

       
                        

       
, 

16

4
1

2
S   , 32

5
1

2
S   , 64

6
1

2
S   , …

2
1

2
n

n
S   . 

This shows that 
2nS   as n  and so the harmonic series is divergent. 

Therefore, the harmonic series diverges. 
In general, it is difficult to find the exact sum of a series. We develop several tests 

that enable us to determine whether a series is convergent or divergent without ex-
plicitly finding its sum.  

Theorem 1 If the series
1

n

n

a




  is convergent, then lim 0n
n

a


 . 

Note 1 The converse of Theorem 1 is not true in general. If lim 0n
n

a


 , we cannot 

conclude that a series is convergent. Observe that for the harmonic series
1

1

n
n





  we 

have lim 0n
n

a


 , but we showed in Example 4 that it is divergent. 

 
The test for divergence If lim n

n
a


 does not exist or if lim 0n

n
a


 , then the series

1

n

n

a




  is divergent. 

Example 5 Show that the series
2

2

1

2 3

5
n

n

n







  diverges. 

Solution
2 2

2 2

2 3 2
lim lim lim 2 0

5
n

n n n

n n
a

n n  

  
     

  
. So the series diverges by 

the Test for Divergence. 

Example 6 Find the sum of the series
1

3 3

( 1) 5

n

n
n n





  
      

 . 

Solution The series
1

3

5

n

n





 
 
 

  is a geometric series with 1

3

5
a   and

3

5
q  , so 

1

3 3

5 2

n

n





 
 

 
 . In Example 3 we found that

1

1
1

( 1)
n

n n






 . 
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So, the given series is convergent and 

1

3 3 1 3 3 9
3 3 1

( 1) 5 ( 1) 5 2 2

n n

n
n n n n





    
                

   . 

Exercise Set 1.1 

In Exercise 1 to 6, write down first five terms using na : 

 

1.  
3

3

2 1
n

n
a

n



 2.  

 2 1

!

n

na
n

 
  

3.  
1

!
n

n
a

n


  

4.  

2 sin cos
2

!
n

n
n

a
n




 
 

   

5.  
 

2

ln 1
n

n
a

n


  6.  

 
1

3 ( 1)
n nn

a 
 

 

 
In Exercise 7 to 12, find na  of the series: 

 

7. 
1 2 3 4

3 5 7 9
     8. 

2 4 8
1

2! 3! 4!
    

9. 
ln 2 ln3 ln 4 ln5

4 9 16 25
    

10. 
1 1 1 1

2 8 18 32
arctg arctg arctg arctg   

 

11. 
sin sinsin sin

6 82 4
2 4 6 8

  

    12. 
2 4 6 8

5 8 11 14
    

In Exercise 13 to 27, determine whether the series na is convergent or diver-

gent. If it is convergent, find its sum 
 

13. 
1

2 3

5
n

n

n







  14. 
2

2

1

3 1

2 5
n

n

n







  15. 
3

3

1

2 6

5 5
n

n

n n







  

16. 
3

2

1

3

9
n

n

n







  17. 
1

2 3

4 5
n

n

n







  
18. 

2

2

1

3 1

5 9
n

n n

n n





 

 
 

19. 
1

7

5

n

n





 
 
 

  20. 
1

3

25

n

n





 
 
 

  21. 
1

13
4

5

n

n
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22. 
1

5 2

10

n n

n

n






  23. 

1

3 4

12

n n

n

n






  24. 

1

5 15

25

n n

n

n






  

25. 
 1

1

2
n

n n




  26. 

 1

3

3
n

n n




  27. 

 1

5

4
n

n n




  

Individual Tasks 1.1 

1-5. Determine whether the series na  is convergent or divergent. If it is con-

vergent, find its sum. 

I.    

1. 
1

1

2 3n

n

n








  

2. 
4

3
1

4

3 2n

n

n n



 
  

3. 
1

5 3

15

n n

n
n






  

4. 
1

1

(6 1)(6 5)
n

n n




   

5. 
2

1

1

3n n n



 
  

 

II.   

1. 
1

7 1

4 3n

n

n








  

2. 
3

2
1 5n

n

n



 
  

3. 
1

7 3

21

n n

n
n






  

4. 
1

1

(2 3)(2 5)
n

n n




   

5. 
2

1

1

3 2n n n



  
  

 

 

1.2 Tests of Convergence of Positive Series 
Theorem (Integral Test) Suppose f  is a continuous, positive, decreasing func-

tion on  1,  and let ( )na f n . Then the series
1

n

n

a




  is convergent if and only if 

the improper integral

1

( )f x dx



  is convergent. In other words: 

(a) If

1

( )f x dx



  is convergent, then
1

n

n

a




  is convergent; 

(b) If

1

( )f x dx



  is divergent, then
1

n

n

a




  is divergent 
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Example 1 For what values of   is the series
1

1 1 1 1
1 ... ...

2 3
n

n n   





     
convergent? 

Solution If 0  , then
1

lim
n n

 . If 0  , then
1

lim 1
n n

 . In either case

1
lim 0
n n

 , so the given series diverges by the Test for Divergence. 

If 0  , then the function
1

y
x

  is clearly continuous, positive, and decreasing 

on  1, . We found that

1

1
dx

x



  converges if 1   and diverges if 1  . 

It follows from the Integral Test that the series
1

1

n
n





  converges if 1   and di-

verges if 1  . 

Example 2 Determine whether the series
4

1

1

( 1)ln ( 1)
n

n n




   converges or di-

verges. 

Solution The function
4

1
( )

( 1)ln ( 1)
f x

x x


 
 is positive and continuous for

1x   because the logarithm function is continuous. 

So we can apply the Integral Test: 

4 4 4

1 1 1 ln 2

ln ( 1)

(ln( 1))( ln( 1))
( )

1 ln 2( 1) ln ( 1) ln ( 1)

x t

d x dtdx d x dt
f x dx dx dx

x tx x x t

x t

   

 

 
    

    

   

     

3
4

3 3 3 3

ln 2ln 2

1 1 1 1
lim lim lim 0 1,001

3 3 3ln 2 3ln 2 3ln 2

NN

N N N

t
t dt

N




  

   
           

   
. 

Since this improper integral is convergent, the series 4

1

1

( 1)ln ( 1)
n

n n




   is al-

so convergent by the Integral Test. 
 
In the comparison tests the idea is to compare a given series with a series that is 

known to be convergent or divergent. 
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Theorem (Comparison Test) Suppose that na  and nb  are series with 

positive terms: 

(a) If nb  is convergent and n na b  for all n , the na  is also convergent; 

(b) If nb  is divergent and n na b  for all n , then na  is also divergent. 

Example 3 Determine whether the series
2

5

2 4 3n n   converges or diverg-

es. 

Solution The largest of the dominant term in the denominator is 22n , so we 

compare the given series with the series
2

5

2n .  

Observe that 

2 2

5 5

2 4 3 2n n n


 
 

because the left side has a bigger denominator. We know that
2 2

5 5 1

2 2n n
   

is convergent because it is a constant times  -series with 2 1   . Therefore

2

5

2 4 3n n   is convergent by part (a) of the Comparison Test. 

 

Theorem (Limit Comparison Test) Suppose that na  and nb  are series with 

positive terms. If lim n

n
n

a
c

b
 , where 0c   is a finite number, then either both series 

converge or both diverge. 

Example 4 Determine whether the series
2

5

1

3 4 7

6
n

n n

n





 

  converges or diverges. 

Solution The dominant part of the numerator is 23n  and the dominant part of the 

denominator is 5n . This suggests taking 
2

5

3 4 7

6
n

n n
a

n

 



,   

2

5 3

1
n

n
b

n n
   

2 3

5

(3 4 7)
lim lim

6
n

n n
n

a n n n

b n 

 
 



2 3

5

4 7
3

lim 3.
6

1
n

n n

n



 




 

Since
3

1

1

n
n





  is convergent  -series with 3 1   , the given series converges 

by the Limit Comparison Test. 
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Notice that in testing many series we find a suitable comparison series by keep-
ing only the highest powers in the numerator and denominator. 

Example 5 Use the sum of the first 100 terms to approximate the sum of the se-

ries
3

1

1

1
n

n




 . Estimate the error involved in this approximation. 

Solution Since  

3 3

1 1

1n n



, 

the given series is convergent by the Comparison Test. There we found that 

3 2

1 1

2
n

n

T dx
x n



   

Therefore, the remainder nR  for the given series satisfies
2

1

2
n nR T

n
  . With

100n   we have 100 2

1
0.00005

2 100
R  


. 

The following tests are very useful in determining whether a given series is con-
vergent. 

Theorem (Ratio Test) 

(a) If 1lim 1n

n
n

a
A

a



  , then the series na  is convergent. 

(b) If 1lim 1n

n
n

a
A

a



   or 1lim n

n
n

a
A

a



   , then the series na  is divergent. 

(c) If 1lim 1n

n
n

a
A

a



  , the Ratio Test is inconclusive; that is, no conclusion can 

be drawn about the convergence or divergence of
1

n

n

a




 . 

Example 6 Determine whether the series
2

1

3

( 1) !

n

n
n n




   converges or diverges. 

Solution We use the Ratio Test with  

2

3

( 1) !

n

na
n n


 

, 
1 1

1 2 2

3 3
,

(( 1) 1) ( 1)! ( 2 2) ( 1)!

n n

na
n n n n n

 

  
       

 

1 2 2
1

2 2

3

2

3 ( 1) ! 3 ( 1)
lim lim lim

( 2 2) !( 1) 3 ( 2 2)( 1)

1 1

3 lim 3 0 0.
2 1 1

1 1

n
n

nn n n
n

n

a n n n

a n n n n n n n

n n

n n n
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Since 0 1A  , the given series is convergent by the Ratio Test. 

The following test is convenient to apply when n-th powers occur. Its proof is 

similar to the proof of the Ratio Test. 

Theorem (Root Test) 

(a) If lim 1n
n

n
a A


  , then the series

1

n

n

a




  is convergent. 

(b) If lim 1n
n

n
a A


   or lim n

n
n

a A


    , then the series
1

n

n

a




  is divergent. 

(c) If lim 1n
n

n
a A


  , the Root Test is inconclusive.  

If lim 1n
n

n
a A


  , then part (c) of the Root Test says that the test gives no in-

formation. The series na  could converge or diverge. (If 1A  in the Ratio Test, do 

not try the Root Test because A  will again be 1. And if 1A  in the Root Test, do not 

try the Ratio Test because it will fail too.) 

Example 7 Test the convergence of the series
1

2 3

3 2

n

n

n

n





 
 

 
 . 

Solution We use the Root Test with
2 3

3 2

n

n

n
a

n

 
  

 
. 

2 3 2 3 2 2
lim lim lim lim

3 2 3 2 3 3

n

n n
n

n n n n

n n n
a

n n n   

  
    

  
 

Since
2

1
3

A   , the given series is convergent by the Root Test. 

 

Exercise Set 1.2 

In Exercise 1 to 42, determine whether the series na  is convergent or diver-

gent.  

1. 
2

1

3 1

1
n

n

n







  2. 
2

1

1

3
n

n

n






  3. 

 
3

1 1n

n

n



 
  

4. 
3

1

4

1n

n

n








  5. 

4
1 1n

n

n



 
  6. 

2
1

4

4n

n

n n








  

7. 
1

2

n

n

n

n





 
 
 

  8. 

2

1

4

4 2

n

n

n

n





 
 

 
  9. 

1

5

5 3

n

n

n

n
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10. 
1

2 1

5 3

n

n

n

n





 
 

 
  11. 

1

3 1

7 2

n

n

n

n





 
 

 
  12. 

1

4 1

9 5

n

n

n

n





 
 

 
  

13. 6

1

8 1

9 5

n

n

n
n

n





 
 

 
  14. 

2
2

2

1

2 3

2 1

n

n

n

n





 
 

 
  15. 

1

3
arcsinn

n
n





  

16. 
4

1

2n

n
n





  17. 
 

3

1

1

4n

n

n




  18. 

 

1

1

3

1

n

n
n n

 


  

19. 
 

3

1

5

1

n

n

n

n








  20. 

 

1

3

1

3

1

n

n

n

n

 






  21. 

 

1

1

5 n

n

n n




  

22. 
  

1

1 2

!
n

n n

n





 
  23. 

 

1

1

2

1 !

n

n

n

n

 





  24. 
 1

!

1 3n

n

n

n




   

25. 
1

1
2n

n

tg








  26. 
1

1
2 sin

6
n

n

n





  27. 
1

arcsin
2n

n






  

28. 

1

1 3 5 ... (2 1)

4 8 12 ...(4 )
n

n

n





    

  
 

29. 

1

3 5 ... (2 1)

1 4 ... (3 2)
n

n

n





   

   
 

30. 

1

1 3 5 ... (2 1)

5 9 13 ...(4 1)
n

n

n





    

     

31. 
1

! (2 1)

n

n

n

n

n




  32. 

1

1

3
n n

n

n tg
n





  33. 
3

1

2 !n

n

n

n






  

34. 
1

3

5n

n

n n





 
 
  


 

35. 

2

1

1 1

5

n

n

n

n

n





 
 
 

  36. 
1

3
n

n

n
arctg





  

37. 
1

3
arcsinn

n
n





  38. 
1

!
n

n

n

n





  39. 
1

!
, 0

n

n

n

n a
a

n





  

40. 
   1

1

1 ln 1
n

n n




    41. 

   1

1

7 1 ln 7 1
n

n n




   42. 

 1

1

ln 1n

n
n
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Individual Tasks 1.2 

1-6. Determine whether the series 
na  is convergent or divergent. If it is con-

vergent, find its sum. 

I.    

1. 
 1

1

3 1
n

n n




  

2. 
1

2 1

3n

n

n n







  

3. 
2

1

1

( 1)ln ( 1)
n

n n




   

4. 
1

3 2

( 1)!n

n

n








  

5. 
 
 1

5 1 !

2 !

n

n

n

n






  

6. 

2

1

4 1

4 2

n n

n

n

n





 
 

 
  

 

II.   

1. 
 

2

1 5n

n

n



 
  

2. 
 1

1

2 1 2 1n n n



    

3. 
3

1

1

(2 1)ln (2 1)
n

n n




   

4. 
1

5 1

( 2)!

n

n

n

n







  

5. 
 
 1

! 2 1 !

3 !
n

n n

n






  

6. 

2

1

3 2

3 2

n n

n

n

n





 
 

 
  

 

1.3 Alternating Series 
The convergence tests that we have looked at so far are applied only to series 

with positive terms. In this section we learn how to deal with the series whose terms 
are not necessarily positive. The alternating series, whose terms alternate in sign are 
of particular importance. 

Definition An alternating series is a series whose terms are alternately positive 
and negative.  

Theorem (Alternating Series Test) If the alternating series 

1 1
1 2 3 4

1

... ( 1) ... ( 1)n n
n n

n

a a a a a a


 



          

satisfies the following conditions: 
(a) 1 2 3 1... ...n na a a a a        

(b) lim 0n
n

a


  

then the series is convergent. 

Example 1 Test the series
1

1

( 1)n

n
n

 




  for convergence or divergence. 

Solution The alternating harmonic series 
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1
1

1

( 1) 1 1 1 1
1 ... ( 1) ...

2 3 4

n
n

n
n n

 





         

satisfies the following conditions: 

(a) 1 2 3 1... ...,n na a a a a        because 
1 1

1n n



; 

(b) 
1

lim lim 0n
n n

a
n 

  . 

So the series is convergent by the Alternating Series Test. 

Example 2 Test the series  
1

2

1

1
2

n

n

n

n







  for convergence or divergence. 

Solution The given series is alternating, so we try to verify conditions (a) and 
(b) of the Alternating Series Test. 

Unlike the situation in Example 1, it is not obvious that the sequence given by

2 2
n

n
a

n



 is decreasing. However, if we consider the related function

2
( )

2

x
f x

x



, we find that 

2

2 2

2
( )

( 2)

x
f x

x


 


. 

Since we are considering only positive x , we see that ( ) 0f x   if 2x  . Thus

f  is decreasing on the interval ( 2; ) . This means that ( 1) ( )f n f n   and, 

therefore, 1n na a   when 2n  . (The inequality 1 2a a  can be verified directly but all 

that really matters is that the sequence  na  is eventually decreasing.) 

Condition (b) is readily verified: 

2 2

1
lim lim lim 0

2n n n

nn

n n n  
  


. 

Thus the given series is convergent by the Alternating Series Test. 
Estimating Sums 
A partial sum nS  of any convergent series can be used as an approximation to 

the total sum S , but this is not of much use unless we can estimate the accuracy of 

the approximation. The error involved in using nS S  is the remainder n nR S S  .  

Theorem (Alternating Series Estimation Theorem) If 1

1

( 1)n
n

n

S a






   is the 

sum of an alternating series that satisfies the following conditions:  
(a) 1 2 3 1... ...n na a a a a        

(b) lim 0n
n

a


  

then 1n n nS S R a    . 
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Example 3 Find the sum of the series  
1

0

1

!

n

n
n






  correct to three decimal places. 

Solution We first observe that the series is convergent by the Alternating Series 
Test because 

a) 
   

1 1 1

1 ! ! 1 !n n n n
 

 
 

b)

 

1 1 1
0 0 0

! !
so as n

n n n
      . 

To get a feel for how many terms we need to use in our approximation, let’s 
write out the first few terms of the series: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1
... 1 1 ...

0! 1! 2! 3! 4! 5! 6! 7! 2 6 24 120 720 5040
S                    

Notice that 7

1 1
0.0002

5040 5000
a     

and
1 1 1 1 1

1 1 0.368056
2 6 24 120 720

S         . 

By the Alternating Series Estimation Theorem we know that

6 7 0.0002S S a   . 

This error of less than 0,0002 does not affect the third decimal place, so we 

have 0.368S   correct to three decimal places.  

Example 4 Find the sum of the series
1

1

4 1
( 1)

6
n

n

n

n







  correct to three decimal 

places. 
Solution We first observe that the series is convergent by the Alternating Series 

Test  

(a) If we consider the related function
4 1

( )
6x

x
f x


 , we find that 

   
2

4 6 6 ln6 4 1 4 ln6 4 1
( )

6 6

x x

x x

x x
f x

      
   . 

Since we are considering only positive x , we see that ( ) 0f x   if

1 1
0.808

4 ln6
x   . Thus f  is decreasing on the interval  1; . This means that

( 1) ( )f n f n   and therefore 1n na a   when 1n  .  

(b)  
4 1 4

lim lim ' lim 0
6 6 ln6

n n nn n n

n
a L Hopitals Rule

  


    . 

To get a feel for how many terms we need to use in our approximation, let’s 

write out the first few terms of the series: 
4 5 6

5 9 13 17 21 25

6 36 216 6 6 6
S       . 
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Notice that 6 6

25
0.0005358 0.001

6
a    and  

5

5 9 13 17 21

6 36 216 1296 7776
S S         

0.8333 0.2500 0.0602 0.0131 0.0003 0.6307 0.631        

Absolute Convergence 

Definition A series  
1

1

1
n

n

n

a






  is called absolutely convergent if the series of ab-

solute values
1

n

n

a




  is convergent. 

Example 5 Test the series
 
 

1

1

1

3

n

n
n n







  for an absolute convergence.  

Solution We use the Limit Comparison Test with
 

1

3
na

n n



, where na  is an 

absolute value of the n  th term.  The dominant part of the numerator is 0 and the 

dominant part of the denominator is 2n . This suggests taking 

 
1

3
na

n n



 and

2

1
nb

n
 . 

   

2 2

2
2

1 11 1
lim lim lim lim 1

333 3 1 11

:
n n n n

n n

n n n nn
n

nn

   

   
       

        
 

. 

Since
2

1

1

n
n





  is convergent (  -series with 2 1   ), the given series converges 

by the Limit Comparison Test. Thus, the given series is absolutely convergent and, 
therefore, convergent. 

Definition A series  
1

1

1
n

n

n

a






  is called conditionally convergent if it is con-

vergent, but not absolutely convergent. 

Theorem If a series  
1

1

1
n

n

n

a






  is absolutely convergent, then it is convergent. 

Example 6 Determine whether the series 

2 2 2 2 2

1

cos cos1 cos2 cos3 cos
... ...

1 2 3
n

n n

n n





       

is convergent or divergent. 
Solution This series has both positive and negative terms, but it is not alternat-

ing. The first term is positive, the next three are negative, and the following three are 
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positive. The signs change irregularly. We can apply the Comparison Test to the se-
ries of absolute values 

2 2

1 1

coscos

n n

nn

n n

 

 

   

Since cos 1n   for all n, we have
2 2

cos 1n

n n
 . 

We know that
2

1

1

n
n





  is convergent (  -series with 2 1   ) and therefore

2

1

cos

n

n

n





  is convergent by the Comparison Test. Thus the given series
2

1

cos

n

n

n





  is 

absolutely convergent and therefore convergent by Theorem. 

Example 7 Determine whether the series  
1

2

1

1
2

n

n

n

n







  is absolutely convergent, 

conditionally convergent or divergent. 

Solution We use the Limit Comparison Test with
2 2

n

n
a

n



. 

The dominant part of the numerator is n and the dominant part of the denomina-

tor is 2n . This suggests taking 

2 2
n

n
a

n



  and

1
nb

n
  

2 2

2 2
2

22

1 1
lim lim lim lim lim 1

111 1 11

:n

n n n n n
n

a n n n

b n n n
n

nn

    
    

     
 

. 

Since
1

1

n
n





  is divergent (  -series with 1 1   ), the given series diverges by 

the Limit Comparison Test. 
We try to verify conditions (a) and (b) of the Alternating Series Test: 
(a) 1 2 3 4 5 6 ...a a a a a a      (see Example 2); 

(b)
2

2

2 2

1
lim lim lim lim 0

2 22
1 1

n
n n n n

n n
a

n
n n

n n

   
   

    
     

   

. 

 
Exercise Set 1.3 

In Exercise 1 to 18, determine whether the series is absolutely convergent, con-
ditionally convergent, or divergent. 

1. 
 

1

1

1

1

n

n
n







  2. 
 

1

2

1

1

2 1

n

n
n







  3. 
 

1

1

1

1

n

n n
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4. 
 

1

1

1 3

2

n n

n
n







  5. 
 

1

1

1

4 (2 3)

n

n

n
n







  6. 
 
 

1

2

1

1

1

n

n
n n







  

7. 
 
 

1

2

1

1 5

2

n n

n n








  8. 

 
1

1

1

2 1

n

n

n n







  9. 
 

1

1

1

1

3 (2 1)

n

n

n
n









  

10.  
1

1 sin
2

n

n

n






 
 

11.  
1

sin3
1

3

n
n

n

n





   12. 
 

1

1
4

5 1

n

n

tg
n

n






 


 

13. 
 
 3

1

ln 2

n

n
n n







  14. 
 

 3

1

1 ln

n

n
n n







   15.  
1

1

1
2 1

n

n

n

n

n






 
  

 


 

16. 
2

1

cos2

1
n

n





  17. 

2

( 1)

ln

n

n
n n







  18. 
2

ln
( 1)n

n

n

n





  

In Exercise 19 to 24, approximate the sum of the series correct to three decimal 
places. 

19. 
1

1

( 1) (0,2)

( 1) (4 3)

n n

n
n n

 



 

    20. 
2

1

( 1)

2

n

n

n
n







  21. 
1

3

1

( 1)

3

n

n

n
n

 





  

22. 
1

1

( 1) 3

(2 1) 7

n n

n

n

n

n

 



  

   23. 
3

1

1

( 1)
7

n

n

n

n









 

24. 1

1

(0,7)
( 1)

( 1) !

n
n

n n











 
Individual Tasks 1.3 

1-3. Determine whether the series is absolutely convergent, conditionally con-
vergent, or divergent. 

4. Approximate the sum of the series correct to three decimal places. 
I.    

1. 1
2

1

( 1)
6 7

n

n

n

n









  

2. 1

1

4 1
( 1)

6

n
n

n

n





  

3. 
 

1

1

3 !

n

n

n
n







  

4. 1

1

3 2
( 1)

!
n

n

n

n







  

 

II.   

1. 1
6

1

2 1
( 1)

3

n

n

n

n










  

2. 1

1

3 2
( 1)

5

n
n

n

n





  

3. 
 
 1

1 1

2 !

n

n

n

n





 
  

4. 1

1

6
( 1)

!
n

n

n

n







  

 

 
  



22 
 

1.4 Power Series 
 
Definition A power series is a series of the form 

2
0 1 2

0

... ...n n
n n

n

a x a a x a x a x




       (1) 

where x  is a variable and the na ’s are constants called the coefficients of the se-

ries. For each fixed x , the series (1) is a series of constants that we can test for con-

vergence or divergence. A power series may converge for some values of x  and di-

verge for other values of x . The sum of the series is a function  

2
0 1 2( ) ... ...n

nf x a a x a x a x       

whose domain is the set of all x  for which the series converges. Notice that f  

resembles a polynomial. The only difference is that f  has infinitely many terms. 

More generally, a series of the form 

2
0 0 1 0 2 0 0

0

( ) ( ) ( ) ... ( ) ...n n
n n

n

a x x a a x x a x x a x x




         
 

(2) 

is called a power series in 0( )x x  or a power series centered at 0x  or a power se-

ries about 0x . Notice that in writing out the term corresponding to 0n   in Equations 1 

and 2 we have adopted the convention that 0( ) 1nx x  , even when 0x x . Notice also 

that when 0x x , all of the terms are 0 for 1n  , and so the power series (2) always 

converges when 0x x . 

Example 1 For what values of x  is the series
1

3 2
( 4)

( 1) 7
n

n

n

n
x

n






 

   conver-

gent? 
 
Solution We use the Ratio Test. We apply the Ratio Test for the absolute value 

of the n  th trrm of the series ( )nu x : 
3 2

( ) 4
( 1) 7

n

n n

n
u x x

n


  

 
. 

If 4x   , we have
1

1 1

3 5
( ) 4

( 2) 7

n

n n

n
u x x

n



 


  

 
: 

1

1

1

(3 5) 4 ( 1) 7 4( ) (3 5)( 1)
lim lim lim

( ) 7 ( 2)(3 2)( 2) 7 (3 2) 4

n n

n
nnn n n

n

n x n xu x n n

u x n nn n x





  

        
   

      
 

2

2

4 43
lim

7 3 7n

x xn

n

 
  . 
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By the Ratio Test, the given series is absolutely convergent, and therefore con-

vergent, when 4
1

7

x 
  and divergent when 4

1
7

x 
 . Now 

4
1 4 7 7 4 7 11 3

7

x
x x x


             , 

so the series converges when ( 11;3)x   and diverges when

( ; 11) (3; )x     . 

The Ratio Test gives no information when
4

1
7

x 
  so we must consider

11x    and 3x   separately. 

If we put 3x   in the series, it becomes
1 1

(3 2) (3 4) 3 2

( 1) 7 1

n

n

n n

n n

n n

 

 

   


    , which 

is divergent by the test for divergence. 
 
If 11x   , the series is 

1 1 1

(3 2) ( 11 4) (3 2) 7 3 2
( ) ( 1)

( 1) 7 ( 1) 7 1

n
n n

n

n n n

n n n

n n n

  

  

     
    

      , 

which diverges by the Alternating Series Test (
3 2

lim lim 3 0
1

n
n n

n
a

n 


  


). Thus 

the given power series converges for 11 3x   .  

Theorem For a given power series
0

0

( )n
n

n

a x x




 , there are only three possibili-

ties: 
(a) The series converges only when 0x x ; 

(b) The series converges for all x ; 

(c) There is a positive number R  such that the series converges if 0x x R   

and diverges if 0x x R  . 

The number in case (c) is called the radius of convergence of the power series. 
By convention, the radius of convergence is 0R   in case (a) and R   in case (b). 

The interval of convergence of a power series is the interval that consists of all values 
of x  for which the series converges. In case (a) the interval consists of just a single 

point 0x . In case (b) the interval is ( ; )  . In case (c) note that the inequality

0x x R   can be rewritten as 0 0x R x x R    .  

In general, the Ratio Test (or sometimes the Root Test) should be used to de-
termine the radius of convergence R . The Ratio and Root Tests always fail when x  

is an endpoint of the interval of convergence, so the endpoints must be checked 
with some other test. 



24 
 

Note The following formulas to finding radius of convergence can be used: 

1

lim n

n
n

a
R

a


 , 
1

lim
n n

n

R
a

  

Example 2 Find the radius of convergence and the interval of convergence of 
the series 

2 1

1
3

n

n

n

x

n






  

Solution Let
2 1

1

3
n n

a
n 




. Then
 

1 2

1

1 3
n n

a
n

 
 

: 

   
2 2

2 1 2
1

1 3 1
lim lim 3 lim 3

3

n

n
nn n n

n

n na
R

a n n  


  
    


 

So it converges if 3x   and diverges if 3x  . Thus the radius of convergence 

is 3R  . 

The inequality 3x   can be written as 3 3x   , so we test the series at the 

endpoints 3x    and 3x  . When 3x  , the series is
2 2

1 1

3 1
3

n n
n n

 

 

  . Since
2

1

1

n
n





  

is convergent (  -series with 2 1   ), the given series converges by the Limit 

Comparison Test. 

When 3x   , the series is
   

2 2

1 1

1 3 1
3

n n

n n
n n

 

 

  
  ,which is absolutely conver-

gent and therefore convergent.  

Thus the series converges only when 3 3x   , so the interval of convergence is

 3; 3x  . 

Exercise Set 1.4 
In Exercise 1 to 18, find the interval of convergence of the series. 

1. 
 

 
1

2 1
1

2

n
n

n n

n

n
x

n









 

2. 
 

2
1

6

1

n

n

x

n








  3. 

 

1

3

5 ( 1)

n

n

n

x

n







   

4.   
1

2 3
n

n

n x




 
 

5. 
 
 1

4

2 3

n

n

x

n n







  6.  
2

1

!
6

6

n

n

n

n
x
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7.  
1

4
1

!

n
n

n

x
n





  8. 
   

1

1

1 3

3

n n

n n

n

x

n





 


 

9. 
 

2

1

1

9

n

n n

n

x

n







  

10.  2

1

1
1

n

n

n
x

n









 

11. 
 
 1

2 1

1

nn

n

x

n n





 

  12. 
 

1

2 2

2

nn

n

x

n





 

  

13. 
1

( 1)n x

n

n






  14. 
1

sin
nx

n

n x

e





  15. 
1

!
n

n

n

x





  

16. 
1

n

n

ln x

n





  17. 
1

2

1 2

n

n

x

x





 
 
 

  18. 
1

3

( 2)

n

n

n

n

x







  

Individual Tasks 1.4 
1-4. Find the interval of convergence of the given series. 

I.    

1. 
1

1

4
n

n

n

n
x






  

2. 
2

1

( 3)

(6 1)

n

n

n x

n





 

  

3. 
3

1

4
( 2)

( 1)
n

n

n
x

n n








  

4. 
1

2 sin
3

n

n

n

x




  
 

II.   

1. 
1

2 1

3 ( 1)
n

n

n

n
x

n








  

2. 
2

1

( 2)
4 3

n

n

n
x

n






  

3.  3

1

(2 1)
4

4

n

n

n
x

n








  

4. 
1

3

1 3

n

n

x

x





 
 
 

  

 

 

1.5 Representations of Functions as Power Series 
We start with an equation: 

2 1

0

1
1 ... ... , 1 1

1
n n

n

x x x x x
x







         
 

 

(1) 

We now regard Equation 1 as expressing the function as a sum of a power series. 

Example 1 Express
2

1

1 x
 as the sum of a power series and find the interval of 

convergence. 

Solution Replacing x  by 2x  in Equation 1, we have 

2 2 2 2 3 2 2

2 2

0 0

1 1
1 ( ) ( ) ( ) ... ( ) ( 1)

1 1 ( )
n n n

n n

x x x x x
x x
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Because this is a geometric series, it converges when
2 1x  , that is, 2 1x  , or

1 1x   . Therefore the interval of convergence is ( 1;1) . (Of course, we could have 

determined the radius of convergence by applying the Ratio Test, but that much work is 
unnecessary here.) 

Example 2 Find a power series representation for
1

2x 
. 

Solution In order to put this function in the form of the left side of Equation 1 
we first factor 2 from the denominator: 

    1

0 0

1 1 1 1 1 ( 1)

2 2 2 2 22 1 1
2 2

n n n

n

n n

x x

x xx





 

 
       

     
  . 

This series converges when 1
2

x
  , that is, 2x  . So the interval of convergence is

( 2;2) . 

Example 3 Find a power series representation for  ln 1 x  and its radius of 

convergence. 
Solution We notice that, except for a factor of 1  , the derivative of this func-

tion is  1/ 1 x . So we integrate both sides of Equation (1): 

   
2 3 4

2 31
ln 1 1 ... ...

1 2 3 4

x x x
x dx x x x dx x C

x
              

   

1

0 1

1
1

n n

n n

x x
C C x

n n

 

 

    
  . 

To determine the value of C , we put 0x   in this equation and obtain

 ln 1 0 C   . Thus 0C   and 

 
2 3

1

ln 1 ... 1
2 3

n

n

x x x
x x x

n





         . 

The radius of convergence is the same as for the original series: 1R  . 

Taylor and Maclaurin Series 
We start by supposing that f  is any function that can be represented by a power 

series 

2
0 0 1 0 2 0 0 0

0

( ) ( ) ( ) ... ( ) ...,n n
n n

n

a x x a a x x a x x a x x x x R




             (2) 

Let’s try to determine what the coefficients na must be in terms of f . 

Theorem 1 If f  has a power series representation (expansion) at 0x , that is, if 

0 0

0

( ) ( ) ,n
n

n

f x a x x x x R




    , 

then its coefficients are given by the formula
( )

0( )

!

n

n

f x
a

n
 . 
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Substituting this formula for na  back into the series, we see that if f  has a pow-

er series expansion at 0x , then it must be of the following form: 
( )

20 0
0 0 0 0 0

( ) ( )
( ) ( ) ( ) ( ) ( ) ... ( ) ...

2! !

n
nf x f x

f x f x f x x x x x x x
n


           (3) 

The series in Equation 3 is called the Taylor series of the function f at 0x  (or 

about 0x  or centered at 0x ). For the special case the Taylor series becomes 
( )

2(0) (0)
( ) (0) (0) ... ...

2! !

n
nf f

f x f f x x x
n


        (4) 

This case arises frequently enough that it is given the special name Maclaurin series. 
Note 1 We have shown that if f  can be represented as a power series about 0x , 

then it isequal to the sum of its Taylor series. But there exist functions that are not 

equal to the sum of their Taylor series. 

We collected some important Maclaurin series that we have derived in this sec-

tion and the in preceding one and organized them in the following table. 

 

Table 1 
2 3

e 1 ... ...
2! 3! !

n
x x x x

x
n

        x     

3 5 2 1
1sin ... ( 1) ...

3! 5! (2 1)!

n
nx x x

x x
n


      


 x     

2 4 2 2
1cos 1 ... ( 1) ...

2! 4! (2 2)!

n
nx x x

x
n


      


 x     

2 11
1 ... ...

1
nx x x

x
     


 1 1x    

2 3
1ln (1 ) ... ( 1) ...

2 3

n
nx x x

x x
n

         1 1x    

2( 1) ( 1)...( 1)
(1 ) 1 ... ...

2! !
nn

x x x x
n

     


   
        1 1x    

Exercise Set 1.5 

In Exercise 1 to 15, find a power series representation for the function and de-

termine the interval of convergence. 

1. 
1

( )
3

f x
x




 2. 
2

2 5
( )

4 3

x
f x

x x




 

 

3. 
2

( )
1

x
f x

x
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4. 
1

( )
6

f x
x




 5. 
2

3 5
( )

3 2

x
f x

x x




 

 

6. 
2

2
( )

1 3
f x

x



 

7. 
1

( )
x

f x
e

  8. 
2

( ) sin
3

x
f x   9. 

32
( ) cos

3

x
f x   

10. 4( ) e xf x   11. ( ) cosf x x x  12. 
2( ) 1 arcsinf x x x 

 

13. 
32( ) e xf x 

 

14. ( ) sin 2f x x x

 

15. ( ) ln(1 4 )f x x   

Individual Tasks 1.5 

1-4. Find a power series representation for the function and determine the inter-
val of convergence. 

I.    

1.  
2

1

1
f x

x



 

2.   2 xf x x e   

3.    2ln 1 5 4f x x x    

4.  
42

sin
3

x
f x   

 

II.   

1.   3 1f x x   

2.  
1xe

f x
x


  

3.    2ln 1 3 2f x x x    

4.   2sin
2

x
f x

 
  

 
 

 

1.6Aplications of Representations of Functions as Power Series 

One reason why Taylor series are important is that they enable us to integrate func-

tions that we could not previously handle. The function
2

( ) xf x e  can not be integrat-

ed by the techniques discussed so far because its antiderivative is not an elementary 
function. In the following example we use Newton’s idea to integrate this function. 

Example 1 Evaluate
2

1

0

xe dx

  correct to within an error of 0.001. 

Solution First, we find the Maclaurin series for
2

( ) xf x e . Although it is pos-

sible to use the direct method, let’s find it simply by replacing x  with 2x  in the series 

for xe  given in Table 1. Thus, for all values of x , 
2

2 2 4 6

0

( )
1 ...

! 1! 2! 3!

n
x

n

x x x x
e

n
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Now we integrate term by term: 

2

11 1 2 4 6 3 5 7 9

00 0

1 ... ...
1! 2! 3! 3 1! 5 2! 7 3! 9 4!

x x x x x x x x
e dx dx x    

             
         

3 5 71 1 1 1 1 1 1
1 .. 1 0.748

3 10 42 216 3 10 42
          . 

This series converges for all xbecause the original series for
2xe converges for all x . 

The Alternating Series Estimation Theorem shows that the error involved in this 

approximation is less than
91 1

0.01
9 4! 216

 


. 

Example 2 Evaluate
20

1
lim

x

x

e x

x

 
. 

 

Solution Using the Maclaurin series for xe  , we have 
2 3 4

2 3 4

2 2 20 0 0

1 ... 1 ...2! 3! 4!1 2! 3! 4!lim lim lim
x

x x x

x x x x x xx x
e x

x x x  

 
          

       

2

0

1 1
lim ...

2! 3! 4! 2x

x x


 
     

 
  

because power series are continuous functions. 
 
Example 3 Use power series to solve the initial-value problem 

2 34y xy x   , (0) 2y  . 

Solution We assume there is a solution of the form 

   
         4

2 3 40 0 0 0
0 ...

1! 2! 3! 4!

y y y y
y x y x x x x

  
          . 

  2 30 4 0 2 0 0y      . 

We can differentiate power series term by term, so 

           2 3 2 3 2 2 24 4 4 4 3y x xy x xy x y x x y x               

2 2 2 24 1 4 2 3 4 8 3y x y y x y x y y x          . 

Let 0x  , 2y  ,  0 0y  , then 

  2 20 4 2 8 0 2 0 3 0 16y          . 

         2 2 2 24 8 3 4 8 3y x y x y y x y x y y x 
          

   
2

16 8 8 68 8 8 6 y y x y y x y xy y y y x y y x     


        . 
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Let 0x  , 2y  ,  0 0y  ,  0 16y  , then 

   
2

0 16 2 0 8 0 2 16 8 0 0 6 0 0y              . 

      24
16 8 8 6y x y y x y y x y x


        

        
2

16 8 8 6y y x y y x y x
         

   
2

16 16 8 8 8 8 2 6y y y y y y x y y y x y y


                  

 
2

24 24 24 8 6y y y x y y xy y       . 

Let 0x  , 2y  ,  0 0y  ,  0 16y  ,  0 0y  , then 

   4 20 24 0 24 2 16 24 0 0 16 8 0 2 0 6 768 6 762y                  . 

Substituting the obtained coefficients in the Maclaurin series, we will obtain the 
solution of the initial differential equation 

  2 3 4 2 40 16 0 762 16 762
2 ... 2 ...

1! 2! 3! 4! 2 24
y x x x x x x x                  

2 42 8 31.75 ...x x    . 

Exercise Set 1.6 
In Exercise 1 to 12, use a power series to approximate the definite integral to 

three decimal places. 

1. 

0,5

6

0
1

dx

x  2. 

1

0

cos x dx  3. 

0.5

0.1

1xe
dx

x


  

4. 

0,5

3

0

1 x dx
 

5. 

0.25

2

0

sin x dx  6. 
2

1

2

0

xx e dx  

7. 

1/3

4

0

1 x dx
 

8. 

0,5

0

arctgx
dx

x  9. 
 10 2

2

5

ln 1 x
dx

x



  

10. 

0.25

33

0
1

dx

x
 

11. 

0,4 2

0

5
cos

2

x
dx

 
 
 

 

12. 

0.1

0.01

ln (1 )x
dx

x


  

In Exercise 13 to 22, use power series to solve the initial-value problem. 

13. 22y y y   , (0) 3y   14. 23cosy x y   , (0) 1y   

15. 3 4xy xy e    , (0) 0y   16. 22siny x x y   , (0) 1y   

17. , (0) 0yy e xy y     18. 2 32 , (1) 1y x y y     
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19. 
2

0, (0) 1, (0) 0y y y y y
x

      

 

20. cosy y y x    ,  0 1y  ,  0 / 3y    

21. 2 , (0) 1, (0) 1y x y y y     

 

22. 2 21 2 , (1) 1y x x y y       

Individual Tasks 1.6 
1-2. Use a power series to approximate the definite integral to three decimal 

places. 
3-4. Use power series to solve the initial-value problem. 

I.    

1. 
0,25

2

0

xe dx
  

2. 

1 3

2

0.1

sin x x x
dx

x

 
  

3. 2 34 2 , (0) 2xy y xy e y      

4. 3" 3 ', (1) 1, '(1) 1y y xy y y      
 

II.   

1. 
0,5

3

0

sin x dx  

2. 

1

2

0.2

cos 1x
dx

x


  

3. 2cos , (0) 2y y x x y     

4. " 2 ', ( 1) 1, '( 1) 0.5y yy y y      
 

1.7 Fourier Series 
Many phenomena in the applications of the natural and engineering sciences are 

periodic in nature. Examples are the vibrations of strings, springs and other objects, 
rotating parts in machines, the movement of the planets around the sun, the tides of 
the sea, etc. The central problem of the theory of Fourier series is how arbitrary peri-
odic functions or signals might be written as a series of sine and cosine functions.  

Definition 1 (Fourier coefficients) Let ( )f x  be a periodic function with period

T  and fundamental frequency 0 2 / T   , then the Fourier coefficients ,n na b  of

( )f x , if they exist, are defined by 
/2

0

/2

2
( )cos ( 0, 1, 2,...)

T

n

T

a f x n x dx n
T




          (1) 

/2

0

/2

2
( )sin ( 1, 2, 3,...)

T

n

T

b f x n x dx n
T




         (2) 

In fact, in Definition1 a mapping or transformation is defined from functions to 
number sequences. This is also denoted as a transformation pair: 

( ) ,n nf x a b . 

One should pronounce this as: "to the function ( )f x  belong the Fourier coeffi-

cients ,n na b ". This mapping is the Fourier transform for periodic functions. The func-

tion ( )f x  can be complex-valued. In that case, the coefficients ,n na b  will also be 
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complex. Using definition 1 one can now define the Fourier series associated with a 
function ( )f x . 

Definition 2 (Fourier series) When ,n na b  are the Fourier coefficients of the pe-

riodic function ( )f x  with period T  and fundamental frequency 0 2 / T  , then the 

Fourier series of ( )f x  is defined by 

 0
0 0

1

cos sin
2

n n

n

a
a n x b n x 





         (3) 

Example 1 Determine the Fourier coefficients of the sawtooth function given by
( )f x x  on the interval ( , )   and extended periodically elsewhere, and sketch the 

graph. 
Solution In the present situation we have 2T  , so 0 2 / 1T   . The defini-

tion of the Fourier coefficients can immediately be applied to the function ( )f x . Us-

ing integration by parts it follows for 1n   that Fourier series 

 
/2

/2

2 1 1 1
( )cos cos sin sin

T

x

n x

T

a f x n x dx x nxdx x nx nxdx
T n n

 




 
  





  

        

 2

1
cos 0

x

x
nx

n








  . 

 
For 0n   we have 

/2

2
0

/2

2 1 1 1
( ) 0

2

T x

xT

a f x dx xdx x
T

 


 



 

 
        

For the coefficients nb  we have that 

 
/2

/2

2 1 1 1
( )sin sin cos cos

T

x

n x

T

b f x n x dx x nxdx x nx nxdx
T n n

 




 
  





  

         

     
1

2

1 1 2 2
cos ( )cos( ) sin cos 1

x n

x
n n nx n

n n n n






    

  

 


          . 

Here we used that cos ( 1)nn    for n N . Hence, the Fourier coefficients are 

all equal to zero, while the coefficients nb  are equal to
1( 1)

2
n

n


. The Fourier series of 

the sawtooth function is thus indeed equal to 
1

1

( 1)
2 sin

n

n

nx
n

 




  

Theorem (Fundamental theorem of Fourier series) Let ( )f x  be a piecewise 

smooth periodic function on R  with Fourier coefficients ,n na b  , with period T  and 

fundamental frequency 0 2 / T  . Then for any x R  one has: 

1. ( ) ( )S x f x  at each point of continuity of a piecewise smooth periodic 

function; 
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2. 0 0
0

( 0) ( 0)
( )

2

f x f x
S x

  
  at a point 0x  where the function is discon-

tinuous; 

3. 
( / 2 0) ( / 2 0)

( / 2) ( / 2)
2

f T f T
S T S T

   
    at the endpoints of the 

interval  / 2, / 2T T . 

According to the fundamental theorem, the Fourier series converges to the func-
tion at each point of continuity of a piecewise smooth periodic function. At a point 
where the function is discontinuous, the Fourier series converges to the average of the 
left- and right-hand limits at that point. Hence, both at the points of continuity and at 

the points of discontinuity the series converges to  ( 0) ( 0) / 2f x f x   . 

Exercise Set 1.7 
In Exercises 1 to 10 determine the Fourier coefficients of the given functions on 

the given intervals: 

1. 

1 , 0,

( )

1 , 0 .

x
if x

f x
x

if x








   

 
   


 

2. 

0, 0,

( )
, 0 .

4

if x

f x x
if x






  


 
 

 

3. 2( ) , [ ; ].f x x x      4. 
, 0,

( )
, 0 .

a x if x
f x

b x if x





  
 

 
 

5. ( ) 1 , ( 2;2)f x x if x     6. ( ) (1 ), ( 1;1)f x x x if x     

7. 
, 0 1,

( )
0, 1 3 / 2.

x if x
f x

if x

 
 

 
 8. 

1, 0 1,
( )

, 1 3.

if x
f x

x if x

 
 

 
 

9.  
0, 3 0;

, 0 3.

if x
f x

x if x

  
 

 
 10.  

0, 0;

2, 0 .

if x
f x

if x





  
 

 
 

Individual Tasks 1.7 

1-2. Determine the Fourier coefficients of the given functions on the given in-
tervals: 

I.    

1. 
, 0,

( )
, 0 .

if x
f x

x if x

 

 

  
 

  
 

2. ( ) 1 3 , ( 1;1)f x x if x     
 

II.   

1. 
0, 0,

( )
1 , 0 .

if x
f x

x if x





  
 

  
 

2. ( ) 2 1, ( 3;3)f x x if x   
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1.8 Fourier Cosine and Fourier Sine Series 
The ordinary Fourier series of an even periodic function contains only cosine 

terms and the Fourier series of an odd periodic function contains only sine terms. For 
the standard functions we have seen that the periodic block function and the periodic 
triangle function, which are even, do indeed contain cosine terms only, and that the 
sawtooth function, which is odd, contains sine terms only. Sometimes it is desirable 
to obtain what for an arbitrary function on the interval (0, )T  a Fourier series contain-

ing only sine terms or containing only cosine terms. Such series are called Fourier 
sine series and Fourier cosine series. In order to find a Fourier cosine series for a 
function defined on the interval (0, )T , we extend the function to an even function on 

the interval ( , )T T  by defining ( ) ( )f x f x   for 0T x    and subsequently ex-

tending the function periodically with period 2T .The function thus created is now an 

even function and its ordinary Fourier series will contain only cosine terms, while
( )f x  is equal to the original function on the interval (0, )T . 

In a similar way one can construct a Fourier sine series for a function by extend-
ing the function defined on the interval (0, )T  to an odd function on the interval

( , )T T  and subsequently extending it periodically with period 2T . Such an odd 

function will have an ordinary Fourier series containing only sine terms.  Determin-
ing a Fourier sine series or a Fourier cosine series in the way described above is 
called a forced series development. 

Example 1 Determine the Fourier coefficients of the sawtooth function given by
2( )f x x  on the interval ( 1,1) . 

 
Solution 

Let the function ( )f x  be given by 2( )f x x  on the interval (0, 1). We wish to 

obtain a Fourier sine series for this function. We then first extend it to an odd func-
tion on the interval (−1, 1) and subsequently extend it periodically with period 2. The 
function and its odd and periodic extension are drawn in Figure 1. 

 
Figure 1 

The ordinary Fourier coefficients of the function thus created can be calculated 
using (1) and (2). Since the function is odd, all coefficients na  will equal 0. For nb  we 

have 
/2 0 1 1

2 2 2

/2 1 0 0

2
( )sin ( )sin sin 2 sin

T

n

T

b f x n x dx x nxdx x nxdx x nxdx
T

 

        . 
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Applying the integration by parts twice, it follows that 

   
1 1 12

2 20 00

2 2 2
cos sin cosnb x nx x nx nx

n n n
  

  

        
 

 

2 2

2 2(( 1) 1)
( 1)

n
n

n n 

  
   

 
. 

The Fourier sine series of 2( )f x x  on the interval (0, 1) is thus equal to 

2 2

0

2 2(( 1) 1)
( 1) sin

n
n

n

nx
n n


 





  
  

 
  

Example 2 Determine the Fourier coefficients of the function given by
( ) sinf x x  on the interval (0, ) . 

Solution In this final example we will show that one can even obtain a Fourier co-
sine series for the sine function on the interval (0, ) . To this end we first extend

( ) sinf x x  to an even function on the interval ( , )   and then extend it periodically 

with period 2T  ; see Figure 2. The ordinary Fourier coefficients of the function thus 

created can be calculated using (1) and (2). Since the function is even, all coefficients 
will be equal to 0. 

 
Figure 2 

For na  one has 
0

0 0

1 2
( sin )cos sin cos sin cosna x nxdx x nxdx x nxdx

 


 



 
    
 
 
   . 

 
00

1 1 1 1
sin(1 ) sin(1 ) cos(1 ) cos(1 )

1 1
na n x n x dx n x n x

n n

 

 

  
             

1 1 1

2

1 1 ( 1) 1 ( 1) 2(1 ( 1) )

1 1 (1 )

n n n

n n n 

        
   

   
. 

If 0n  , then
0 1

0 2

2(1 ( 1) ) 4

(1 0 )
a

 

 
 


. 

The Fourier cosine series of the function ( ) sinf x x  on the interval (0, )  is 

thus equal to 
1

2

0

2 2(1 ( 1) )
cos

(1 )

n

n

nx
n 
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Exercise Set 1.8 

In Exercises 1 to 4 determine the Fourier sine series of the given functions on 
the given intervals: 

1. 1 0.5y x  , [0;2].x  2. ( ) 1 , (0;2).f x x x    

3. ( ) (1 ), (0;1).f x x x x    4. ( ) , (0;2).f x x x   

In Exercises 5 to 8 determine the Fourier cosine series of the given functions on 
the given intervals: 

5. ( ) 2 , (0;2)f x x x    6. ( ) (2 ), (0;2).f x x x x    

7. 
, 0 2,

( )
2, 2 4.

x if x
f x

if x

 
 

 
 8. cosy x , [0; ]x   

Individual Tasks 1.8 

1. Determine the Fourier sine series of the given functions on the given inter-
vals. 

2. Determine the Fourier cosine series of the given functions on the given intervals. 

I.    

1.  
1, 0 / 2;

0, / 2 .

if x
f x

if x



 

 
 

 
 

2.   sin , (0; )f x x x x     
 

II.   

1.   4 , (4 ;5 )f x x x      

2. 
, 0 / 2,

( )
0, / 2 .

x if x
f x

if x
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II FUNCTIONS OF A COMPLEX VARIABLE 

2.1 The Complex Number System 
We can consider a complex number as having the form a ib  where a  and b  

are real numbers and i , which is called the imaginary unit, has the property that
2 1i   . If z a ib  , then a  is called the real part of z  and b  is called the imaginary 

part of z  and are denoted by Re{ }z  and Im{ }z , respectively. The symbol z , which 

can stand for any complex number, is called a complex variable. 
Definition Two complex numbers a ib  and c di  are equal if and only if a c  

and b d .  

Definition The complex conjugate, or briefly conjugate, of a complex number
a ib  is a ib . The complex conjugate of a complex number z  is often indicated by

z  or z . 

Note In algebraic operations with complex numbers we can proceed as in the al-

gebra of real numbers, replacing 2i  by −1 when it occurs. 

 

Figure 3 Figure 4 

Definition The absolute value or modulus of a complex number a ib  is defined 

as 2 2a bi a b   . 

Example 1 2 24 2 ( 4) 2 20 2 5i       . 

Polar Form of Complex Numbers 
Let P  be a point in the complex plane corresponding to the complex number

( , )x y  or x iy . Then we see from Figure 3 that cos , sinx r y r   , where

2 2r x y x iy     is called the modulus or absolute value of z x iy   (denoted 

by mod z  or z ) and  , called the amplitude or argument of z x iy   (denoted by

arg z ), is the angle that line OP  makes with the positive x  axis. 

It follows that 

 cos sinz x iy r i      (1) 
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which is called the polar form of the complex number, where r  and   are called 

the polar coordinates. 
For any complex number 0z   only one value of   in 0 2   corresponds. 

However, any other interval of length 2 , for example      , can be used. Any 

particular choice, decided upon in advance, is called the principal range, and the val-
ue of   is called its principal value. 

Let  1 1 1 1 1 1cos sinz x iy r i      and  2 2 2 2 2 2cos sinz x iy r i     , then 

we can show that 

 1 2 1 2 1 2 1 2cos( ) sin(z z rr i        (2) 

 1 1
1 2 1 2

2 2

cos( ) sin(
z r

i
z r

        (3) 

A generalization of (2) leads to 

 1 2 1 2 1 2 1 2cos( ... ) sin( ...n n n nz z z rr r i                    (4) 

 cos sinn nz r n i n    (5) 

Euler’s Formula. Polynomial Equations. Roots of Complex Numbers 

A number w  is called an n-th root of a complex number z  if nw z , and we 

write 1/nw z . From Equattion 5 we can show that if n  is a positive integer 

1/ 1/ 2 2
cos sin , 0,1,2,..., 1n n k k

z r i k n
n n

         
       

    
 

(6
) 

from which it follows that there are n  different values for 1/nz , i.e., n  different 

n -th roots of z , provided 0z  . 

By assuming that the infinite series expansion
2 3

1 ...
2! 3!

x x x
e x      holds 

when x i , we can arrive at the result 

cos sinie i     (7) 

which is called Euler’s formula. It is more convenient, however, simply to take 

(7) as a definition of ie  . In general, we define 

(cos sin )z x iy xe e e y i y    (8) 

Let P  (Figure 4) be a complex plane and consider that a sphere S  tangents to P  at

0z  . The diameter NS  is perpendicular to P  and we call points N  and S  the north and 

south poles of S . Corresponding to any point A on P  we can construct line NA  intersect-

ing S  at point A . Thus to each point of the complex plane P  there corresponds one and 

only one point of the sphere S , and we can represent any complex number by a point on the 

sphere. To complete at all we say that the point N  itself corresponds to the “point at infini-

ty” of the plane. The set of all points of the complex plane including the point at infinity is 
called the entire complex plane, the entire z  plane, or the extended complex plane. 
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Example 2 Perform each of the indicated operations. 
Solution 
(a) (3 2 ) (6 7 ) 3 6 2 7 9 5i i i i i         . 

(b) ( 4 3 ) (5 7 ) 4 5 3 7 9 4i i i i i            . 

(c) 2(2 3 ) (5 2 ) 2 5 2 2 5 3 3 2 10 6 4 15 16 11i i i i i i i i                 . 

(d) 
2

2

3 2 3 2 1 6 3 2 18 12 9 20 9 20

1 6 1 6 1 6 1 36 37 37 37

i i i i i i i
i

i i i i

       
      

   
. 

Example 3 Suppose, 1 2z i  , 2 3 2z i  . Evaluate each of the following. 

Solution 

(a) 2 2
1 23 4 3(2 ) 4(3 2 ) 6 11 ( 6) 11 157z z i i i            . 

(b) 3 2 3 2
1 1 13 4 8 (2 ) 3(2 ) 4(2 ) 8z z z i i i            

3 2 2 3 2 22 3 2 3 2 3(2 4 ) 8 4 8i i i i i i              

8 12 6 12 12 3 8 4 8 7 3i i i i i             . 
Example 4 Express each of the following complex numbers in a polar form. 

Solution (a) 2 2 3i  (See Figure 5) 

 

 

Figure 5 Figure 6 Figure 7 
 

Modulus or absolute value equals 2 2 3 4 12 4r i     . 

Amplitude or argument  
3

arcsin 60
2 3


    (radians). 

Then 2 2 3 (cos sin ) 4(cos60 sin 60 ) 4 cos sin
3 3

i r i i i
 

 
 

       
 

 
. 

The result can also be written as, using Euler’s formula, 34
i

e


. 

(b) 6 2i   (See Figure 6) 

6 2 6 2 2 2r i      , 180 30 210 7 / 6      
. 

Then  
7

6
7 7

6 2 2 2 cos sin 2 2
6 6

i

i i e
  

     
 

. 

(c) 3i  (See Figure 7) 

3 0 3 0 9 3r i i       , 270 3 / 2.    

Then 
3

2
3 3

3 3 cos sin 3
2 2

i

i i e
  

    
 

. 
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Example 5 Find all values of z  for which. 

Solution In polar form,  32 32 cos( 2 ) sin( 2 ) , 0, 1, 2...k i k k           . 

Let (cos sin )z r i   . Then, by De Moivre’s theorem, 

   5 5 cos5 sin5 32 cos( 2 ) sin( 2 )z r i k i k           . 

and so 5 32,5 2r k     , from which
( 2 )

2,
5

k
r

 



  . Hence 

2 2
2 cos sin

5 5

k k
z i

         
     

    
. 

If  

10, 2 cos sin
5 5

k z z i
  

    
   

2

3 3
1, 2 cos sin

5 5
k z z i

  
    

   

3

5 5
2, 2 cos sin 2

5 5
k z z i

  
      

 

 

4

7 7
3, 2 cos sin

5 5
k z z i

  
    

   

5

9 9
4, 2 cos sin

5 5
k z z i

  
    

   

 

 

Figure 8 Figure 9 

By considering 5,6,..k   as well as negative values, 1, 2,...   , repetitions of the 

above five values of z  are obtained. Hence, these are the only solutions or roots of 

the given equation. These five roots are called the fifth roots of 32  and are collec-

tively denoted by  
1/5

32 . In general, 1/na  represents the n-th roots of a  and there 

are n  such roots. The values of z  are indicated in Figure 8. 

Example 6 Represent graphically the set of values of z  for which 

(a) 
3

2
3

z

z





, (b) 

3
2

3

z

z





. 

Solution The given equation is equivalent to 3 2 3z z    or,  if z x iy  , 

3 2 3x iy x iy     , i.e.,    
2 22 23 2 3x y x y     . 
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Squaring and simplifying, this becomes 2 2 10 9 0x y x    or 

 
2 25 16x y    

i.e., 5 4z   , a circle of radius 4 with the center at ( 5,0)  as shown in Figure 

9. 

(b) The given inequality is equivalent to 3 2 3z z    or

   
2 22 23 2 3x y x y     . Squaring and simplifying, this becomes

2 2 10 9 0x y x     or  
2 25 16x y   , i.e. 5 4z    . 

 
The required set thus consists of all points external to the circle of Figure 9. 

Exercise Set 2.1 
In Exercises 1 to 9 perform each of the indicated operations: 

In Exercises 10 to 12, suppose 1 2z i  , 2 3 2z i  . Evaluate each of the fol-

lowing expressions: 

10. 2
1 12 3 5z z i  

 
11.  

2

2 12 3z z  12. 1 2 1 24z z z z  

In Exercises 13 to 18, describe and graph the locus represented by each of the 
following expressions: 

13. 2z i   14. 2 2 6z i z i     15. 3 3 4z z     

16.  2 3z z    17. 
1

3
2

i t

i t
z e

e
   18.  

1 (2 4 )

1 1

i t i
z

t t

 
 
 

 

In Exercises 19 to 24, describe graphically the region represented by each of the 
following inequalities: 

19.  1 2z i    20. / 4 arg( ) / 2z i      21. 3 4z i   

22. 2 2 10z z   

 
23.  0 arg 5 / 6z    24. 2Re 1z   

In Exercises 25 to 30, express each of the following complex numbers in a polar 
form: 

25.  2 2i  26.  1 3i   27.  2i  

28.  2 3 2i   29.  
3 1

2 2
i  30.  5  

 

1. (2 3 ) (5 8 )i i    2.  ( 2) (4 ) 3(7 6 )i i i      3.  (2 )(4 3 )i i i   

4. 5 4 3

4 3 2 7 1i i i i     5.   4 35 3 2 1i i i i    6.  
2

2 (3 )i i   

7.  
3

5

i

i




 8.  

(4 6 )( 2)

1

i i

i

 


 9.  

4 9 16

5 102

i i i

i i
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In Exercises 31 to 36, solve the following equations, obtaining all roots: 

31.  2 4 0z    32.  4 81 0z    33.  3 27 0z    

34.  2 6 25 0z z    35.  4 25 4 0z z    36.  2 2 5 0z z    

 

Individual Tasks 2.1 

1. Perform each of the indicated operations. 
2-3. Describe and graph the locus represented by the following expression. 
4. Describe graphically the region represented by the following expression. 
5. Solve the following equations, obtaining all roots. 
 
I.    

1. 
3 9 18

5 10

2 4

3 2

i i i

i i

 

 
 

2. 2Im 4z   

3. 
1

2
cos

z i tg t
t

   

4. 1, / 4z i arg z     

5. 4 16 0z    
 

II.   

1. 
3 8 15

5 12

4 3

3 4

i i i

i i

 

 
 

2. Im Re 1z z   

3. 
1 2

1 2

t t
z i

t t

 
 
 

 

4. 22 1z z   

5. 3 64 0z    
 

2.2 Functions of a Complex Variable 
A symbol such as z  which can stand for any one of a set of complex numbers is 

called a complex variable. Let two sets D  and E  be given, whose elements are 

complex numbers. The numbers z x iy   of the set D  will represent the points of 

the complex plane z , and the numbers w u iv   of the set E  are the points of the 

complex plane w  (see Figure 10). 

Figure 10 Figure 11 Figure 12 

Suppose to each value of a complex variable z  can assume, one or more values 

of a complex variable w  corresponds. Then we say that w  is a function of z  and 

write ( )w f z  or ( )w G z , etc. The variable z  is sometimes called an independent 
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variable, while w  is called a dependent variable. The value of a function at z a  is 

often written as ( )f a . Thus, if 2( )f z z , then 2(2 ) (2 ) 4f i i   . 

The set D  is called a domain of function ( )w f z ; the set E  is called a domain 

of the values of this function (if each point of the set E  is the value of the function, 

then E  is the range of values functions; in this case, the function ( )w f z  maps D  

to E ). 

If only one value of w  corresponds to each value of z , we say that w  is a single-

valued function of z  or that ( )f z  is single-valued. If more than one value of w  cor-

responds to each value of z , we say that w  is a multiple-valued or many-valued 

function of z . 

A multiple-valued function can be considered as a collection of single-valued 
functions, each member of which is called a branch of the function. It is customary 
to consider one particular member as a principal branch of the multiple-valued 
function and the value of the function corresponding to this branch as the principal 
value. 

Example 1 

(a) If 2w z , then to each value of z  there is only one value of w . Hence,
2( )w f z z   is a single-valued function of z . 

(b) If 2w z , then to each value of z  there are two values of w . Hence, 2w z  

defines a multiple-valued (in this case two-valued) function of z . 

Whenever we speak of a function, we shall, unless otherwise stated, assume a 
single-valued function. If ( )w f z , then we can also consider z  as a function, possi-

bly multiple-valued, of w , written as 1( ) ( )z g w f w  . The function 1f   is often 

called the inverse function corresponding to f . Thus, ( )w f z  and 1( )w f z  are 

inverse functions of each other. 
If w u iv   (where u  and v  are real) is a single-valued function of z x iy   

(where x  and y  are real), we can write ( )u iv f x iy   . By equating real and imag-

inary parts, this is seen to be equivalent to 

( , )

( , )

u u x y

v v x y





 (1) 

Thus given a point ( , )x y  in the z  plane, such as P  in Figure 11, there corre-

sponds a point ( , )u v  in the w  plane, say P  in Figure 12. The set of equations (1) 

(or the equivalent, ( )w f z ) is called a transformation. We say that point P  is 

mapped or transformed into point P  by means of the transformation and call P  the 

image of P . 
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Example 2 If 2w z , then 2 2 2( ) 2w u iv x iy x y xyi        and the trans-

formation is 2 2u x y  , 2v xy . The image of a point (1,2)  in the z  plane is the 

point ( 3,4)  in the w  plane. 

The Elementary Functions 
1. Polynomial Functions are defined by 

1
0 1 ... ( )n n

nw a z a z a P z      (2) 

where 0 10, ,..., na a a  are complex constants and n  is a positive integer called the 

degree of the polynomial ( )P z . The transformation w az b   is called a linear 

transformation. 

2. Rational Algebraic Functions are defined by 

( )

( )

P z
w

Q z
  (3) 

where ( )P z  and ( )Q z  are polynomials. We sometimes call (3) a rational trans-

formation. The special case
az b

w
cz d





 where 0ad bc   is often called a bilinear or 

fractional linear transformation. 
3. Exponential Functions are defined by 

e e e (cos sin )z x iy xw y i y     (4) 

where e  is the natural base of logarithms. If a  is real and positive, we define 
lnez z aa   (5) 

where ln a  a is the natural logarithm of a . This reduces to (4) if a e .  

4. Trigonometric Functions. We define the trigonometric or circular functions
sin ,cosz z , etc., in terms of exponential functions as follows: 

e e
sin

2

iz iz

z
i


 ,

e e
cos

2

iz iz

z


 ,
sin

tg
cos

z
z

z
 ,

cos
ctg

sin

z
z

z
  (6) 

Note that the trigonometric functions sin z  and cos z  in the complex plane are 

unbounded: 
Im

lim sin
z

z
 

  , 
Im

lim cos
z

z
 

  . For example, 

1 1e e
cos 1,54 1

2
i


   , cos3 10i  . 

5. Hyperbolic Functions are defined as follows: 

e e
sh

2

z z

z


 ,
e e

ch
2

z z

z


 ,
e e

th
e e

z z

z z
z









,

e e
cth

e e

z z

z z
z









 (7) 
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The following relations exist between the trigonometric or circular functions and 
the hyperbolic functions: 

sh sin( ), ch cos( )z i i z z i z   , 

sin sin ch cos shz x y i x y    , 

cos cos ch sin shz x y i x y    . 

6. Logarithmic Functions. If ewz  , then we write Lnw z and it is called the 

natural logarithm of z .  

The natural logarithmic function can be defined by 

Ln ln arg 2 , ,w z z i z i k k Z    
 (8) 

where ( 2 )e ei i k nz r r    . Note that Ln z  is a multiple-valued (in this case, in-

finitely many-valued) function. The principal-value or principal branch of Ln z  is 

sometimes defined as ln z i , where 0 2   . However, any other interval of 

length 2  can be used, e.g.,      , etc. 

7. Inverse Trigonometric Functions. If sinz w , then 1sinw z  is called the 

inverse sine of z  or arcsin  of z .  

Using the definition of sin z , we have 

 2Ln 1w i i z z    

9) 

Similarly, we define other inverse trigonometric or circular functions 1cos z , 
1tg z , etc. These functions, which are multiple-valued, can be expressed in terms of 

natural logarithms as follows. In all cases, we omit an additive constant 2 ,k i k Z   

in the logarithm: 

 2Arcsin Ln 1w z i i z z     (9a) 

 2Arccos Ln 1w z i z z     (9b) 

1 1
Arctg Ln

2 1

i z
w z

i i z


 


 (9c) 

1 1
Arcctg Ln

2 1

i z
w z

i i z


 


 (9d) 

8. The Function z , where   may be complex, is defined as ln ze . Similarly, if

( )f z  and ( )g z  are two given functions of z , we can define ( ) ( ) ln ( )( ) eg z g z f zf z  . In 

general, such functions are multiple-valued. 

9. Algebraic and Transcendental Functions. If w is a solution of the polyno-
mial equation  

1
0 1 1( ) ( ) ... ( ) ( ) 0n n

n nP z w P z w P z w P z
      (10) 
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where 0 10, ( ),..., ( )nP P z P z  are polynomials in z  plane and n  is a positive inte-

ger, then ( )w f z  is called an algebraic function of z . 

Any function that cannot be expressed as a solution of (9) is called a transcen-
dental function. The logarithmic, trigonometric, and hyperbolic functions and their 
corresponding inverses are examples of transcendental functions. 

The functions considered in 1–9 above, together with the functions derived from 
them by a finite number of operations involving addition, subtraction, multiplication, 
division and roots are called elementary functions. 

Example 3 Determine the values of (a) 1 ii  , (b) Arcsin3, (c)  Ln 12 5i . 

Solution 

(a) 
(1 ) 2 ( 1) 2

(1 )(ln arg 2 )1 (1 ) Ln 2 2e e e e
i i k i i k

i i i i k ii i ii
 

 


   
                   

2 2 2
2 2 2e e e cos 2 sin 2

2 2

k i k k

k i k
  

    
 

     
         
          

          
    

 

2
2e

k

i



 
  
  , k Z . 

(b)   Arcsin3 Ln (3 8) Ln 3 2 2i i i i i        

   ln 3 2 2 2 2 ln 3 2 2
2 2

i i k i k i
 

 
 

         
 

, k Z . 

(c) Ln(12 5 ) ln 12 5 arg(12 5 ) 2i i i i i k        

12 5 144 25 13,
5

ln13 arctg 25 1212 0, 5 0, arg (12 5 ) arctg
12

i

i k
i


   

 
    

    
, k Z . 

Example 4 Show that the line joining the points ( 2,1)P   and (1, 3)Q   in the z  

plane is mapped by 2w z  into the curve joining points P Q   (Figure 13) and deter-

mine the equation of this curve. 
Solution Points P  and Q  have coordinates ( 2,1)  and (1, 3) respectively. Then, 

the parametric equations of the line joining these points are given by 

( 2) 1

1 ( 2) 3 1

x y
t

  
 

   
 or 

3 2,

1 4 .

x t

y t
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Figure 13 

The equation of the line PQ  can be represented by 3 2 (1 4 )z t i t    . The 

curve in the w plane into which this line is mapped has the equation 

 
22 2 23 2 (1 4 ) (3 2) (1 4 ) 2(3 2)(1 4 )w z t i t t t t t i              

2 23 4 7 ( 4 22 24 )t t t t i       . 

Then, since w u iv  , the parametric equations of the image curve are given by 
23 4 7u t t    and 24 22 24v t t    . 

By assigning various values to the parameter t , this curve may be graphed. 

Limits. Continuity 
Let ( )f z  be defined and single-valued in a neighborhood of 0z z  with the pos-

sible exception of 0z z  itself (i.e., in a deleted   neighborhood of 0z ). 

Definition The number L  is the limit of ( )f z  as z approaches 0z  and write

0

lim ( )
z z

f z L


 , if for any positive number   (however small), we can find some posi-

tive number   (usually depending on  ) such that ( )f z L   , whenever

00 z z    . 

There are three conditions that must be met in order that ( )f z  be continuous at

0z z : (1) 
0

lim ( )
z z

f z L


  must exist; (2) 0( )f z  must exist, i.e., ( )f z  is defined at 0z ; 

(3) 0( )L f z . 

Points in the z  plane, where ( )f z  fails to be continuous, are called discontinui-

ties of ( )f z , and ( )f z  is said to be discontinuous at these points. If
0

lim ( )
z z

f z


 exists, 

but is not equal to 0( )f z , we call 0z  a removable discontinuity, since by redefining

0( )f z  to be the same as
0

lim ( )
z z

f z


, the function becomes continuous. 

Note To examine the continuity of ( )f z  at z   , we let 1/z w  and examine 

the continuity of  1/f w  at 0w  . 

Exercise Set 2.2 

1. Let ( ) (2 )w f z z z   . Find the values of w corresponding to (a) 1z i  , 

(b) 2 2z i   and graph corresponding values in the w and z  planes. 
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2. Let 
1

( )
1

z
w f z

z


 


. Find: (a) ( )f i , (b) (1 )f i  and represent them graph-

ically. 
In Exercises 3 to 8 separate each of the following expressions into real and im-

aginary parts, i.e., find ( , )u x y  and ( , )v x y  such that ( )f z u iv  : 

9. Find all values of z  for which (a) 
3e 1z , (b) 

4e z i . 
In Exercises 10 to 21, find the value of the given numbers: 

Individual Tasks 2.2 
1-2. Separate each of the following expressions into real and imaginary parts. 
3-4. Find the value of the given numbers. 
5. Solve the following equations, obtaining all roots. 

I.    

1. 2(2 5 ) 3w i z i z i     

2. 2Re( 2 )w z z z    

3. sin i  

4. 4( 1 ) ii   

5. 43 z i  
 

II.   

1. 2(3 4 ) 7 6w i z i z     

2. 2Im(3 )w z z z    

3.  sin / 4 i   

4. (4 3 )ii  

5. 35 z i  
 

 

2.3 Derivatives. Analytic Functions.  
Cauchy–Riemann Equations. 

Definition If ( )f z  is single-valued in some region   of the z  plane, the deriva-

tive of ( )f z  is defined as 

0

( ) ( )
( ) lim

z

f z z f z
f z

z 

  
 


 (1) 

3.  2(2 3 )w i z i z i     4.  Rew z z   5.  
z i

w
z i





 

6.  25 1w i z i z    7.  Imw z z   8.  23 2 8w z i z    

10.   Ln 3 i  11.   Ln 1 3 i  12.  Ln( 1 )i   

13. 
 

3
sin

4
i

 
 

 
 14.  cos

6
i

 
 

 
 15.  tg

2
i


 

16.  sh 1
2

i
 

 
 

 17.  ch 2
4

i
 

 
 

 18. 
 
Arctg1 

19.  Arcsin i  20.  Arccos1 21.   
6

3
i

i  
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provided that the limit exists independent of the manner in which 0z  . In such 

a case, we say that ( )f z  is differentiable at z . In the definition (1), we sometimes use h 

instead of z . Although differentiability implies continuity, the reverse is not true. 

If the derivative ( )f z  exists at all points z  of a region  , then ( )f z  is said to be 

analytic in   and is referred to as an analytic function in   or a function analytic in  . 

The terms regular and holomorphic are sometimes used as synonyms for analytic. 
Definition A function ( )f z  is said to be analytic at a point 0z  if there exists a 

neighborhood 0z z    at all points of which ( )f z  exists. 

Theorem A necessary and sufficient conditions that ( ) ( , ) ( , )w f z u x y iv x y    

be analytic in a region   is that ( , )u x y  and ( , )v x y  satisfy the Cauchy–Riemann 

equations 
u v

x y

 


 
, 

u v

y x

 
 

 
 (2) 

where the partial derivatives in (2) are continuous in  . 

Using the Cauchy–Riemann conditions the derivative ( )f z can be evaluated by 

one of the following formulas 
( ) x x y y x y y xf z u iv v iu u iu v iv                 (3) 

Note The Cauchy–Riemann equations in the polar coordinates
( , ) ( cos , sin ) ( cos , sin )f x y u r r iv r r      take the following form 

1
r

r

u v
r

u r v





   

    

 (3a) 

The functions ( , )u x y  and ( , )v x y  are sometimes called conjugate functions. 

Given ( , )u x y ( ( , )v x y ) having continuous first partials on a simply connected region

 , we can find ( , )v x y ( ( , )u x y ) [within an arbitrary additive constant] so that

( )u iv w f z    is analytic. 

 
0 0

( , )

( , )

( , ) ( , )

x y

y x

x y

v u x y dx u x y dy     (4a) 

 
0 0

( , )

( , )

( , ) ( , )

x y

y x

x y

u v x y dx v x y dy    

(4b) 

If the second partial derivatives of ( , )u x y  and ( , )v x y  with respect to x  and y  

exist and are continuous in a region  , then we find from (2) that 

2 2

2 2
0

u u

x y

 
 

 
, 

2 2

2 2
0

v v

x y

 
 

 
 (5) 
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Definition Functions such as ( , )u x y  and ( , )v x y  which satisfy Laplace’s equa-

tion in a region   are called harmonic functions and are said to be harmonic in  . 

Let 0z  be a point P  in the z  plane and let 0w  be its image P  in the w plane un-

der the transformation ( )w f z . Since we suppose that ( )f z  is single-valued, the 

point 0z  maps into only one point 0w . 

Then 0( )f z  is equal to the coefficient of expansion at the point 0z  of the z 

plane in the w plane under the transformation ( )w f z . If 0( ) 1f z  , then stretch-

ing takes place, and if 0( ) 1f z  , then compression occurs. 

Let an arbitrary point 0z z z    from a neighborhood of the point 0z  moves to 

the point 0z  along some continuous curve l . Then in the planew  the corresponding 

point 0w w w    will move to the point 0w  along some curve L , which is a map of 

curve l  in the plane w . 

The argument 0( )f z  is geometrically equal to the angle at which you need to 

turn the tangent line at the point 0z  to a smooth curve l  in the z  plane passing through 

the point 0z  to get the direction of the tangent line at the point 0 0( )w f z  to the im-

age L  of this curve in the w plane under the transformation ( )w f z . This angle is 

called the rotation angle at the point 0z  under the transformation ( )w f z .  

Example 1 Find out which of the following functions are analytic at least at one 
point  

(a) 2(2 5 ) 3w i z i z i     (b) 2w z z  . 

 
Solution 
(a) If z x iy  , then 

2 2

2 2 2 2

(2 5 ) 3 (2 5 )( ) ( ) 3 2 5

(5 2 ) 2 ( ) 3 (2 5 2 ) ( 5 2 3)

w i z i z i i x iy i x iy i x y

i x y xy i x y i x y xy i x y x y

            

                
2 5 2u x y xy    

2 2 5 2 3v y x x y      

(2 5 2 ) 2 2x xu x y xy y       (2 5 2 ) 5 2y yu x y xy x        

2 2( 5 2 3) 2 5x xv y x x y x         2 2( 5 2 3) 2 2y yv y x x y y       

Using the Cauchy–Riemann equations we have: 

x y

y x

u v

u v

 
   

,  
2 2 2 2

5 2 2 5

y y

x x

  

   

, 
2 2

0 0





. 

The system has infinity set of solutions, therefore the function is analytic at any 
points of the complex plane. 

(b) If z x iy  , then 
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2 2 2 2 3 2 2 3( ) ( ) ( 2 )( ) ( ) ( )w z z x iy x iy x y xyi x iy x xy i x y y             . 
3 2u x xy   

2 3v x y y   

3 2 2 2( ) 3x xu x xy x y      

3 2( ) 2y yu x xy xy     

2 3( ) 2x xv x y y xy   
 

2 3 2 2( ) 3y yv x y y x y      

Using the Cauchy–Riemann equations we have: 

x y

y x

u v

u v

 
   

,     
2 2 2 23 3

2 2

x y x y

xy xy

   


 
,     

2 2

4 0

x y

xy

 



,     

0

0

x

y





. 

The given function is analytic at origin. 

Example 2 (a) Prove that 2 2 2 1v x y x     is harmonic. (b) Find ( , )u x y  such 

that ( )f z u iv   is analytic. 

Solution 
(a) 

 
2 2xv x  

 

2yv y  
 

2xxv 
 

2yyv  
 

Adding xxv  and yyv  yields
2 2

2 2
0

v v

x y

 
 

 
 and v  is harmonic. 

(b) Using the Cauchy–Riemann equations we have: 

2 ,

2 2.
x y

y x

u v y

u v x

   
      

 

Integrate yu  with respect to y , keeping x  constant. Then 

( 2 2) 2 2 ( )u x dy xy y F x       , 

where ( )F x  is an arbitrary real function of x . 

Substitute 2 2 ( )xy y F x    into 2xu y    and obtain 2 ( ) 2y F x y     or

( ) 0F x   and ( )F x c  is a constant. Then, ( , ) 2 2u x y xy y c    . 

Example 3 Find a coefficient of expansion and the rotation angle at a given 
point when mapping ( , ) ( , )w u x y iv x y   is given by: 

2 3 2 3
0( , ) 3 , ( , ) 3 , 1u x y x y y v x y xy x z i      . 

Solution Using the Cauchy–Riemann equations we have: 

2 2

6 ,

3 3
x y

y x

u v xy

u v x y

  
     

 

for all points of the complex plane. Then 

( ) ( , ) ( , )x x y yf z u iv v x y iu x y        , 

2 2( ) 6 (3 3 )x xf z u iv xy i y x        
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and find the value of the set point 0 1z i    

 2 2

1
1

(1 ) 6 (3 3 ) 6
x
y

f i xy i y x



       . 

A coefficient of expansion equals the modulus of a complex number
(1 ) 6 0f i i     , 

6 0 36 0 6i     . 

The rotation angle equals the argument of (1 ) 6 0f i i      

0
arg

6
z arctg   


. 

 
Differentials. Rules for Differentiation. Derivatives of Elementary Functions 
Definition The expression 

( )dw f z dz  (6) 

is called the differential of w  or ( )f z , or the principal part of w . Note that

w dw   in general. We call dz  the differential of z . 

Suppose ( )f z , ( )g z  are analytic functions of z . Then the following differentia-

tion rules (identical with those of elementary calculus) are valid. 

1.   f g f g     . 

2.   cf c f    where c  is any constant. 

3.   fg f g g f      . 

4. 
2

f f g g f

g g

      
 

 
 if ( ) 0g z  . 

5.    ( ) g zf g z f g    . 

If ( )z f t  and ( )w g t  where t  is a parameter, then
( )

( )
z

g t
w

f t


 


. 

In the following we assume that the functions are defined in the similar way as 
in previous chapter. In the cases where functions have branches, i.e., they are multi-
valued, the branch of the function on the right is chosen so as to correspond to the 
branch of the function on the left. Note that the results are identical with those of el-
ementary calculus. 

1.  ( ) 0c   . 2.  1( )n nz nz   . 

3. (e ) ez z  . 4.  ( ) lnz za a a  . 

5.  
1

(ln )z
z

  . 6.  
1

(log )
ln

a z
z a

  . 
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7.  (sin ) cosz z  . 8.  (cos ) sinz z   . 

9.  
2

1
(tg )

cos
z

z
  . 10.  

2

1
(ctg )

sin
z

z
   . 

11.  
2

1
(arcsin )

1
z

z
 


. 12.  

2

1
(arccos )

1
z

z
  


. 

13. 
 

2

1
(arctg )

1
z

z
 


. 14. 

 
2

1
(arcctg )

1
z

z
  


. 

15.  (sh ) chz z  . 16.  (ch ) shz z  . 

17. 
2

1
(th )

ch
z

z
  . 18. 

 
2

1
(cth )

sh
z

z
   . 

Higher Order Derivatives. L’Hospital’s Rule. Singular Points 

If ( )w f z  is analytic in a region  , its derivative is given by ( )f z , w  or
dw

dz
. 

If ( )f z  is also analytic in the region  , its derivative is denoted by ( )f z , w , or
2

2

d w

dz
. Similarly, the n  - th derivative of ( )f z , if it exists, is denoted by ( ) ( )nf z , ( )nw

, or
n

n

d w

dz
 where n  is called the order of the derivative. Thus the derivatives of the 

first, second, third, etc. orders are given by ( )f z , ( )f z , ... . Computations of these 
higher order derivatives follow the repeated application of the above differentiation 
rules. 

Theorem 1 Suppose ( )f z  is analytic in a region  . Then so also are ( )f z , 
( )f z , ... analytic in  , i.e., all higher derivatives exist in  . 

Let ( )f z  and ( )g z  be analytic in a region R  containing the point 0z  and suppose 
that 0 0( ) ( ) 0f z g z   but 0( ) 0g z  . Then, L’Hospital’s rule states that 

0

0

0

( ) ( )
lim

( ) ( )z z

f z f z

g z g z





 (7) 

In the case of 0 0( ) ( ) 0f z g z   , the rule may be extended. 

Definition The point 0z z  is called a zero of ( )f z  if 0( ) 0f z  . If 
( 1)

0 0 0( ) ( ) ... ( ) 0kf z f z f z    , but ( )
0( ) 0kf z   then 0z z  is called a zero of

( )f z  of order k. 
Definition A point at which ( )f z  fails to be analytic is called a singular point 

or singularity of ( )f z . Various types of singularities exist. 
1. Isolated Singularities 
Definition The point 0z z  is called an isolated singularity or an isolated singu-

lar point of ( )f z  if we can find 0   such that the circle 0z z    encloses no sin-

gular point other than 0z  (i.e., there exists a deleted   neighborhood of 0z  containing 
no singularity). If no such   can be found, we call 0z  a non-isolated singularity. 
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Definition  If 0z  is not a singular point and we can find 0   such that

0z z    encloses no singular point, then we call 0z  an ordinary point of ( )f z . 

2. Poles 
 Definition  If 0z  is an isolated singularity and we can find a positive integer n  

such that
0

0lim( ) ( ) 0n

z z
z z f z A


   , then 0z z  is called a pole of order n . If 1n  , 0z  

is called a simple pole. 

3. Branch Points 
Branch Points of multiple-valued functions, already considered in the previous 

chapter, are non-isolated singular points since a multiple-valued function is not con-
tinuous and, therefore, not analytic in a deleted neighborhood of a branch point. 

4. Removable Singularities 
Definition An isolated singular point 0z  is called a removable singularity of

( )f z  if
0

lim ( )
z z

f z


 exists. By defining
0

0( ) lim ( )
z z

f z f z


 , it can then be shown that

( )f z  is not only continuous at 0z  but is also analytic at 0z . 

 
5. Essential Singularities 
Definition If ( )f z  does not have the limit at the point 0z  then it is called an es-

sential singularity.  
If a function has an isolated singularity, then the singularity is either a remova-

ble one, a pole, or an essential singularity. For this reason, a pole is sometimes called 
a non-essential singularity. Equivalently, 0z z  is an essential singularity if we can-

not find any positive integer n  such that
0

0lim( ) ( ) 0n

z z
z z f z A


   . 

6. Singularities at Infinity 
The type of singularity of ( )f z  at z    (the point at infinity) is the same as that 

of  1/f w  at 0w  . 

For methods of classifying singularities using infinite series, see next chapter. 
Example 4 Using rules of differentiation, find the derivatives of each of the fol-

lowing functions: 

(a) 2cos (2 3 )z i  (b) tg(ln )z z  (c)  
4 2

3
z

z i


  

Solution Using the chain rule, we have 

(a)  2cos (2 3 ) 2cos(2 3 )sin(2 3 )2 4sin(4 6 )z i z i z i z i        . 

(b)     2

1
tg(ln ) tg(ln ) tg(ln ) tg(ln )

cos ln

z
z z z z z z

z z
        . 

(c)       4 2 ln( 3 ) 4 2 ln( 3 )4 2 4 2
( 3 ) e e 4ln( 3 )

3

z z i z z iz z
z i z i

z i

            
 

. 
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Example 5 Suppose 3 23 4ln 0w z w z   . Find
dw

dz
. 

Solution Differentiating with respect to z , considering w  as an implicit function 

of z , we have
2 2 4

3 3 6 0w w z w zw
z

     . Then, solving for
dw

dz
, we obtain 

2 2

4
4

3 3

zwdw z
dz w z





. 

Example 6 Evaluate 

(a) 
10

6

1
lim

1z i

z

z




 (b) 20

1 cos
lim
z

z

z


 

 Solution 

(a) Let 10( ) 1f z z   and 6( ) 1g z z  . Then ( ) ( ) 0f i g i  . Also, ( ), ( )f z g z  

are analytic at z i . 

Hence, by L’Hospital’s rule 
10 9

4

6 5

1 0 10 5 5
lim lim lim

1 0 6 3 3z i z i z i

z z
z

z z  

  
    

  
 

(b) Let ( ) 1 cosf z z   and 2( )g z z . Then (0) (0) 0f g  . Also, ( ), ( )f z g z  

are analytic at 0z  . 

Hence, by L’Hospital’s rule 

20 0 0

1 cos 0 sin 1 sin 1
lim lim lim

0 2 2 2z z z

z z z

z z z  

  
    
 

 

Example 7 Classify all the singularities of the functions. 

(a) The function
 

4

1
( )

( 3)
f z

z



 has a pole of order 4 at 3z  . 

(b) The function
 

2

3 2
( )

( 1) ( 1)( 4)

z
f z

z z z




  
 has a pole of order 2 at 1z  , and 

simple poles at 1z    and 4z  . 

(c) The function 

1

2( ) ( 3)f z z   has a branch point at 3z  . 

(d) The function 
2( ) ln( 2)f z z z    has branch points where 2 2 0z z   , 

i.e., at 1z   and 2z   . 

(e) The singular point 0z   is a removable singularity of
sin

( )
z

f z
z

  since

0

sin
lim 1
z

z

z
 . 

(f) The function 

1

2( ) e zf z   has an essential singularity at 2z  . 
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(g) The function 3( )f z z  has a pole of order 3 at z   , since   31 / 1 /f w w  

has a pole of order 3 at 0w  . 

Exercise Set 2.3 
In Exercises 1 to 4, find out which of the following functions are analytic at least 

at one point. 
1.  
cosw i z  

2.  Rew z z   3.  Imw z z   

4.  
2(3 4 ) 7 6w i z i z     

In Exercises 5 to 10, prove that given function is harmonic. Find ( , )u x y  or 

( , )v x y such that ( )f z u iv   is analytic. 

5.  2 2 , (0) 0u x y x f    . 6.  1 e sin , (0) 1xu y f i    . 

7. 2 33 , (0) 1v x y y f   . 8.  e cos , (0) 1yu x x f   . 

9.  2 33 , (1 ) 0u x y y f i    . 
10. 

 

 1e sin , / 4 0yv x f i    . 

In Exercises 11 to 14, find a coefficient of expansion and the rotation angle at 
this point when the mapping given by the following transformation 

11.  2 2( , ) 2u x y x x y   , ( , ) 2 2v x y xy y  , 0z i . 

12.  3 2 2 2( , ) 3u x y x xy x y    , 2 3( , ) 3 2v x y x y y xy   , 0 2 / 3z i . 

13.  3 2 2 3
0( , ) 3 3 , ( , ) 3 3 1, 1u x y x xy x v x y x y y y z i          . 

14.  1 1
0( , ) e cos , ( , ) e sin , / 4y yu x y x v x y x z i      . 

In Exercises 15 to 23, using rules of differentiation, find the derivatives of each 
of the following functions: 

15.  3sin (5 7 )z i  16.   ln tg5z  17.  ez iz   

18.  2( 3 )cos4z z z  19.   
2

4
i z

z i


  20. 
 
 

cos2 2
z

z z  

21.  
2 3

sh 2

z

z


 22.  

5ctg 7

ln( 3)

z

z 
 23.  

2

3 7
arcsin

z i

z i

 
 

 
 

24. Suppose 4 2 25 4sin 0w z w z   . Find 
dw

dz
. 

In Exercises 25 to 33, evaluate the following limits. 

25.  
10

61

1
lim

1z

z

z




 26.  

2

22

4
lim

6z

z

z z



 
 27.  

2

3

9
lim

3z i

z

z i




 

28.  
20

cos4 cos
lim

3z

z z

z


 29.  

0

1 cos
lim

tgz

z

z z


. 30. 

 2

e
lim

z

z z 
 

31.  
2

2

5 4
lim

6z

z z

z z 

 

 
 32.   lim 2

z i

z
z i



 
  33.   

tg

/2
lim ctg

z

z
z
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Individual Tasks 2.3 
1. Find out which of the following functions are analytic at least at one point. 
2. Prove that the given function is harmonic. Find ( , )u x y  or ( , )v x y such that 

( )f z u iv   is analytic. 

3. Find a coefficient of expansion and the rotation angle at this point when map-
ping given by the following transformation. 

4-5. Differentiate the following functions. 
I.    

1. 2(1 ) 2w i z z    

2. ( , ) 2 sinxu x y e y x y     

3. ( , ) sinxu x y e y ,

( , ) cosxv x y e y , z i  

4. 4( ) izw z i   

5. 
4tg 3

ln( 3)

z
w

z



 

 

II.   

1. 22w z i z   

2. ( , ) 2 cosxv x y e y y x    

3. 2 3( , ) 3u x y xy x  ,
3 2( , ) 3v x y y x y  , 1z i    

4. ( 3 )izw z i   

5. 
2ln 6

( 3)

z
w

arctg z



 

 

2.4 Complex Integration 

Complex Line Integrals 
Let ( )f z  be continuous at all points of a curve C  (Figure 14), which we shall 

assume has a finite length, i.e., C  is a rectifiable curve. 

Subdivide C  into n  parts by means of points 0 1 2 1, , ,..., ,n nz z z z z , chosen arbitrari-

ly, and call 0 , nz a b z  . On each arc joining 1kz   to kz  [where k  goes from 1 to n], 

choose a point k . Form the sum 

1 1 1( )( ) ... ( )( )n n nS f z a f b z        (1) 

Figure 14 

On writing 1k k kz z z   , this becomes 

1

1 1

( )( ) ( )
n n

n k k k k k

k k

S f z z f z 

 

      (2) 

Definition Let the number of subdivisions n  increases in such a way that the 

largest of the chord lengths kz  approaches zero. Then, since ( )f z  is continuous, the 
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sum nS  approaches a limit that does not depend on the mode of subdivision and we 
denote this limit by 

10 0

lim lim ( ) ( ) ( )

k k

bn

n k k
n n

kz z a C

S f z f z dz f z dz
 

   

       (3) 

and it is called the complex line integral or simply line integral of ( )f z  along 

curve C , or the definite integral of ( )f z  from a  to b  along curve C . 

Suppose ( ) ( , ) ( , )f z u x y iv x y  . Then the complex line integral (3) can be ex-
pressed in terms of real line integrals as follows 

 ( ) ( , ) ( , ) ( )

C C

f z dz u x y iv x y dx i dy    
 

   ( , ) ( , ) ( , ) ( , )

C C

u x y dx v x y dy i v x y dx u x y dy      
(4) 

For this reason, (4) is sometimes taken as a definition of a complex line integral. 

Let
( ),

( ),
( ),

x x t
z z t t

y y t
 


  


 be a continuous function of a complex variable

t u iv  . Suppose that curve C  in the z  plane corresponds to curve C  in the z  

plane and that the derivative ( )z t  is continuous on C .  
Then 

( ) ( ( )) ( ) ( ( )) ( )

C C

f z dz f z t z t dt f z t z t dt



 

        (5) 

These conditions are certainly satisfied if z  is analytic in a region containing curve C . 

Example 1 Evaluate

C

zdz  from 0z   to 4 2z i   along the curve C  given by: 

(a) 2z t i t  , (b) the line from 0z   to 2z i  

Solution 
(a) The points 0z   and 4 2z i   on C  correspond to 0t   and 2t  , respec-

tively. Then, the line integral equals 

        
2 2 2

2 2 2 3 2

0 0 0

8
2 2 10

3

i
t it d t it t it t i dt t it t dt             

(b) The given line integral equals 

( )( )

C C C

x iy dx idy xdx ydy i xdy ydx         

The line from 0z   to 2z i  is the same as the line from (0;0)  to (0;2) for 

which 0x  , 0dx   and the line integral equals 

2 2 2

0 0 0

0 2ydy i dy ydy      
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Definition A region   is called simply-connected if any simple closed curve, 

which lies in  , can be shrunk to a point without leaving  . A region  , which is 

not simply-connected, is called multiply-connected. 
Definition Any continuous, closed curve that does not intersect itself and may or 

may not have a finite length, is called a Jordan curve.  
Definition The boundary C  of a region is said to be traversed in the positive 

sense or direction if an observer travelling in this direction (and perpendicular to the 
plane) has the region to the left. This convention leads to the directions indicated by 
the arrows in Figures 15, 16, and 17. 

We use a special symbol ( )

C

f z dz  to denote integration of ( )f z  around the 

boundary C  in the positive sense. In the case of a circle (Figure 15), the positive di-

rection is the counterclockwise direction. The integral around C  is often called a con-

tour integral. 
 

Figure 15 Figure 16 Figure 17 

Theorem Let ( )f z  be analytic in a region   and on its boundary C . Then 

( ) 0

C

f z dz   (6) 

This fundamental theorem, often called Cauchy’s integral theorem or simply 
Cauchy’s theorem, is valid for both simply- and multiply-connected regions.  

Theorem Let ( )f z  be continuous in a simply-connected region   and suppose 

that ( ) 0

C

f z dz   around every simple closed curve C  in  . Then ( )f z  is an ana-

lytic function in  . 

Example 2 Evaluate

C

dz

z a  where C  is any simple closed curve C  and z a  is 

(a) outside C , (b) inside C . 
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Solution 

(a) If a  is outside C , then
1

( )f z
z a




 is analytic everywhere inside and on C . 

Hence, by Cauchy’s theorem, 0

C

dz

z a


 . 

(b) Suppose a  is inside C  and let   be a circle of radius e with center at z a  so 

that   is inside C  (this can be done since z a  is an interior point).  

C

dz dz

z a z a



     (7) 

Now on  , z a    or iz a e   , i.e., , 0 2iz a e       . Thus, since
idz i e d  , the right side of (7) becomes 

2 2

0 0

2
i

i

i e d
i d i

e

 



 
 


    

which is the required value. 
Definition Suppose ( )f z  and ( )F z  are analytic in a region   and such that

( ) ( )F z f z  . Then ( )F z  is called an indefinite integral or anti-derivative of ( )f z  

denoted by 

( ) ( ) ,F z f z dz A A const    (8) 

Just as in real variables, any two indefinite integrals differ by a constant. For this 
reason, an arbitrary constant A is often added to the right of (8). 

Table of Indefinite Integrals 
1

, 1
1

n
n z

z dz n
n



  
 . ln

dz
z

z
 . 

ln

z
z a

a dz
a

 . e ez zdz  . 

cos sinz dz z . sin cosz dz z  . 

2
tg

cos

dz
z

z
 . 

2
ctg

sin

dz
z

z
  . 

2 2

1
ln

2

dz z a

z a a z a




  . 
2 2

2 2
ln

dz
z z a

z a
  


. 

2 2

1
arctg

dz z

z a a a


 . 
2 2

arcsin
dz z

aa z


 . 

sh chz dz z . ch shz dz z . 
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Example 3 Determine 
(a) 

sin sin3 sin 2z z z dz  
(b) 2 34z z dz  

Solution 

(a) 
1

sin sin3 sin2 (cos2 cos4 )sin2
2

z z zdz z z zdz     

 

. 

(b)  

. 

Theorem Suppose  and  are any two points in  and . Then 

 (9) 

This can also be written in the form familiar from elementary calculus 

 (10) 

Example 4 Calculate . 

Solution Using the formula for integration by parts we get 

 

. 

Exercise Set 2.4 
In Exercises 1 to 14, evaluate 

1.   

2.   

1 1 1 1
cos2 sin 2 cos4 sin 2 sin 4 (sin6 sin 2 )

2 2 4 4
z zdz z zdz zdz z z dz        

cos4 cos6 cos2

16 24 8

z z z
A    

     
1 1

2 3 3 3 3 32 2
1 1

4 4 4 4 (4 )
3 3

z z dz z z dz z d z         
 

3
3 3 32

2 2
4 (4 )

9 9
z C z A     

a b  ( ) ( )F z f z 

( ) ( ) ( )

b

a

f z dz F b F a 

 ( ) ( ) ( ) ( )

b
b

a

a

F z dz F z F b F a   
2e

e

lnI z zdz 

2 22e ee2 2 4 2 2

2

e ee

ln ,
e e

ln 2
2 2 2 2 4

,
2

dz
u z du

z z dz zz
I z

zz
dv z dz v

 
   

          
    



 
2 4 2

4 4 2e e e 1
e 3e e 39,10

2 4 4 4
      

 
22

3 2

1

e

i z

i

z z dz





0

sin

i

z z dz
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3.    

4.   

5.   

6.  , is the line from  to  

7.  , is the arc of the parabola  from  to

 

8.   is the line from  to  

9.   is the line from  to  

10. zdz


 ,   is the broken line OAB, where (0;0), (1;1), (1;0)O A B  

11. zdz


 , : 2, Im 0z z     

12.  

13. :  

14. ,  

In Exercises 15 to 23 determine 

15.   16.   17.   

18.  19.   20.   

21.  2 2(5 1)e zz dz  22.   23.   

 
  

2(3 2 sin ) ,z z dz



  : 2, Im 0z z  

3( cos ) ,z z dz



 : 1, Re 0z z  

0

cos

i

z z dz
2(3 2 )z z dz



  1z i  2z i

dzzz
l

)Re(Re 2 l 21y x  1 1z  

2z i

2Im Re( )

l

z z dz  1 1z i   2 1 3z i 

2 ,z dz



 0z  2z i

Re ,  : 1z z dz z



 
2Im ,    z z dz



 1, arg 0z z   

1

ln ( 1)

1

i
z

dz
z



  1,  Im 0,  R e 0z z z  

sin cosz z dz  2sin 1 3

dz

z 22 6 4

dz

z z 
3

45

z dz

z 2cos (3 2)

dz

z 
23 e zz dz



1 3

dz

z  7 5sin cosz z dz
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Individual Tasks 2.4 
1 -5. Evaluate  the following integrals. 
I.    

1. 

2. 

3.  

4.  

5.  
 

II.   

1. 

2. 

3.  

4.  

5.  

 

2.5 Cauchy’s Integral Formulas 
Theorem Let  be analytic in a region bounded by two simple closed curves

 and  (where  lies inside C as in Figure 11) and on these curves. Then 

1

( ) ( ) ,

C C

f z dz f z dz    

where  and  are both traversed in the positive sense relative to their interiors 

(counterclockwise in Figure 18). 
The result shows that if we wish to integrate  along curve , we can 

equivalently replace  by any curve  so long as  is analytic in the region be-

tween  and  as in Figure 18. 

Theorem Let  be analytic in a region bounded by the non-overlapping sim-

ple closed curves  where  are inside  (as in Figure 19) and 

on these curves. Then 

. 

Figure 18 Figure 19 Figure 20 
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Cauchy’s Integral Formulas 
Theorem Let  be analytic inside and on a simple closed curve  and let  

be any point inside  (Figure 20). Then 

 (1) 

where  is traversed in the positive (counterclockwise) sense. 

Also, the -th derivative of  at  is given by 

 (2) 

Formula 2 can be rewritten as the following  
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  (2a) 

The result (1) can be considered a special case of (2) with  if we define . 

The results (1) and (2) are called Cauchy’s integral formulas and are quite re-
markable because they show that if a function  is known on the simple closed 

curve , then the values of the function and all its derivatives can be found at all 

points inside .  

Example 1 Evaluate 

(a)  (b)  

where  is the circle . 

Solution (a) Since , we have 

. 

By Cauchy’s integral formula with  and , respectively, we have 

, 

, 

since  and  are inside  and  is analytic inside . 

Then, the required integral has the value . 

(b) Let  and  in the Cauchy integral formula
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If , then  and . Hence 

the Cauchy integral formula becomes 

 

from which we see that the required integral has the value . 

Exercise Set 2.5 

In Exercises 1 to 16, evaluate 

1.  
2.  

3.  
4. 

5.  
6.  

7.  
8.  

9.  10.  

11.  
12.  

13.  
14.  

15.  
16.  

3n  2 2 2( ) 2e , ( ) 4e , ( ) 8ez z zf z f z f z     2( 1) 8ef   

 

2
2

4

3 ! e
8e

2 1

z

C

dz
i z

 


28 e

3

i 

2

1 3
2 3

z

z
dz

z z
 

 
3

3 6
( 2) ( 4)

z

z dz

z z
 

 

2

4
( 9)( 9)

z

dz

z z


 
2 2

1 3
,   : 1

( 2 3) 2

z
dz z i

z z





  
 

2 2

1
( 1)

z i

i dz

z
 


4 3

4

1

3 2 5

z

z z
dz

z


 


2

2 5
, : 1

( 1) 4

dz
z i

z z


   


2

2 3

1 cos 1

2 ( )
z

z
dz

i z z 
 





2

3 1

sin3 2

( )
z

z
dz

z z 
 



 2 2

1 1

cos
4

( 1)
z

z
dz

z



 


3

1

e 1i z

z

dz
z




 1

2 sin

( 2 )
z

z
dz

z z i






 

2

2
1 3

1 3 2 4

2 4 sin
2

z

z z
dz

zi z
 

 

 


2

2

sin sin( 1)

 
z

z z
dz

z z


 



2

1/3

1 sin

z

z
dz

z





2 2

3

sh

( 1)
z

z z
dz

z






66 
 

Individual Tasks 2.5 

1-4. Evaluate the following integrals. 

I.    

1.  

2.  

3.  

4. 

 
 

II.   

1.  

2.  

3.  

4. 

 
 

2.6 Series of Functions. Power Series. Taylor’s Theorem 

Definition The sequence  symbolized by 

 (1) 

and is called an infinite series.  
If , the series is called convergent and  is its sum; other-

wise, the series is called divergent. We sometimes write  as  or  

for brevity. 
Definition If a series converges for all values of  (points) in a region , we 

call  the region of convergence of the series. 

Definition A series  is called absolutely convergent if the series of abso-

lute values, i.e., , converges. 

Definition If  converges but  does not converge, we call  

conditionally convergent. 
Definition A series having the form 

 (2) 

is called a power series in .  
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Geometrically, if  is a circle of radius  with the center at , then the se-

ries (2) converges at all points inside  and diverges at all points outside , while it 

may or may not converge on the circle . We can consider the special cases  

and , respectively, to be the cases where (2) converges only at  or con-

verges for all (finite) values of . Because of this geometrical interpretation,  is of-

ten called the radius of convergence of (2) and the corresponding circle is called the 
circle of convergence. 

Example 1 Find the region of convergence of the series . 

Solution 

If , then . Hence, excluding  for which 

the given series converges, we have 

 

Then the series converges (absolutely) for , i.e., . The point

 is included in . 

If , i.e., , the ratio test fails. However, it is seen that in this 

case 

 

and since  converges [  series with ], the given series converges (ab-

solutely). 
It follows that the given series converges (absolutely) for . Geometri-

cally, this is the set of all points inside and on the circle of radius 4 with the center at
, called the circle of convergence (shown shaded in Figure 21). The radius of 

convergence is equal to 4. 
Let  be analytic inside and on a simple closed curve . Then 

 (3) 

is called Taylor’s theorem and the series (3) is called a Taylor series or expan-
sion for . 
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Figure 21 Figure 22 

The region of convergence of the series (3) is given by , where the 

radius of convergence  is the distance from  to the nearest singularity of the 

function . On , the series may or may not converge. For , 

the series diverges. 
If the nearest singularity of  is at infinity, the radius of convergence is infi-

nite, i.e., the series converges for all . If  in (3), the resulting series is often 

called a Maclaurin series. 
The following list shows some special series together with their regions of 

convergence. In the case of multiple-valued functions, the principal branch is 
used. 

 

 

 

 

 

 

  

 
 

 

 

Laurent  Series. Classification of Singularities 
Let  and  be concentric circles of radii  and , respectively, and the cen-

ter at  (Figure 22). Suppose that  is single-valued and analytic on  and   in 
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the ring-shaped region  (also called the annulus or annular region) between  and

, is shown shaded in Figure 22. Let  be any point in . Then we have 

2 1 2
0 1 2 2

( ) ( ) ( ) ... ...,
( )

a a
f z a a z a a z a

z a z a
         
 

 (4) 

where 

 (5) 

This is called Laurent’s theorem and (1) or (4) with coefficients (5) is called a 
Laurent series or expansion. 

The part  is called the analytic part of the Laurent 

series, while the remainder of the series, which consists of inverse powers of , is 

called the principal part. If the principal part is zero, the Laurent series reduces to a 
Taylor series. 

It is possible to classify the singularities of a function  by examination of its 

Laurent series. For this purpose, we assume that in Figure 21, , so that  is 

analytic inside and on  except at , which is an isolated singularity. In the fol-

lowing, all singularities are assumed isolated unless otherwise indicated. 
1. Poles. If  has the form (4) in which the principal part has only a finite 

number of terms given by 

1 2
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... ,
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n
n

a a a

z a z a z a
    
  

 

where , then  is called a pole of order . If , then it is called a 

simple pole. 
If  has a pole at , then . 

2. Removable singularities. If a single-valued function  is not defined at

 but exists, then  is called a removable singularity. In such case, 

we define  at  as equal to , and  will then be analytic at . 

Example 2 If , then  is a removable singularity since  is 

not defined but . We define . Note that in this case 

 

3. Essential singularities. If  is single-valued, then any singularity that is not a 

pole or removable singularity is called an essential singularity. If  is an essential sin-

gularity of , then the principal part of the Laurent expansion has infinitely many terms. 

Example 3 Since ,  is an essential singularity. 
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4. Branch points. A point  is called a branch point of a multiple-valued 

function  if the branches of  are interchanged, when  describes a closed 

path about . A branch point is a non-isolated singularity. Since each of the branches 

of a multiple-valued function is analytic, all of the theorems for analytic functions, in 
a particular Taylor’s theorem, can be applied. 

Example 4 The branch of , which has the value  for , has a Tay-

lor series of the form and the radius of convergence  

(the distance from  to the nearest singularity, namely the branch point ). 

Example 5 Find Laurent series about the indicated singularity for each of the 
following functions: 

(a) 

 

(b) 

 

(c) 

 

Name the singularity in each case and give the region of convergence of each series. 
 
Solution 
(a) Let .Then  and 

 

. 

1z  is a pole of order 3, or a triple pole. 
(b)  

. 

 
 is a removable singularity. The series converges for all values of . 

(c) Let . Then, by the binomial theorem, 
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 is a pole of order 2 or a double pole. 
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Example 6 Expand  in a Laurent series valid for: 

(a)  (b)  (c)  (d) . 

Solution 
(a) Resolving into partial fractions, we have 

. 

If , then 

. 

If , then 

. 

Then, the required Laurent expansion valid for both  and , i.e.,

, is 

 

(b) If , we have the result such as in the part (a), 
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(d) If , 

. 

If , we have the result such as in the part (a), 

. 

Then the required Laurent expansion, valid for both  and , i.e., , 

is obtained by subtraction 

. 

This is a Taylor series. 
Exercise Set 2.6 

In Exercises 1 to 3, investigate the convergence of: 

1. 2.  3. 

In Exercises 4 to 7, find the region of the convergence of: 

4.   5.   

6. 

 

 7. 

 

 

In Exercises 8 to 17, expand  in a Laurent series valid for the given : 

8.  

9.  

10.   

11.   

12.   
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14.  

15.  
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16.  

17.  

In Exercises 18 to 25, expand each of the following functions in a Laurent series 
at a given point : 

18.  19.   

20.   21.  

 

 

22.   23.  

24.  25.  

In Exercises 26 to 35, determine and classify all the singularities of the functions 

26.  27.  

28. 

 

 29.  

30.  31.  

32.  33.   

34.  35.  

 

Individual Tasks 2.6 
1-2. Expand  in a Laurent series valid for a given . 

3. Expand  in a Laurent series at a given point . 
4. Determine and classify all the singularities of the functions. 

I.    

1.  

2.  

3.  

4.  
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3.  
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2.7 Residues 
Let  be single-valued and analytic inside and on a circle , except at the 

point  chosen as the center of . Then  has a Laurent series about  
given by 

 

(1) 

where 

 (2) 

In the special case , we have the following formula 

 (3) 

Formally, we can obtain (3) from (1) by integrating term by term and using the re-
sults  

 (4) 

Because of the fact that (3) involves only the coefficient  in (1), we call  

the residue of  at . 

 (5) 

To obtain the residue of a function  at , it may appear from (1) that the 

Laurent expansion of  about  must be obtained. However, in the case where

 is a pole of order , there is a simple formula for  given by 

 (6) 

If  (a simple pole), then the result is especially simple and is given by 

 

(7) 

which is a special case of (6) with  if we define . 

Example 1 Find the residues of . 

Solution  

If , then  and  are the poles of orders one and 

two, respectively. We have, using (7) and (6) with , 
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, 

 

. 

If  is an essential singularity, then the residue can sometimes be found by 

using known series expansions. 

Example 2 Let . Then,  is an essential singularity and from the 

known expansion for  with , we find 

 

from which we see that the residue at  is the coefficient of  and equals . 

Figure 23 

Theorem (residue theorem) Let  be single-valued and analytic inside and 

on a simple closed curve  except at the singularities  inside , which have 

the residues given by  (see Figure 23). Then, the residue theorem states 

that 

 (8) 

i.e., the integral of  around  is  times the sum of the residues of  

at the singularities enclosed by . Note that (8) is a generalization of (3). Cauchy’s 

theorem and integral formulas are special cases of this theorem. 

Example 3 Evaluate  around the circle  with equation . 
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Solution 

The integrand  has a double pole at  and two simple poles at

 (roots of ). All these poles are inside . 

Residue at 0z   is 

2
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0 0

1
Res ( ) lim
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e
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. 

Then, by the residue theorem 

. 

The evaluation of definite integrals is often achieved by using the residue theo-
rem together with a suitable function  and a suitable closed path or contour , 

the choice of which may require great ingenuity. The following types are most com-
mon in practice. 

1.  , where  is a rational function. 

Consider  along a contour  consisting of a line along the  axis 

from  to  and the semicircle  above the  axis having this line as a diameter 

(Figure 24). Let . If  is an even function, this can be used to evaluate

. 
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Figure 24 Figure 25 Figure 26 

2. , where  is a rational function of  

and . 

Let . Then ,  and  or . 

The given integral is equivalent to  where  is the unit circle with the cen-

ter at the origin (Figure 25). 

3.  , where  is a rational function. 

Here, we consider , where  is the same contour as that in Type 1. 

Example 4 Evaluate . 

Solution  

Consider , where  is the closed contour of Figure 26, consisting of the 

line from  to  and the semicircle , traversed in the positive (counterclock-
wise) sense. 

Since , when , 

these are simple poles of .Only the poles  lie within

. Then, using L’Hospital’s rule, 

, 
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Thus, 

 

 
that is, 

 

Taking the limit of both sides as  

 

Since  

 

the required integral has the value . 

 
Exercise Set 2.7 

In Exercises 1 to 18, evaluate 

1.   2.   

3.   4.   

5.   6.   

7.   8.  

9.   10.   

11.   12.   
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13.   14.  

15.   16.   

17. 

 

 18. 

  

 

 

Individual Tasks 2.7 

1-4. Evaluate the given integrals. 

I.    

1.  

2.  

3.  

4.  

 

II.   
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3.  

4.  
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APENDIX 
 

Individual Tests 1.1 

Variant 1 

1. Find the sum of the series: 

a) 
 1

1

2n n n



 
 ,          

 b) 
1

5 2

10

n n

n
n






 . 

 
2. Investigate the series for conver-

gence: 

a) 
3

1

ln

n

n

n




 ,                  

b) 
 1 1n

n

n n



 
 . 

Variant 2 

1. Find the sum of the series: 

a) 
  1

1

2 3n n n



  
 ,         

b) 
1

3 4

12

n n

n
n






 . 

 
2. Investigate the series for conver-

gence: 

a) 
1

sin 3

3

n

n
n





 ,                  

b) 
1

1

n

n

n






 . 

Individual Tests 1.2 

Variant 1 

Investigate the series  
for convergence: 

1. 
1

( 1)

3n
n

n n




 ,       

2. 
1

3

1

n

n

n

n





 
 
 

 . 

3. 
2

1

2

3n n



 
 ,                  

4.  
1

3

3 1

n

n

n

n





 
 

 
 , 

5. 
2

1

n

n

ne






  

Variant 2 

Investigate the series  
for convergence: 

1. 
 

3

1 1 !n

n

n



 
 ,       

2. 
1

5

3

n

n

n

n





 
 
 

 . 

3. 2

1 2n
n

n


 ,                  

4.  
1

5

3 1n

n

n



 
 , 

5. 
1

2

1n n
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Individual Tests 1.3 

Variant 1 

Find the domain of convergence of the 
series: 

1.   
1

1

2 3 1

4

n

n
n

n x




 
  

2.  2

1

6

2

n

n
n

x x



 
  

Determine whether the series is absolute-
ly convergent, conditionally convergent, 
or divergent: 

3.  
 

1

1

1

3 1

n

n
n n








  

4.    
1

1

1 3 2

1

n

n

n

n n





 


  

Variant 2 

Find the domain of convergence of 
the series: 

1. 
 1

1

2
nn

n n x



 
  

2.  
1

4 1

6 3

n

n
n

x n

n





 



  

Determine whether the series is abso-
lutely convergent, conditionally con-
vergent, or divergent: 

3.    
1

1

1 3 2

4

n

n
n

n




 
  

4.  
1

1

1 !

2

n

n
n

n





  

Individual Tests 1.4 

Variant 1 

Investigate the series for convergence: 

1. 
 

1

1

2 1

n

n n








 , 

2. 
 
 1

1

3 1 !

n

n
n n







 
 , 

3. 
1

sin
3n

n

n



 ,       

4. 
1

1

ln ( 3)n
n n



 
 . 

5. 
 

10
71

1

3 7n n



 
 , 

6. 
 1

1

ln 3n n



 
 , 

7.  
2

1

1

5 3

n

n
n

n

n





 
 
 

 , 

8. 
1

2 1

3 ( 1)
n

n
n

n
x

n








  

Variant 2 

Investigate the series for convergence: 

1. 
 

1

3
1

1

2 1

n

n n








 , 

2. 
 

1

1 !

5

n

n
n

n



 
 , 

3. 
 1

!

5 3 !n
n

n

n



 
 ,       

4. 

2

1

2 1

2

n

n

n

n





 
 
 

 . 

5. 
 

4
51

1

3 1n n



 
 ,                  

6.  
2

1

2 1

3 5n

n

n n
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7. 
1

2

3n
n n
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8. 
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4
n

n
n

n
x






  



84 
 

Individual Tests 1.5 

Variant 1 

Find a power series representation for 
the function and determine the interval 
of convergence: 

1. 
1

( )
7 2

f x
x




, 

2. 
2

3 5
( )

3 2

x
f x

x x




 
, 

3. 2 3( ) cos 5f x x ,       

4. 
35( ) e xf x  . 

Variant 2 

Find a power series representation for 
the function and determine the interval 
of convergence: 

1. 
1

( )
3 4

f x
x




, 

2. 
2

4 5
( )

6 5

x
f x

x x




 
, 

3. 2 2( ) sin 3f x x ,       

4. 
2

( ) e xf x x  . 

Individual Tests 1.6 

Variant 1 

Use a power series to approximate the 
definite integral to three decimal places: 

1. 

1

0

sin x dx , 

2. 

0,1

4

0
1

dx

x , 

3.  3 3

3

1

ln 1 x
dx

x



 .      

Use power series to solve the initial-
value problem. 

24y y y   , (0) 1y  . 

Variant 2 

Use a power series to approximate the 
definite integral to three decimal places: 

1. 

1

3

0

cos x dx , 

2. 

0,2

5

0
1

dx

x , 

3. 
0.3

5

0

1 x dx .      

Use power series to solve the initial-
value problem. 

32siny x y   , (0) 1y  . 

Individual Tests 1.7 

Variant 1 

Determine the Fourier coefficients of the 
given functions on the given intervals: 

1. 
1, 0,

( )
, 0 .

if x
f x

x if x





  
 

 
, 

2. ( ) 1 , ( 1;1)f x x if x    . 

Variant 2 

Determine the Fourier coefficients of 
the given functions on the given inter-
vals: 

1. 
, 0,

( )
, 0 .

x if x
f x

if x



 

   
 

 
, 

2. ( ) 2, ( 3;3)f x x if x    . 
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Individual Tests 1.8 

Variant 1 

Determine the Fourier sine series of the 
given functions on the given intervals: 

1.   3 , (3 ;4 )f x x x     . 

2.  
3, 0 / 2;

0, / 2 .

if x
f x

if x



 

 
 

 
 

Variant 2 

Determine the Fourier cosine series of 
the given functions on the given in-
tervals: 

1. 
, 0,

( )
, 0 .

x if x
f x

x if x





   
 

 
. 

2.   sin , (0; )f x x x    

Individual Tests 2.1 

Variant 1 

Perform each of the indicated operations: 

(1 3 )( 2)

1

i i

i

 


 

Describe and graph the locus represented 
by the following expression: 

3 2z i    

Describe graphically the region represent-
ed by the following expression: 

/ 6 arg( ) / 4z i      

Solve the following equations, obtaining 
all roots: 

4 81 0z    

Variant 2 

Perform each of the indicated opera-
tions: 

(2 3 )(2 3)

2

i i

i

 


 

Describe and graph the locus repre-
sented by the following expression: 

2 3 2z i    

Describe graphically the region repre-
sented by the following expression: 

1 2 3z i     

Solve the following equations, obtain-
ing all roots: 

3 64 0z    

Individual Tests 2.2 

Variant 1 

Separate each of the following expres-
sions into real and imaginary parts: 

1. 2 2(2 ) 4 1w i z i z i     , 

2. 2 Re( 2 )w z z iz   .  

Find the value of the given numbers. 

 Ln 2 3 2i . 

Variant 2 

Separate each of the following ex-
pressions into real and imaginary 
parts: 

1. 2(3 ) 7 2w i z i z i     , 

2. 2 Im( 2 )w z z iz   .  

Find the value of the given numbers. 

 
2

3
i

i . 
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Individual Tests 2.3 

Variant 1 

Differentiate the following functions: 

1. 4cos (3 7 )w z i  , 

2.  2 4
i z

z i


 . 
Find out which of the following functions 
are analytic at least at one point: 

2(2 ) 4 1w i z i z i      
Prove that the given function is harmon-
ic. Find ( , )u x y  such that ( )f z u iv   
is analytic: 

2 33v y x x   

Variant 2 

Differentiate the following functions: 

1. 3 2( 3 )sin4w z z z  , 

2.  
2

3 5
z i

z i


 . 
Find out which of the following func-
tions are analytic at least at one point: 

2(3 ) 7 2w i z i z i      
Prove that the given function is har-
monic. Find ( , )u x y  such that 

( )f z u iv   is analytic: 
2 2 2 1v x y y     

Individual Tests 2.4 

Variant 1 

Evaluate  the following integrals: 

1. 2(3 cos ) ,z z dz




 : 1, Re 0z z   . 

2. 

0

sin 2

i

z z dz , 

3. 
1 2

dz

z  , 

4. 
7

87

z dz

z . 

Variant 2 

Evaluate  the following integrals: 
1. 2( 2sin ) ,z z dz



  

: 3, Im 0z z    

2. 

0

cos3

i

z z dz , 

3. 
3 1

dz

z  , 

4.  3ln 3 1

3 1

z dz

z



 . 

Individual Tests 2.5 

Variant 1 

Evaluate  the following integrals: 

1. 

2

1

( 1)( 4)
z

z
dz

z z




  , 

2. 
2

6

5 3

2 3
z i

z
dz

z z
 



  , 

3. 
3 2

4

1

3 7 4 1

z

z z z
dz

z


  
 , 

4. 
2 2

2
( 4)

z i

i dz

z
 

 . 

Variant 2 

Evaluate  the following integrals: 

1. 

3

3 5

( 2)( 5)
z

z
dz

z z




  , 

2. 
2

1 5

3 2

2 3
z

z
dz

z z
 



  , 

3. 
3 2

3

2

5 2

z

z z z
dz

z


  
 , 

4. 
2 2

3
( 9)

z i

i dz

z
 

 . 
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Individual Tests 2.6 

Variant 1 

Determine and classify all the singulari-
ties of the functions: 

1. 
2

5 4 3

4
( )

4 4

z
f z

z z z




 
, 

2. 
e 1

( )
sin 2 2

z z
f z

z z

 



.  

 
Expand ( )f z  in a Laurent series valid for 

given K . 

2

4 8
( ) ,   :  3

2 3

z
f z K z

z z


  

 
. 

Variant 2 

Determine and classify all the singu-
larities of the functions: 

1. 
2

4 3 2

9
( )

6 9

z
f z

z z z




 
, 

2. 
3(1 cos )

( )
sin

z z
f z

z


 .  

 
 
Expand ( )f z  in a Laurent series val-

id for given K . 

2

2
( ) , : 2 2 4

2 8

z
f z K z

z z


   

 
. 

 

Individual Tests 2.7 

Variant 1 

Evaluate  the following integrals: 

1. 
2 2

3

e

( 16)

z

z

dz

z z


 , 

2. 
2 2

2

sin

( 9)
z

z dz

z z


 , 

3. 
2 2

1

( 1)

x
dx

x







 . 

Variant 2 

Evaluate  the following integrals: 

1. 
2

3

e

( 5)

z

z

dz
z z


 , 

2. 
2 2

1

sin

( 2)
z

z dz

z z


 , 

3. 
2 2

3

( 9)

x
dx

x







 . 
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Attestation test “Series” 

1. Determine whether the series 
1

4 4

5 1
n

n

n







  is convergent or divergent. 

2. Determine whether the series 
3 2

1

1

2n

n

n n n







 
  is convergent or divergent. 

3. Determine whether the series 
   2

1

1

1 ln 1
n

n n




   is convergent or divergent. 

4. Determine whether the series 
1

!

(2 3)!
n

n

n




  is convergent or divergent. 

5. Determine whether the series   2

1

4 4
1

5 1

n

n

n

n








 is absolutely convergent, conditional-

ly convergent, or divergent.  

6. Find interval of convergence of the series  
1

2 1
1

2

n
n

n

n
x

n





 
 

 
 . 

7. Find a power series representation for the function and determine the interval of 

convergence 
32

( ) cos
3

x
f x  . 

8. Use a power series to approximate the definite integral to three decimal places
0.1

0.01

ln (1 )x
dx

x


 . 

9. Use power series to solve the initial-value problem 2 22y x y   ,  0 2y  . 

10. Determine the Fourier sine series of the given functions on the given intervals 
( ) 1 , (0; ).f x x x     

 

Attestation test “Theory of analytic functions of one complex variable” 

1. Describe graphically the region represented by the following
 

2 1z i   , 

1 Re 3z  . 

2. Separate of the following into real and imaginary parts
 

3

1 3

i
z

i

 



. 
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3. Find the derivative of the following 

   3 2 2 3( ) 3 3 3 3 1f z x xy x i x y y y        at the point 0 1z i  . 

4. Find the derivative of the following
 
 2 3 sin 3z z z

 
5. Find a coefficient of expansion and the rotation angle at this point when 
mapping ( ) ( , ) ( , )f z u x y i v x y   

3 2 2 3
0( , ) 3 3 , ( , ) 3 3 1, 1 2u x y x xy x v x y x y y y z i           

6. Evaluate   Im

C

z z dz , C   the line from 1 0z   to 2 1z i  . 

7. Evaluate   
2 25

dz

z  . 

8. Evaluate   
2

1

3

1
z i

z
dz

z
 



 . 

9. Expand ( )f z  in a Laurent series valid for given K : 

1
( ) , : 2 3

( 2) ( 3)
f z K z

z z
  

 
. 

10. Evaluate    
2 2

3

cos

( 4)
z

z dz

z z


 . 
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