Приведенные в табл. 3 данные получены через сутки после полива нормой $250~{\rm M}^3$ /га. Они свидетельствуют об увеличении запасов влаги в метровом слое почвы, хотя в верхних горизонтах $0-30~{\rm cm}$ влажность ниже. Связано это с тем, что обработка почвы способствует увеличению водопроницаемости в слое $0-60~{\rm cm}$ и накоплению влаги и питательных веществ в более глубоких горизонтах.

Таким образом, следует отметить, что в результате сельскохозяйственного использования имеет место увеличение плотности почвы. В большей степени она возрастает в верхнем 0 — 60-сантиметровом слое, что приводит к ухудшению впитывающей способности почвы. Поэтому для повышения качества полива необходимо применять рыхление и другие специальные приемы обработки дернины, повышающие впитывающую способность на 15 — 20% и более.

Список цитированных источников

- 1. Желязко, В.И. Эффективность рыхления дерново-подзолистых почв при утилизации животноводческих стоков// Проблемы мелиорации и водного хозяйства на современном этапе: матер. Междунар. науч.-практ. конф., посвящ. 80-летию высшего мелиорат. образов. в Республике Беларусь. 4—5 июня 1999 г. Горки, 1999/ С. 115—117.
- 2. Дубенок, Н. И. Изменение водно-физических свойств почв на склонах при дождевании многолетних трав // Вестник сельскохозяйственной науки. 1986. № 11. С. 40 56.
- 3. Городничев, В. И. Методы, системы управления, контроля и оценки качества работы фронтальных дождевальных машин. Коломна: ФГНУ «Радуга», 2003. 354 с.
- 4. Желязко, В. И. Эколого-мелиоративные основы орошения земель стоками свиноводческих комплексов. Горки, 2003. 168с.

УДК 620

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ЛАБОРАТОРНОЙ УСТАНОВКИ МИКРОГЭС

Байболов А. Е., Тунгатар Д. С.

Казахский национальный аграрный университет, г. Алматы, Казахстан, tungatar_dana@mail.ru
Научный руководитель – Саркынов Е. С., к.т.н., профессор

В статье рассматривается количественные и качественные оценки водно-энергетических ресурсов, которая применяется определенная система показателей, включающая в себя топографические, гидрологические и энергетические особенности рассматриваемой реки или бассейна.

В настоящее время общепринято различать три категории гидроэнерготехнических ресурсов: валовый, технический и экономический гидроэнергопотенциал [1, 2, 3]. В случае использования микроГЭС метод перехода от валового потенциала к техническому требует учета всех вышеперечисленных факторов. Объясняется это, прежде всего, конструктивными особенностями и условиями эксплуатации таких установок. Учет каждой особенности наклады-

вает определенные ограничения на расчет коэффициентов использования речного стока и напора. Например, фиксированная длина деривации (гибкого рукава) ставит под зависимость величину напора установки от уклона используемого участка реки:

$$H = iI_{\partial ep},\tag{1}$$

где i – уклон участка реки; $I_{\partial ep}$ – длина гибкого рукава, м.

Если ориентироваться на выдачу постоянной мощности микроГЭС, то может быть найден и расход воды станции:

$$Q = \frac{N}{9.81\eta H} = \frac{N}{9.81\eta i l_{oep}},\tag{2}$$

где N – номинальная мощность станции, кВт; η – ее КПД.

Следует отметить, что значение КПД учитывает непостоянные потери напора и расхода в процессе работы агрегата. Согласно каталогу типовых микроГЭС величина этого параметра колеблется в пределах от 0,42 до 0,70 [5].

С учетом того, что перепад высот и величина валового потенциала рассматриваемого участка реки равны соответственно:

$$h_1 - h_2 = i I_{yy},$$
 (3)

$$\mathfrak{S}_{B} = 9.81 (h_1 - h_2) Q_{B},$$
(4)

где h_1 и h_2 – высоты начала и конца участка, м; l_{yq} – его длина, м.

Технический ГЭП, измеряемый в киловаттах среднегодовой мощности, будет равен:

$$\Theta_{T} = k_{H} \frac{l_{yu}}{l_{\partial ep}} N, \tag{5}$$

где k_{H} – количество отдельных агрегатов.

Формула справедлива при предположении размещения друг за другом отдельных агрегатов по всей длине рассматриваемого участка. Фактическое использование водноэнергетических ресурсов отдельной реки будет меньше технически возможного:

$$\mathcal{G}_{\phi} = t_{u} \sum_{i=1}^{n} N_{i} , \qquad (6)$$

где t_u – число часов работы агрегатов, общим числом n с различной (в зависимости от выбранного типа) номинальной мощностью агрегата; N_i – номинальная мощность агрегата.

Длительная производственная эксплуатация опытных образцов РПГЭС мощностью 1,5 кВт показала, что они просты в управлении и надежны в эксплуатации, не требуют постоянного обслуживающего персонала, могут быть смонтированы и пущены в работу лицами без специальной подготовки, обеспечивают электроэнергией весь набор бытовых и производственных электроприемников малых объектов, могут быть использованы в условиях с передвижным (кочевым) характером работы. Качество вырабатываемой на РПГЭС электроэнергии отвечает требованиям, предъявляемым к таким микроГЭС [6].

Лабораторная установка для проведения исследовательских испытаний микроГЭС (рисунок 1) состояла из резервуара 1, насоса 2, вентиля 3, самого микроГЭС 4, манометров 5 и 6, рукавов 7 и 8, щита приборов и управления 9.

Емкость резервуара 1,5 м 3 . На установке используется насос КМ 100-80-160-С9ХЛ4 производительностью 100 м 3 и напором 32 м. Манометры служат для определения напора. При этом показание манометра 5 регулировалось изменением сопротивления генератора при помощи реостатов, установленных на щите приборов, а манометра 6 - вентилем 3. Частота вращения гидротурбины, сила тока и напряжение определялись при помощи частотомера, амперметра и вольтметра, установленных на щите приборов.

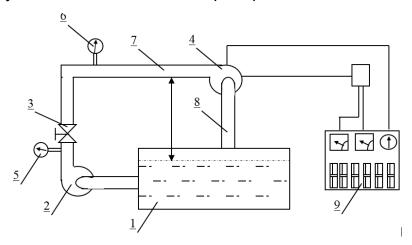


Рисунок 1 — Принципиальная схема установки для проведения лабораторных исследовательских испытаний микроГЭС

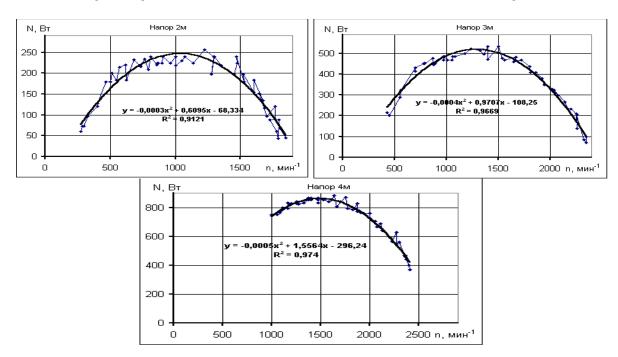


Рисунок 2 – Зависимости вырабатываемой мощности макетного образца микроГЭС от частоты вращения турбины при различных напорах

Номинальная мощность 1 кВт, заложенная в техническом задании на разработку, достигается при расходе воды (0,03...0,035) м³/с и напоре воды 4 м. При этом частота вращения гидротурбины составила (1520...1580) мин⁻¹. За период испытаний узлы и агрегаты микроГЭС работали стабильно в соответствии с их функциональным назначением. В целом стендовые испытания микроГЭС показали достаточно высокую его работоспособность.

Список цитированных источников

- 1. Калачев, Н.С. Водноэнергетический кадастр рек Казахской ССР. -Алма-Ата: Наука, 1965.
- 2. Гидроэнергетика и комплексное использование водных ресурсов. Изд. 2. М.: Энергоиздат, 1982.
- 3. Малинин, Н.К. Теоретические основы гидроэнергетики. М.: Энергоатомиздат, 1985.
- 4. Методические указания выбора энергоносителей для топливных процессов сельскохозяйственного производства и быта в сельских районах (часть II): ЭНИН им. Кржижановского. -М., 1984.
- 5. Кораблев, А. Д. Эффективные конструкции малых ГЭС для применения в овцеводстве Киргизии. Фрунзе: КиргизИНТИ, 1986. С. 30...33, 39.
- 6. Селивахин, А. И. Малая энергетика на современном этапе развития // Механизация и электрификация сельского хозяйства. № 4. 1997. С. 2.
- 7. Патентные исследования. Содержание и порядок проведения: ГОСТ Р15.011-96.

УДК 574.635:[581.526.3:57.044]

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ СВОБОДНОПЛАВАЮЩИХ ГИДРОФИТОВ ВОДНЫХ ЭКОСИСТЕМ БЕЛАРУСИ ДЛЯ ЦЕЛЕЙ ФИТОРЕМЕДИАЦИИ

Бардюкова А. В.

Учреждение образования «Гомельский государственный университет имени Франциска Скорины», г. Гомель, Республика Беларусь, sanakovaleva@mail.ru Научный руководитель – Ковалева О. В., к.б.н., доцент

The paper presents the results of experimental studies of possible use of freefloating hydrophytes for wastewater treatment. A bioremediation method was applied during the experiment.

В условиях активной хозяйственной деятельности человека, особо острой проблемой стало загрязнение природных вод антропогенными поллютантами. Одним из сильнейших по действию и наиболее распространенным химическим загрязнением водоемов является загрязнение тяжелыми металлами. В связи с тем, что тяжелые металлы обладают высокой биологической активностью, мутагенными и канцерогенными свойствами, они способны нанести серьезный экологический ущерб водным экосистемам, приводя к отравлению и гибели организмов. Для минимизации отрицательного воздействия тяжелых металлов на водные экосистемы необходимо усовершенствование и разработка новых методов очистки сточных вод от его соединений.

Целью работы было выявить среди местных представителей свободноплавающих гидрофитов виды, наиболее перспективные для целей фиторемедиации водных объектов от железа — металла, занимающего первое место в объеме сброса сточных вод Республики Беларусь и являющегося приоритетным загрязнителем (среди тяжелых металлов) поверхностных вод г. Гомеля.