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Tab. 2. Overshooting of yw and yz changes.  
Changes of 
parameters 

Overshooting from „w” Overshooting from „z” 
a d u a d u 

0.95·n, 
1.05·mp 

42,94 78,48 49,17 77,30 47,77 46,20 

n, mp 43,27 79,05 49,69 76,97 47,71 45,62 
1.05·n, 
0.95·mp 

43,58 79,58 50,18 76,65 47,65 45,07 

Finally, it is stated that the tests carried out during the ground tests of the en-
gine could provide full information about its properties from the signal „w” (follow-
up test) and the „z” signal (test of resistance to disturbance) in flight. Characteristics 
from the „z” signal allow to unequivocally evaluate its properties during the flight of 
an airplane without performing an expensive (often dangerous) aircraft flight after its 
new adjustment. 
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Preliminaries.  In system theory, in theoretical issues such as, for example, stabil-
ity and stabilization, representation and identification of nonlinear models, disturb-
ance rejection, a nonlinear dynamic in many cases is represented explicitly as a sum 
of its Taylor linearization and residual around the equilibrium or working point. 
Then, results follows from using the known Implicit Function Theorem.  Although 
the concept of the described procedure is simple, but finding the reverse of the Jaco-
bian is not so simple and obvious, it is known to an involved process. In [1] it was 
proposed another approach based on higher order functions that simplifies the proce-
dure of applying Implicit Function Theorem. This approach was used successfully to 
examine such properties as controllability and observability of nonlinear discrete-
time control systems with fractional difference operators. Now, our goal is to briefly 
                                                 
1The work is supported under the program of the Minister of Science and Higher Education under 
the name" Regional Initiative of Excellence "in 2019 – 2022.  Project number 011 / RID / 2018/19  
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sketch how one can answer for the question if the local properties connected with 
stability and stabilization can be described via global properties of linearized systems.  

Let us start from introducing necessary notation and facts. For any real positive ℎ 
and real number 𝑎𝑎 let (ℎ𝑁𝑁)𝑎𝑎 = {𝑎𝑎,𝑎𝑎 + ℎ,𝑎𝑎 + 2ℎ, … }. The Grünwald-Letnikov ℎ-
difference fractional operator of order 𝛼𝛼 > 0 for a function 𝑥𝑥: (ℎ𝑁𝑁)𝑎𝑎 → 𝑅𝑅 is defined 
as follows (see [2]) 

( ∆ℎ𝛼𝛼𝑥𝑥)(𝑡𝑡) =𝑎𝑎 ∑ 𝑐𝑐(𝛼𝛼)(𝑠𝑠)𝑥𝑥(𝑡𝑡 − 𝑠𝑠ℎ)
𝑡𝑡−𝑎𝑎
ℎ
𝑠𝑠=0 , 

 
where 𝑐𝑐(𝛼𝛼)(𝑠𝑠) = (−1)𝑠𝑠

ℎ𝛼𝛼
�𝛼𝛼𝑠𝑠� and �𝛼𝛼𝑠𝑠� is the classical binomial coefficient, i.e.  

�𝛼𝛼𝑠𝑠� = 𝛼𝛼(𝛼𝛼−1)…(𝛼𝛼−𝑠𝑠+1)
𝑠𝑠!

  for 𝑠𝑠 ∈ 𝑁𝑁 and �𝛼𝛼𝑠𝑠� = 1 if 𝑠𝑠 = 0.          
Let 𝐴𝐴 be a square 𝑝𝑝 × 𝑝𝑝 matrix. Recall also that the discrete Mittag-Leffler func-

tion is the function defined as 
𝐸𝐸(𝛼𝛼,𝛽𝛽)(𝐴𝐴,𝑛𝑛) = ∑ 𝐴𝐴𝑘𝑘∞

𝑘𝑘=0 �𝑛𝑛 − 𝑘𝑘 + 𝑘𝑘𝑘𝑘 + 𝛽𝛽 − 1
𝑛𝑛 − 𝑘𝑘 �. 

 
Later on we will denote(𝐸𝐸(𝛼𝛼,𝛼𝛼)

𝜌𝜌 (𝜆𝜆,𝑛𝑛) = 𝐸𝐸(𝛼𝛼,𝛼𝛼)(𝜆𝜆,𝑛𝑛 − 1). 
Besides definitions associated with fractional calculus, we need also functions 

from particular family. Namely, a continuously differentiable function 𝐹𝐹:𝑅𝑅𝑝𝑝 → 𝑅𝑅𝑚𝑚is 
called a higher order function if 𝐹𝐹(0) = 0  and ∂F

∂xi
|x=0 = 0 where 𝑥𝑥 = �𝑥𝑥1, … , 𝑥𝑥𝑝𝑝� ∈

𝑅𝑅𝑝𝑝. The class of higher order functions is denotes by ℋ(p, m). 
Proposition 1. [3] If 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑧𝑧, 𝑓𝑓 ∈ ℋ(p, m) and 𝐴𝐴 is nonsingular 

matrix, then  𝑥𝑥 = 𝐴𝐴−1(𝑧𝑧 − 𝐵𝐵𝐵𝐵) + 𝑔𝑔(𝑦𝑦, 𝑧𝑧),𝑔𝑔 ∈ ℋ(p, m).  
 Linear control system with Grunewald-Letnikov-type h-difference fractional-

order  operator.  Let us consider the following control system 

( ∆ℎ𝛼𝛼𝑥𝑥)(𝑡𝑡 + ℎ) = 𝐹𝐹(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)),          𝑥𝑥(0) = 𝑥𝑥00                             (1) 
where 𝑡𝑡 ∈ (ℎ𝑁𝑁)0, 𝑥𝑥: (ℎ𝑁𝑁)0 → 𝑅𝑅𝑝𝑝 denotes the state vector, the values of control 

function 𝑢𝑢 are elements of an arbitrary subset Ω of 𝑅𝑅𝑚𝑚, function 𝐹𝐹 is smooth. Addi-
tionally we assume that 𝐹𝐹(0,0) = 0 and that 0 ∈ 𝑖𝑖𝑖𝑖𝑖𝑖Ω. System (1) can be rewritten 
into the following equivalent form: 

( ∆ℎ𝛼𝛼𝑥𝑥)(𝑡𝑡 + ℎ) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) + 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),          𝑥𝑥(0) = 𝑥𝑥0𝑎𝑎       (2) 

where 𝑡𝑡 ∈ (ℎ𝑁𝑁)0, 𝐴𝐴 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(0,0), 𝐵𝐵 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(0,0) and 𝑓𝑓:𝑅𝑅𝑝𝑝 × Ω → 𝑅𝑅𝑝𝑝 is a nonlinear 
function with the property 𝑓𝑓 ∈ ℋ(p + m, p). If 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)) = 0, then system (2) is 
called the linear approximation of system (1). 

Proposition 2.  Let 0 < 𝛼𝛼 ≤ 1 and 𝑢𝑢: (ℎ𝑁𝑁)0 → Ω be a fixed. Then system (2) has 
the unique solution given by 

𝑥𝑥(𝑡𝑡) = 𝐸𝐸(𝛼𝛼,𝛼𝛼) �𝐴𝐴ℎ𝛼𝛼 , 𝑡𝑡
ℎ
� 𝑥𝑥0 + (𝐸𝐸(𝛼𝛼,𝛼𝛼)

𝜌𝜌 (𝐴𝐴ℎ𝛼𝛼 ,⋅) ∗ 𝐵𝐵𝑢𝑢�)(𝑡𝑡
ℎ

) + 𝐹𝐹𝑡𝑡(𝑥𝑥0,𝑈𝑈), 
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where 𝑢𝑢� �𝑡𝑡
ℎ
� = ℎ𝛼𝛼𝑢𝑢(𝑡𝑡), 𝐹𝐹𝑛𝑛(𝑥𝑥0,𝑈𝑈) ∈ ℋ(p, p) and 𝐹𝐹𝑡𝑡(𝑥𝑥0,𝑈𝑈) = (𝐸𝐸(𝛼𝛼,𝛼𝛼)

𝜌𝜌 (𝐴𝐴ℎ𝛼𝛼 ,⋅) ∗

𝑓𝑓)̅(𝑡𝑡
ℎ

) with 𝑓𝑓̅ �𝑡𝑡
ℎ
� = ℎ𝛼𝛼𝑓𝑓(𝑥𝑥(𝑡𝑡 + 𝑎𝑎),𝑢𝑢(𝑡𝑡)). 

Proof is same as the proof of similar result given in [3] for the case 
( ∆ℎ𝛼𝛼𝑥𝑥)(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡 + 𝑎𝑎) + 𝐵𝐵𝐵𝐵(𝑡𝑡)) + 𝑓𝑓(𝑥𝑥(𝑡𝑡 + 𝑎𝑎),𝑢𝑢(𝑡𝑡), 𝑥𝑥(𝑎𝑎) = 𝑥𝑥0.𝑎𝑎  

Local Controllability of nonlinear system. Let 𝐽𝐽0(𝑚𝑚) be a set of all sequences 
𝑈𝑈 = (𝑢𝑢(0),𝑢𝑢(ℎ),𝑢𝑢(2ℎ) … ), where 𝑢𝑢(𝑛𝑛ℎ) = 𝑢𝑢(𝑡𝑡) ∈ Ω. Let 𝛾𝛾(𝑡𝑡, 𝑥𝑥0,𝑈𝑈) = 𝑥𝑥(𝑡𝑡), 𝑡𝑡 ∈
(ℎ𝑁𝑁)𝑎𝑎, denote the state forward trajectory of system (2), i.e. the uniquely defined so-
lution of (2) defined by initial state 𝑥𝑥0 and control sequence 𝑈𝑈 ∈ 𝐽𝐽0(𝑚𝑚). The reacha-
ble set ℛ𝑞𝑞(𝑥𝑥0)  from the given initial state 𝑥𝑥0 in 𝑞𝑞, 𝑞𝑞 = 1,2,3, …,  steps is the set of 
all states to which the given system can be steered from the initial state 𝑥𝑥0 in q steps 
by sequence control 𝑈𝑈 ∈ 𝐽𝐽0(𝑚𝑚).  

Definition 1. System (1) is locally controllable in 𝑞𝑞 steps from initial state 𝑥𝑥0 if 
there exists a neighborhood 𝑉𝑉 of 𝑥𝑥0 such that 𝑉𝑉 ⊂ ℛ𝑞𝑞(𝑥𝑥0). System (1) is glabally 
controllable in 𝑞𝑞 steps from initial state 𝑥𝑥0 if  ℛ𝑞𝑞(𝑥𝑥0) = 𝑅𝑅𝑝𝑝.  

              Matrix 𝑄𝑄𝑞𝑞 = [𝐵𝐵 𝐸𝐸(𝛼𝛼,𝛼𝛼)(𝐴𝐴ℎ𝛼𝛼 , 1)𝐵𝐵 … 𝐸𝐸(𝛼𝛼,𝛼𝛼)(𝐴𝐴ℎ𝛼𝛼 , 𝑞𝑞 − 1)𝐵𝐵] is called 
the controllability matrix. Based on Proposition 2, directly from [3] it follows that the 
linear approximation  

( ∆ℎ𝛼𝛼𝑥𝑥)(𝑡𝑡 + ℎ) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡),   𝑥𝑥(0) = 𝑥𝑥0𝑎𝑎 ,                     (3) 
of system (1) is globally controllable if and only if the rank of matrix 𝑄𝑄𝑞𝑞 is full. 

Theorem 1. [3] System (1) is locally controllable in q steps from the origin if its 
linear approximation (3) is globally controllable in 𝑞𝑞 steps from initial state 𝑥𝑥0.   

Stabilization.  Recall that 𝑥𝑥𝑒𝑒 = �𝑥𝑥1𝑒𝑒, … , 𝑥𝑥𝑝𝑝𝑒𝑒� is an equilibrium of system  

( ∆ℎ𝛼𝛼𝑥𝑥)(𝑡𝑡 + ℎ) = 𝐴𝐴𝐴𝐴(𝑡𝑡)0                                       (4) 

if and only if ( ∆ℎ𝛼𝛼𝑥𝑥𝑒𝑒)(𝑡𝑡) = 𝐴𝐴𝑥𝑥𝑒𝑒0  for 𝑡𝑡 ∈ (ℎ𝑁𝑁)0.  
Definition 2. Equilibrium 𝑥𝑥𝑒𝑒 = 0 of system (3) is said to be asymptotically stable 

if (i) for each 𝜖𝜖 > 0 there exists 𝛿𝛿 > 0 such that ‖𝑥𝑥0‖ < 𝛿𝛿 implies ‖𝑥𝑥(𝑡𝑡)‖ < 𝜖𝜖 for all 
𝑡𝑡 ∈ (ℎ𝑁𝑁)0 and (ii) if there exists 𝛿𝛿 > 0 such that ‖𝑥𝑥0‖ < 𝛿𝛿 implies lim

𝑡𝑡→∞
𝑥𝑥(𝑡𝑡) = 0.   

Linear approximation (3) of system (1) is called stabilizable if the exists the linear 
state-feedback controller with gain 𝐹𝐹 ∈ 𝑅𝑅𝑚𝑚×𝑝𝑝, i.e. 𝑢𝑢(𝑡𝑡) = 𝐹𝐹𝐹𝐹(𝑡𝑡), such that the closed 
loop system  

( ∆ℎ𝛼𝛼𝑥𝑥)(𝑡𝑡 + ℎ) = ℎ𝛼𝛼(𝐴𝐴 + 𝐵𝐵𝐵𝐵)𝑥𝑥(𝑡𝑡), 𝑥𝑥(0) = 𝑥𝑥0𝑎𝑎  
is asymptotically stable (for condition of existing the stabilization feedback con-

troller for system (3) see [3]).  
Theorem 2. If the linear approximation of system (1) is globally controllable then 

system (1) can be locally stabilizable in 𝑞𝑞 steps by state-feedback law 𝑢𝑢(𝑡𝑡) =
𝐹𝐹𝐹𝐹(𝑡𝑡) + 𝛾𝛾(𝑥𝑥(𝑡𝑡)) with 𝛾𝛾(⋅) ∈ ℋ(2𝑝𝑝, 𝑞𝑞𝑞𝑞). 
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Sketch of the proof: Let x0 be a fixed initial state. Then control sequence 𝑈𝑈𝑞𝑞 =
𝑄𝑄𝑞𝑞−1𝐸𝐸(𝛼𝛼,𝛼𝛼)(𝐴𝐴ℎ𝛼𝛼 , 𝑞𝑞) + 𝜂𝜂(𝑥𝑥0, 0), where 𝜂𝜂(𝑥𝑥0, 0) ∈ ℋ(2𝑝𝑝, 𝑞𝑞𝑞𝑞), transfers in 𝑞𝑞 steps sys-
tem (1) to the origin, see [3]. Since this sequence is uniquely determined in a neigh-
borhood of the origin and origin is the equilibrium of (3) then using reasoning based 
on higher order functions (see [1]) we obtain thesis. 

Remark: The approach to stabilization of nonlinear control systems with Grün-
wald-Letnikov ℎ-difference fractional operator given in Theorem 2 is a consequence 
of controllability results presented in [3]. Its idea is different from the idea of ap-
proach to the similar problem presented in [5]. 
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Pipelines are difficult to service due to their large size and complex construction. 
Comprehensive diagnosis of leakages from long pipelines consists of several activi-
ties: leak detection, estimation of its size, searching for the location where the leak 
occurred, deduct the intentional leak (gas collection) from the damage. There are a 
number of methods to detect leaks (from monitoring pipelines using trained dogs, 
monitoring pressure and flows, to methods using neural networks), but each of these 
methods has its weak and strong sides. Due to the possible catastrophic consequences 
of misdiagnosis, several methods of detecting and locating leakages from pipelines 
are often used in parallel. 

The article presents the basics of the method that can be used as a supplementary 
method. It is based on standard signals taken from the pipeline (it can be pressure, 


