

Рисунок 5 – График зависимости скорости от времени для выходного звена

Конструктивным недостатком подобных механизмов с квазиостановками является значительная длина звеньев, и как следствие, увеличение габаритных размеров, а основным достоинством – возможность применения при высоких скоростях и больших нагрузках. Из рисунка 5 особенно хорошо видно изменение скорости выходного звена (ползуна).

Из всего вышесказанного можно сделать вывод, что данные механизмы благодаря квазиостановке (приближенной остановке), при отсутствии строгих требований к точности остановки, возможно и целесообразно применять в машинах текстильной и легкой промышленности, заменяя более дорогостоящие электронные программоносители, включающие в себя шаговый привод с микропроцессорным управлением.

СПИСОЌ ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. Теория механизмов и механика машин: учебник для вузов. Фролов К.В., Попов С.А., Мусатов А.К. и др.; под ред Фролова К.В. – 5-е изд.– М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 664 с.

2. Гончаров П.С. и др. NX для конструктора-машиностроителя. – М.: ДМК Пресс, 2010. – 504 с.

УДК 669.872:548.735

МИКРОСТРУКТУРА И ТЕКСТУРА БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СПЛАВА In-21,5 ат.% Ві

Шепелевич В.Г.¹, Щербаченко Л.П.²

 Белорусский государственный технический университет Минск, Республика Беларусь
Брестский государственный технический университет Брест, Республика Беларусь

В настоящее время европейским парламентом приняты три директивы в области электроники, которые ограничивают использование свинецсодержащих материалов при изготовлении электронных устройств [1]. По этой причине интенсивно ведутся поиски новых сплавов, которые могли бы заменить легкоплавкий эвтектический припой Pb-Sn. Перспективными альтернативными сплавами являются сплавы на основе висмута, олова, индия [2]. Одним из таких сплавов является легкоплавкий эвтектический сплав In-21,5 ат.% Ві с низкой температурой плавления.

Высокая стоимость висмута, индия, олова приводит к необходимости использования ресурсосберегающих технологий при изготовлении сплавов на их основе. К такой технологии относится высокоскоростная кристаллизация, в процессе которой происходит сильное переохлаждение жидкой фазы. Это влечет за собой измельчение микроструктуры получаемых сплавов, формирование текстуры, более однородное распределение компонентов сплава. В связи с вышеизложенным целью данной работы является установление закономерностей формирования микроструктуры околоэвтектического сплава In-21 ат.% Ві при охлаждении расплава со скоростью свыше 10⁵ К/с.

Сплав In-21 ат.% Ві получен сплавлением компонентов чистотой не хуже 99,9999% в кварцевой ампуле. Быстрозатвердевшие фольги сплава были получены кристаллизацией капли расплава (~0,2 г) на внутренней полированной поверхности вращающегося медного цилиндра диаметром 20 см, линейная скорость поверхности которого составляла 15 м/с. Скорость охлаждения расплава, согласно расчетам [3], достигает ~10⁵ К/с.

Методом высокоскоростной кристаллизации были получены фольги длиной до 10 см, шириной до 1 см и толщиной 30-70 мкм. Микроструктура фольг исследовалась с помощью растрового электронного микроскопа LEO 1455 VP, оснащенного приставкой фазового анализа HKL Channel 5. Объемная доля фаз, удельная поверхность межфазных границ определялась методом секущих с относительной погрешностью 10%. Ренттеноспектральный микроанализ проводился с использованием энергодисперсионного SiLi полупроводникового детектора фирмы Rontec. Рентгенографические исследования выполнялись на дифрактометре ДРОН-3 в геометрии Брегга-Брентано с использованием монохроматического медного излучения. Текстура изучалась методом обратных полюсных фигур. Полюсные плотности p дифракционных линий индия и соединения In₂Bi рассчитывались по методу Харриса.

При рентгенографических исследованиях было установлено, что фольги эвтектического сплава сплава In-21 ат.% Ві, полученные в процессе сверхбыстрой кристаллизации, являются двух фазными. Об этом свидетельствует появлении на на дифрактограмме данного сплава дифракционных линий индия (002, 110, 112, 200, 103, 211, 202, 213) и соединения In_2Bi (0002, 11 $\overline{2}$ 0, 10 $\overline{1}$ 2, 11 $\overline{2}$ 2, 20 $\overline{2}$ 2, 22 $\overline{4}$ 2).

Изображение микроструктуры поперечного сечения быстрозатвердевшей фольги сплава In-21 ат.% Ві представлено на рисунке 1. На фотографиях наблюдаются светлые и темные области, что свидетельствует о выделениях различных фаз. В результате рентгеноспектральных исследований установлено, что белая область соответствует соединению In₂Bi, темная область – фазе In.

Рисунок 1 – Микроструктура поперечного сечения быстрозатвердевшей фольги сплава In-21,5 ат.% В

Зависимость объемной доли V промежуточной фазы In_2Bi и удельной поверхности S межфазной границы от расстояния до поверхности A фольги, прилегающей к кристаллизатору, представлена на рисунке 2. Зависимость среднего размера d хорды на выделениях фазы In_2Bi от расстояния до поверхности быстрозатвердевшей фольги сплава In-21 ат.% Вi представлена на рисунке 3.

Обнаружено, что параметры микроструктуры не зависят от расстояния до поверхности фольги, либо изменяются в пределах погрешности. Объемная доля индия и соединения In₂Bi составляет соответственно $V_{In}=0,36$ и $V_{In2Bi}=0,64$. Удельная поверхность *S* межфазной границы равна 0,71 мкм⁻¹. Средние размеры хорд случайных секущих на выделениях фазы индия и соединения In₂Bi достигают значения соответственно $d_{In2Bi}=3,2$ мкм и $d_{In}=1,9$ мкм.

Рисунок 2 – Зависимость объемной доли V (1) промежуточной фазы In₂Bi и удельной поверхности S (2) от расстояния до поверхности быстрозатвердевшей фольги сплава In-21 ат.% Bi

Рисунок 3 – Зависимость среднего размера *d* хорды на выделениях фазы In (1) и соединения In₂Bi (2) от расстояния до поверхности быстрозатвердевшей фольги сплава In-21 ат.% Bi

Быстрозатвердевшие фольги сплава In-21 ат.% Ві исследовались с помощью дифракции отраженных электронов, благодаря чему было обнаружено формирование в них преимущественной текстуры. Значения полюсных плотностей для фаз In и промежуточного соединения In₂Bi в быстрозатвердевших фольгах для поверхности A, прилегающей к кристаллизатору, приведены в таблице 1. Как видно из таблицы, максимальные значения полюсных плотностей приходятся на дифракционные линии 002 и 110 индия и дифракционные линии $10\overline{12}$ и $20\overline{22}$ фазы In₂Bi. Такая же текстура но менее выраженная наблюдается на противоположной поверхности фольги.

Таким образом, установлено, что в быстрозатвердевшей фольге сплава In-21 ат. % Ві формируется однородная микроструктура, что проявляется в независимости объемной доли фаз, средней длины хорд случайных секущих на сечениях фаз и удельной поверхности межфазной границы от расстояния до поверхности фольги. Это можно объяснить возникновением при высокоскоростной кристаллизации большого числа незначительных энергетических и концентрационных флуктуаций, которые обуславливают образование дисперсных областей, обогащенных разными компонентами и гомогенно распределенные в объеме расплава. Эти области затем становятся зародышами кристаллических фаз.

Фаза Іп								
Диффракционные линии	002	110	112	200	103	211	202	213
Полюсная плотность	2,7	3,6	0,4	0,3	0,1	0,2	0,4	0,3
Фаза In ₂ Bi								
Диффракционные линии	0002 11		2 0	1012	1122	20	22	2242
Полюсная плотность	1,1	0,	,9	1,7	0,4	1,	.4	0,5

Таблица 1 – Значения полюсных плотностей дифракционных линий для индия и промежуточной фазы In₂Bi сплава In-21 ат. % Bi

Так же установлено, что выделения фазы индия преимущественно ориентируются плоскостями (001) и (110) параллельно поверхности фольги. Выделения соединения In₂Bi преимущественно ориентируются плоскостями (10 $\overline{1}2$) и (10 $\overline{1}1$) параллельно поверхности фольги. Образование наблюдаемых текстур в индии связано с тем, что соответствующие кристаллографические плоскости наиболее плотно упакованы, что способствует преимущественному росту зерен с соответствующей ориентацией.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. Otsuka T., Takehara M. Proposal for a Directive of the European Parliament and of the Council amending Directive 2002/96/EC on Waste Electrical and Electronic Equipment //ENVIRONMENTAL RESEARCH QUARTERLY, 2007. – T. 144. – C. 33.

2. Андрюшенко М. Бессвинцовая пайка. Альтернативные сплавы. Электроника: Наука, техника, бизнес. 2004. –№ 5. – с.47-49.

3. Мирошниченко И.С. Закалка из жидкого состояния. Монография. – М.: Металлургия. –1982. – 168 с.

УДК 621.9.025.7

ВЛИЯНИЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ АЛМАЗНОГО РЕЗЦА С МЕХАНИЧЕСКИМ КРЕПЛЕНИЕМ НА ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ АЛЮМИНИЕВО-МАГНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ

Левданский А. М., Ялковский Н. С.

Брестский государственный технический университет Брест, Республика Беларусь

Введение. Одним из направлений использования алмазных резцов является обработка деталей внешнего оформления, изготовляемых из цветных металлов и их сплавов, где предъявляются высокие требования к качеству поверхности. При этом получаемая поверхность должна быть зеркальной, без видимых рисок и следов инструмента. Или, к деталям, подвергающимся износу в процессе эксплуатации (трущиеся пары), предъявляются следующие требования: поверхности должны быть уплотненными (нагартованными), не должны иметь твердых включений и высота микронеровностей не должна превышать 0,0004 мм. Причем наличие следа от перемещения режущего инструмента, раковин или пор величиной 0,001—0,01 мм и других дефектов существенного влияния на работоспособность не оказывает. При этом поверхность может быть не блестящей, а матовой.

Рассмотрим некоторые факторы, влияющие на качество при обработке алюминиево-магниево-кремниевых сплавов резцом с механическим креплением вставок из поликристаллов алмаза [1].

На качество обработанной поверхности влияют следующие основные факторы: состояние режущей кромки и геометрии алмазного резца; физикомеханические свойства и состояние обрабатываемого материала; состояние оборудования; методы и режимы обработки.