

Структура халькопирита отличается от сфалерита упорядоченным расположением катионов. Упорядочение приводит к увеличению периода решетки вдоль одной из осей в 2 раза, а также вдоль диагоналей основания элементарной ячейки <100>. В атомных рядах вдоль указанных направлений чередуются атомы A^{I} и B^{III} . Такое упорядочение приводит к понижению симметрии. В идеальной тетрагональной ячейке халькопирита осевое соотношение *с/а* равно 2. Однако из-за различия размеров двух типов катионов в кристалле возникает два типа анионных тетраэдров, центрированных катионами большего и меньшего размеров. В результате кристаллическая решетка трехкомпонентных соединений $A^{I}B^{II}C^{VI}$ приобретает дополнительное искажение, определяемое параметром $\delta = 2 - (c/a)$. Тетрагональное искажение кристаллической решетки соединения CuGa₃Se₅ $\delta = -0.0002$.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

 Marin G., Taulringe S., Guevara R., Delgado J.M. et.al. Inst. Phys. Conf. Ser.N 152, Section D. 1997. Pres.at the 11 ICTMC-11. P.573-577.

УДК 621.9.08

Костюк Д.А.

МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКОГО СИГНАЛА НА ГРАНИЦЕ РАЗДЕЛА СРЕД

введение

Хотя отражение непрерывных и импульсных акустических сигналов от границы раздела сред изучено теоретически и экспериментально весьма подробно [1, 2], случай отражения акустической волны от среды, обладающей сильным поглощением звуковых колебаний, представляет значительный научный и практический интерес. В данной работе нами анализируются и развиваются недавние результаты по нормальному отражению акустических продольных [3] и поперечных [4] волн от плоской границы раздела твердого тела с сильно диссипативной средой (СДС), в качестве которой может служить вязкая жидкость.

1. ТЕОРИЯ

Рассмотрим используемую теоретическую модель. Пусть из твердого тела l в исследуемый объект 2 нормально к плоской границе раздела сред x=0 распространяется непрерывная гармоническая волна, которая частично отражается, а прошедшая волна в СДС достаточно быстро затухает (см. рисунок 1).

Волновое уравнение для продольной волны (ПВ), наиболее интересной с практической точки зрения, в СДС имеет вид [1]:

$$\rho \ddot{u}_x = c u_{x,xx} + b u_{x,xxt} , \qquad (1)$$

где u_x – компонента продольного смещения в продольной

волне, \boldsymbol{c} – модуль упругости, $\boldsymbol{\rho}$ – плотность, \boldsymbol{b} – параметр

Рисунок 1 – Отражение акустического сигнала от границы раздела сред.

диссипативных потерь, определяемый коэффициентами сдвиговой η и объемной ξ вязкости и коэффициентом теплопроводности χ согласно соотношению [2]

$$b = \frac{4}{3}\eta + \xi + \chi (c_{\nu}^{-1} + c_{p}^{-1}), \qquad (2)$$

в котором c_p и c_v – соответственно теплоемкости СДС при постоянном давлении и объеме.

Коэффициент поглощения звука выражается через параметр диссипативных потерь **b** согласно выражению $\alpha = \omega^2 b/(2\rho s_l^3)$, где $\omega = 2\pi f$ – циклическая частота звуковой волны, s_l - скорость продольного звука. При **b**=0 уравнение (1) определяет акустические колебания в твердом теле с соответствующими материальными константами.

Воспользовавшись (1) и граничными условиями, представляющими собой непрерывность упругих смещений и напряжений (если СДС - жидкость, то вместо напряжения надо иметь в виду давление) на границе сред, после стандартных преобразований получаем для коэффициента отражения ПВ следующую зависимость:

$$R_{\omega} = \frac{u_{01}^{R}}{u_{01}^{I}} = \frac{1 - \widetilde{\varepsilon}}{1 + \widetilde{\varepsilon}},$$
(3)

где u_{01}^{R}, u_{01}^{I} – соответственно амплитуды отраженной и падающей волн, $\tilde{\varepsilon} = \varepsilon (1 - ix)^{1/2}$, $\varepsilon = Z_2/Z_1$, $x = \omega/\omega_c$, $Z_1 = \rho s_{11}$ и $Z_2 = \rho s_{12,0}$ – соответственно акустические импедансы первой и второй сред (в отсутствие диссипации, при частоте ПВ $\omega \rightarrow 0$), s_{II} – скорость звука в первой среде, $s_{I2,0}$ – скорость звука во второй среде при $\omega \rightarrow 0$, $\omega_c = \rho_2 s_{D,0}^2 / b$ – некоторая эффективная частота, характеризующая СДС. Коэффициент прохождения T_{ω} сигнала может быть получен из соотношения для амплитудных коэффициентов отражения и прохождения звука T=1+R.

Исходя из зависимости (3), для фазы отраженного сигнала следует отношение:

$$tg \Psi_{\omega}^{R} = -\frac{2\varepsilon (1+x^{2})^{1/4} \sin \frac{\Psi}{2}}{1-\varepsilon^{2} (1+x^{2})^{1/2} \cos \Psi},$$
 (4)

где $\Psi = - \operatorname{arctg} x$. Таким образом, согласно (3) и (4) при отражении акустической волны от диссипативной среды меняется ее амплитуда и фаза. Если отражение происходит от менее плотной акустической среды ($Z_2 < Z_1$), то при $\omega < \omega_c$ происходит инверсия сигнала ($\Psi^{R}=\pi$). В окрестности $\omega \sim \omega_{c}$ наблюдается минимум коэффициента отражения волны при дальнейшем возрастании фазы отраженного сигнала относительно фазы падающего на границу сигнала. Далее при $\omega \gg \omega_c R_{\omega} \rightarrow 1$ и $\Psi^R \rightarrow 2\pi$, т.е. возникает полное отражение сигнала. В противоположном случае при отражении от более плотной среды инверсии сигнала не происходит ($\omega << \omega_c$, $R_{\omega} \rightarrow R_{\theta}$ и $\Psi^{R} \rightarrow \theta$). Аналогично при $\omega \sim \omega_{c}$ наблюдается минимум коэффициента отражения R_{ω} при максимуме фазы Ψ^{R} . Далее при $\omega >> \omega_{c}$ $R_{\omega} \rightarrow 1$ и $\Psi^{R} \rightarrow 0$. Для твердой эпоксидной смолы (ЭС) с акустическими параметрами Z_2 =3.25·10⁶ кг/(м²·с), ρ_2 =1.21·10³ кг/м³, $s_{l2,0}$ =2.68·10³ м/с и затуханием ультразвука *α*=2.93·10³ м⁻¹ (5.86·10³ дБ/м) при частоте *f*=5 МГц получаем *b*=5.5·10³ кг/(м·с) и $\omega_c \approx 2\pi \cdot 10^6$ Гц.

Импульсный акустический сигнал, наиболее близкий к реальному сигналу, излучаемому ультразвуковым пьезокерамическим преобразователем (УЗП) на границе раздела сред $\boldsymbol{x}=0$ имеет вид:

$$u_1^I(x=0,t) = A_1 e^{-\Gamma \frac{|t|}{T}} \exp(i2\pi \frac{t}{T}) \left[\theta(t-\frac{\tau}{2}) - \theta(t+\frac{\tau}{2}) \right], (5)$$

Рисунок 2 – Моделирование граничного отражения и прохождения акустического сигнала.

где A_1 – его амплитуда, Γ – безразмерный параметр, определяющий огибающую акустического сигнала и однозначно связанный с добротностью Q УЗП соотношением $\Gamma = \pi/Q$, $T = 2\pi/\omega_0$ – период колебаний, ω_0 – частота основной гармоники сигнала, $\tau = nT$ – длительность импульса, n – количество периодов импульса.

Для того, чтобы определить форму отраженного (прошедшего) сигнала, необходимо рассмотреть отражение (прохождение) каждой частотной составляющей импульсного сигнала, а затем, применив обратное преобразование Фурье, определить во временном представлении форму отраженного (прошедшего) сигнала:

$$u^{R}(x,t) = F^{-1} \{ F[R_{\omega}u^{I}(x,t)] \},$$

$$u^{T}(x,t) = F^{-1} \{ F[T_{\omega}u^{I}(x,t)] \},$$
(6)

где F и F^{I} – соответственно прямое и обратное преобразования Фурье.

Применение зависимостей R_{ω} и T_{ω} в совокупности с (6) позволяет исследовать граничное отражение и прохождение сигналов раздела сред, восстанавливая отразившиеся (прошедшие) сигналы по излученному импульсу.

2. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Для моделирования отражения и прохождения акустического сигнала было разработано специальное программное обеспечение, позволяющее получать отраженные и прошедшие импульсы для любого произвольного сигнала. Его струк-

турная схема представлена на рисунке 2.

Программное обеспечение создавалось средствами специализированного пакета Matlab 5.2 фирмы Mathworks, выбранного из-за богатых возможностей встроенного высокоуровневого языка программирования, специально предназначенного для математических расчетов и моделирования, и гибкости представления результирующей информации.

В приведенной схеме присутствуют функциональные блоки, отвечающие за формирование входного сигнала, вычисление коэффициентов отражения и прохождения, прямого и обратного преобразования Фурье, а также блок конфигурации, позволяющий настраивать параметры моделирования. Входной сигнал может задаваться математической функцией (из набора готовых функций, наиболее интересных в практическом плане, либо подключаемых в качестве внешних модулей), а также загружаться с диска в виде выборки, представленной таблицей. Последнее дает возможность построения моделей, основанных на реальных импульсах, снятых с экрана осциллографа или иного измерительного прибора. При этом частота дискретизации практически не ограничена возможностями программных средств и определяется только требуемой точностью результата.

Параметры моделирования, устанавливаемые в блоке конфигурации, включают в себя частоту основной гармоники исходного сигнала, импедансы сред, на границе которых происходит отражение и прохождение сигнала, характерную частоту и ряд других параметров СДС, необходимых для вычисления коэффициентов отражения и прохождения сигнала.

Каждый блок в процессе своей работы в той или иной форме осуществляет вывод на дисплей, что позволяет получать визуальное представление результатов практически для каждого этапа моделирования, совмещать между собой отдельные графики, производить их масштабирование и др.

Передача данных конфигурации производится автоматически; при этом данные могут изменяться в заданных пределах, что позволяет получить на выходе модель отражения от СДС с динамически изменяющимися параметрами (например, характерной частотой $\boldsymbol{\omega}_c$). В этом случае в выходные результаты передают не форму результирующих импульсов, а кривые изменения амплитуды сигнала (размаха импульса) и его фазы. При этом фаза импульсного сигнала понимается более обобщенно, чем это имеет место для непрерывных колебаний, а именно как значение смещения пересечения с временной осью излученного и прошедшего импульсов.

Рисунок 3 – Излученный импульс и его спектр F(x) при различных Γ .

На рисунке 3 представлены при различных Γ формы излученного импульса, а на рисунке 4 – пример моделирования амплитуды отраженного сигнала при динамически изменяющейся частоте ω_c . Результаты моделирования представлены для сигнала с параметрами $\omega_0=2\pi \cdot 10^6$ Гц и $\Gamma=1$ при отражении от раздела сред оргстекло – компаунд ЭС.

Рисунок 4 – Амплитуда отраженного сигнала при различных значениях ω_c .

Зная экспериментальную зависимость изменения отраженного сигнала в процессе отвердевания компаунда ЭС (полученную в результате экспериментальных исследований, подробно описанных нами в [5]), можно рассчитать зависимость ω_c , а следовательно и затухание α и в какой-то степени вязкость СДС методом обратной задачи в зависимости от времени отвердевания смеси, воспользовавшись эксперимен

Рисунок 5 – Восстановление временной зависимости ω_c .

тальными данными и компьютерным моделированием отражения акустического сигнала. Пример восстановления временной зависимости ω_c показан на рисунке 5. Экспериментальная зависимость $u_{3\kappa cn.}(t)$ получена при отражении сигнала, сходного с рисунком 3, от компаунда ЭС в процессе его отвердевания. Теоретическая зависимость $u_{meop.}(\omega_c)$ являет-

УДК 539.3

Босяков С.М.

ся результатом моделирования отраженного сигнала с характеристиками и параметрами сред 1 и 2, аналогичными имевшим место в эксперименте.

Исходя из приведенных выше соотношений, затухание и вязкость могут быть восстановлены, если известна временная зависимость скорости звука в компаунде ЭС. Отметим однако, что по полученным экспериментальным результатам, описанным в [3, 5], для рассматриваемых реальных структур изменения ω_c , а следовательно, α и **b** на порядок выше, чем изменения S_l .

ЗАКЛЮЧЕНИЕ

В различных технологических процессах приготовления веществ и продуктов имеет место изменение агрегатного состояния исходных материалов, в частности отвердение последних. При этом степень отвердения вещества однозначно говорит о качестве его приготовления. Примерами соответствующих реальных процессов могут быть сцепление асфальтного покрытия с дорожным грунтом, бетона с железной арматурой, брожение пищевых продуктов, определение влажности почв, грунтовых и сыпучих материалов, степени загрязнения сточных вод и т.д.

В электронной промышленности в широком круге технологических процессов, включая молекулярную и лазерную эпитаксию, электро- и фотолитографию, электрохимию, плазменное и вакуумное напыление, пайку припоем, также участвуют среды, подобные СДС.

Следует сделать вывод, что предложенный высокочувствительный метод ультразвуковой диагностики, основанный на акустике СДС, представляет значительный интерес для исследования в реальном масштабе времени указанных процессов, а также определения физико-химических параметров различных сред.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Виноградова М. Б., Руденко О. В., Сухоруков А. П. Теория волн./ М.: Наука. 1990. 432 с.
- Дьелесан Э., Руайе Э. Упругие волны в твердых телах / М.: Наука. 1982. 424 с.
- Костюк Д. А., Кузавко Ю. А. Особенности отражения акустических продольных волн от границы с диссипативной средой // «Веснік Брэсцкага універсітэта», №4, 2000. с. 56-69.
- Костюк Д. А., Кузавко Ю. А. Особенности граничного отражения поперечных волн от диссипативной среды. // «Вестник БГТУ. –Машиностроение, автоматизация, ЭВМ», №4, 2000. с. 48-51.
- Костюк Д.А., Кузавко Ю.А. Аномалии граничного отражения ультразвука от диссипативной среды. // «Письма в ЖТФ», 2001, том 27, вып. 3. с. 31-40

УРАВНЕНИЯ ДВИЖЕНИЯ КУБИЧЕСКИ АНИЗОТРОПНОГО ТЕЛА С УЧЕТОМ ВРЕМЕНИ РЕЛАКСАЦИИ ТЕПЛОВОГО ПОТОКА И ИХ АНАЛИЗ С ПОМОЩЬЮ МЕТОДА ХАРАКТЕРИСТИК

введение	средах с конечной скоростью распространения тепла доста-
Динамические процессы в изотропной и анизотропной	точно полно изучены с позиций теории плоских волн и ее
Босяков Сергей Михайлович. Ассистент каф. СМиТМ Брестского государственного технического университета.	