

Рисунок 5 – Восстановление временной зависимости ω_c .

тальными данными и компьютерным моделированием отражения акустического сигнала. Пример восстановления временной зависимости ω_c показан на рисунке 5. Экспериментальная зависимость $u_{3\kappa cn.}(t)$ получена при отражении сигнала, сходного с рисунком 3, от компаунда ЭС в процессе его отвердевания. Теоретическая зависимость $u_{meop.}(\omega_c)$ являет-

УДК 539.3

Босяков С.М.

ся результатом моделирования отраженного сигнала с характеристиками и параметрами сред 1 и 2, аналогичными имевшим место в эксперименте.

Исходя из приведенных выше соотношений, затухание и вязкость могут быть восстановлены, если известна временная зависимость скорости звука в компаунде ЭС. Отметим однако, что по полученным экспериментальным результатам, описанным в [3, 5], для рассматриваемых реальных структур изменения ω_c , а следовательно, α и **b** на порядок выше, чем изменения S_l .

ЗАКЛЮЧЕНИЕ

В различных технологических процессах приготовления веществ и продуктов имеет место изменение агрегатного состояния исходных материалов, в частности отвердение последних. При этом степень отвердения вещества однозначно говорит о качестве его приготовления. Примерами соответствующих реальных процессов могут быть сцепление асфальтного покрытия с дорожным грунтом, бетона с железной арматурой, брожение пищевых продуктов, определение влажности почв, грунтовых и сыпучих материалов, степени загрязнения сточных вод и т.д.

В электронной промышленности в широком круге технологических процессов, включая молекулярную и лазерную эпитаксию, электро- и фотолитографию, электрохимию, плазменное и вакуумное напыление, пайку припоем, также участвуют среды, подобные СДС.

Следует сделать вывод, что предложенный высокочувствительный метод ультразвуковой диагностики, основанный на акустике СДС, представляет значительный интерес для исследования в реальном масштабе времени указанных процессов, а также определения физико-химических параметров различных сред.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Виноградова М. Б., Руденко О. В., Сухоруков А. П. Теория волн./ М.: Наука. 1990. 432 с.
- Дьелесан Э., Руайе Э. Упругие волны в твердых телах / М.: Наука. 1982. 424 с.
- Костюк Д. А., Кузавко Ю. А. Особенности отражения акустических продольных волн от границы с диссипативной средой // «Веснік Брэсцкага універсітэта», №4, 2000. с. 56-69.
- Костюк Д. А., Кузавко Ю. А. Особенности граничного отражения поперечных волн от диссипативной среды. // «Вестник БГТУ. –Машиностроение, автоматизация, ЭВМ», №4, 2000. с. 48-51.
- Костюк Д.А., Кузавко Ю.А. Аномалии граничного отражения ультразвука от диссипативной среды. // «Письма в ЖТФ», 2001, том 27, вып. 3. с. 31-40

УРАВНЕНИЯ ДВИЖЕНИЯ КУБИЧЕСКИ АНИЗОТРОПНОГО ТЕЛА С УЧЕТОМ ВРЕМЕНИ РЕЛАКСАЦИИ ТЕПЛОВОГО ПОТОКА И ИХ АНАЛИЗ С ПОМОЩЬЮ МЕТОДА ХАРАКТЕРИСТИК

введение	средах с конечной скоростью распространения тепла доста-						
Динамические процессы в изотропной и анизотропной	точно полно изучены с позиций теории плоских волн и ее						
Босяков Сергей Михайлович. Ассистент каф. СМиТМ Брестского государственного технического университета.							

модификаций [1-3]. Поэтому все более актуальным становится применение других методов к исследованию закономерностей распространения термоупругих волн в сплошных средах, что частично нашло свое отражение в работах [4-5]. В данной работе выводятся уравнения термоупругости кубически анизотропного тела в напряжениях с учетом конечной скорости релаксации теплового потока, и рассматривается реализация метода характеристик применительно к исследованию нестационарных процессов в такой среде.

ОПРЕДЕЛЯЮЩИЕ СООТНОШЕНИЯ

Закон Дюамеля – Неймана для кубически анизотропного термоупругого тела имеет следующий вид [3]:

$$\sigma_{ii} = (A_1 - A_2)e_{ii} + A_2 \sum_{k=1}^{3} e_{kk} - \beta T, \ \sigma_{ij} = 2A_4 e_{ij},$$
(1)

 $i\neq j=1,3\,,$

где $e_{kl} = \frac{1}{2} (\partial_l u_k + \partial_k u_l)$ - тензор деформаций, $\vec{u} = (u_1, u_2, u_3)$ - вектор перемещений, A_1, A_2, A_4 - упру- $\frac{(A_1 - A_2)(A_1 + 2A_2)}{A_4} (\Delta \sigma_{ij} - \overline{\rho} \ddot{\sigma}_{ij}) +$

гие постоянные, β - термоупругая постоянная, $\beta = \alpha (A_1 + 2A_2)$, α - коэффициент линейного теплового расширения, T - абсолютная температура,

$$\partial_k = \frac{\partial}{\partial x_k}, \ k, l = \overline{1,3}$$

Из (1) следуют такие уравнения движения в перемещениях:

$$\left(A_4 \Delta + \varepsilon \partial_i^2\right) u_i + \left(A_2 + A_4\right) \partial_i \sum_{k=1}^3 \partial_k u_k + X_i = \rho \ddot{u}_i + \beta \partial_i T$$

 Δ - оператор Лапласа, $\varepsilon = A_1 - A_2 - 2A_4$, ρ - плотность среды, X_i - массовые силы, $\ddot{u}_i = \frac{\partial^2 u_i}{\partial t^2}$, $i = \overline{1,3}$.

 Ot^2 Запишем уравнения движения (2) в компонентах тензора напряжений. Для этого (2) продифференцируем по x_i и по

 \boldsymbol{x}_{j} и полученные выражения сложим. Будем иметь

$$A_{4}\Delta(\partial_{i}u_{j} + \partial_{j}u_{i}) + \varepsilon(\partial_{j}\partial_{i}^{2}u_{i} + \partial_{i}\partial_{j}^{2}u_{j}) +$$

$$+ 2(A_{2} + A_{4})\partial_{j}\partial_{i}\sum_{k=1}^{3}\partial_{k}u_{k} + \partial_{j}X_{i} + \partial_{i}X_{j} =$$

$$= \rho(\partial_{j}\ddot{u}_{i} + \partial_{i}\ddot{u}_{j}) + 2\beta\partial_{i}\partial_{j}T,$$
_{или}

$$2A_{4}\Delta e_{ij} + \varepsilon \partial_{i}\partial_{j}\left(e_{ii} + e_{jj}\right) + 2(A_{2} + A_{4})\partial_{j}\partial_{i}\sum_{k=1}^{3} e_{kk} + (3)$$
$$+ \partial_{j}X_{i} + \partial_{i}X_{j} = 2\rho \ddot{e}_{ij} + 2\beta \partial_{i}\partial_{j}T.$$

Из (1) вытекают следующие соотношения

$$\sum_{k=1}^{3} e_{kk} = \frac{1}{A_1 + 2A_2} \left(\sum_{k=1}^{3} \sigma_{kk} + 3\beta T \right), e_{ij} = \frac{\sigma_{ij}}{2A_4},$$
$$e_{ii} = \frac{1}{A_1 - A_2} \left(\sigma_{ii} - \frac{A_2}{A_1 + 2A_2} \sum_{k=1}^{3} \sigma_{kk} \right) + \frac{\beta T}{A_1 + 2A_2}.$$
(4)

В уравнениях (3) положим i = j. Получим

$$A_4 \Delta e_{ii} + \varepsilon \partial_i^2 e_{ii} + (A_2 + A_4) \partial_i^2 \sum_{k=1}^3 e_{kk} +$$
(5)

$$+\partial_i X_i = \rho \ddot{e}_i + 2\beta \partial_i^2 T_i$$

С помощью (4) из (5) после несложных преобразований будем иметь

$$(A_{I} + 2A_{2})(\Delta \sigma_{ii} + \overline{\epsilon}\partial_{i}^{2}\sigma_{ii} - \overline{\rho}\ddot{\sigma}_{ii}) - A_{2}\Delta \sum_{k=1}^{3} \sigma_{kk} + (A_{I} + A_{2})\partial_{i}^{2} \sum_{k=1}^{3} \sigma_{kk} + A_{2} \sum_{k=1}^{3} \ddot{\sigma}_{kk} + (A_{I} - A_{2})\beta(\Delta T + \partial_{i}^{2}T - \overline{\rho}\ddot{T}) + (A_{I} - A_{2})(A_{I} + 2A_{2})\partial_{i}\overline{X}_{i} = 0.$$

$$(6)$$

Запишем уравнения (3) с учетом того, что $i \neq j$, и воспользуемся формулами (4). В результате получим:

$$\frac{(A_{I} - A_{2})(A_{I} + 2A_{2})}{A_{4}} \left(\Delta \sigma_{ij} - \overline{\rho} \ddot{\sigma}_{ij} \right) + \\ + \overline{\varepsilon} \left(A_{I} + 2A_{2} \right) \partial_{i} \partial_{j} \left(\sigma_{ii} + \sigma_{jj} \right) + \\ + 2 \left(A_{I} + A_{2} \right) \partial_{i} \partial_{j} \sum_{k=1}^{3} \sigma_{kk} + 2 \left(A_{I} - A_{2} \right) \beta \partial_{i} \partial_{j} T + \\ + \left(A_{I} - A_{2} \right) \left(A_{I} + 2A_{2} \right) \left(\partial_{i} \overline{X}_{j} + \partial_{j} \overline{X}_{i} \right) = 0. \\ \text{В уравнениях (6), (7)} \\ \overline{\varepsilon} = \frac{A_{I} - A_{2}}{A_{4}} - 2, \, \overline{\rho} = \frac{\rho}{A_{4}}, \, \overline{X}_{i} = \frac{X_{i}}{A_{4}}, \, i = \overline{1,3}. \end{cases}$$

$$(7)$$

Для получения замкнутой системы уравнений термоупругости кубически анизотропного тела присоединим к (6), (7) обобщенное уравнение теплопроводности (в отсутствии внутренних источников тепла), которое формально совпадает с уравнением теплопроводности для изотропной среды [3]

$$\lambda \Delta T - c_{\nu} \left(\dot{T} + \tau \ddot{T} \right) = T_{\theta} \beta \left(\sum_{k=1}^{3} \dot{e}_{kk} + \tau \sum_{k=1}^{3} \ddot{e}_{kk} \right).$$

или, учитывая (4),

$$\lambda \Delta T - \left(\dot{T} + \tau \ddot{T} \right) \left(c_v + \frac{3\beta^2 T_0}{A_1 + 2A_2} \right) =$$

$$= \frac{T_0 \beta}{A_1 + 2A_2} \left(\sum_{k=1}^3 \dot{\sigma}_{kk} + \tau \sum_{k=1}^3 \ddot{\sigma}_{kk} \right).$$
(8)

Здесь λ - коэффициент теплопроводности, τ - время релаксации теплового потока, c_v - удельная теплоемкость при постоянном объеме, T_{θ} - начальная температура. Учитывая связь между термоупругой константой β и коэффициентом линейного теплового расширения α , уравнение (8) преобразуем к следующему виду

$$\lambda \Delta T - (\dot{T} + \tau \ddot{T}) (c_v + 3\alpha^2 T_0 (A_1 + 2A_2)) =$$

= $T_0 \alpha \left(\sum_{k=1}^3 \dot{\sigma}_{kk} + \tau \sum_{k=1}^3 \ddot{\sigma}_{kk} \right).$ (9)

Уравнения (6), (7) и (9) образуют полную замкнутую систему дифференциальных уравнений термоупругости кубически анизотропного тела в случае обобщенной взаимосвязанной динамической задачи термоупругости.

Материал	Упругие постоянные, ×10 ¹⁰ H/м ²			a , ×10 ⁻⁶	<i>а</i> , кН/град∙м ²	b
	A_1	A_2	A_4	1/град		
серебро	12.4	9.34	4.61	19.0	98.623	0.0056
свинец	4.66	3.92	1.44	28.35	88.309	0.0083
молибден	46	17.6	11.0	5.0	17.844	0.0015
алюминий	10.82	6.13	2.85	22.6	139.536	0.0066
золото	18.6	15.7	4.20	14.0	86.142	0.004
медь	16.84	12.14	7.54	16.61	99.720	0.005
никель	24.65	14.73	12.47	12.55	74.912	0.0037
вольфрам	50.1	19.8	15.14	44	15 265	0.0013

Таблица 1 – Значения коэффициентов связности для некоторых кубически анизотропных тел.

Таблица 2 – Значения скоростей распространения термоупругой волны в некоторых кубически анизотропных телах.

Материал	え , Вт/м∙град	$\boldsymbol{c}_{\boldsymbol{v}}$, кДж/град·м ³	р , кг/м ³	<i>V</i> , м/с	<i>V_T</i> , м/с	$\delta = \frac{V_T - V}{V}, \%$
серебро	418	2454	10505	4047	4127	2
свинец	34.89	1458	11342	1502	1547	3
молибден	162	2188	9010	2668	2721	2
алюминий	207	2370	2700	2872	2955	3
золото	310	2451	19300	3496	3556	1.7
медь	400	3377	8930	3392	3442	1.5
никель	92	3919	8850	1518	1532	1
вольфрам	33.2	2503	18850	1148	1152	0.3

МЕТОД ХАРАКТЕРИСТИК

Начальные данные для системы (6), (7) и (9) зададим на поверхности $Z(t, x_1, x_2, x_3) = const$ и перейдем к новым переменным по следующей схеме [6]

 $Z = Z(t, x_1, x_2, x_3), Z_k = Z_k(t, x_1, x_2, x_3), k = \overline{1,3}$. Производные по старым переменным запишем через производные по новым переменным

$$\frac{\partial y(t,X)}{\partial x_{k}} = \sum_{i=0}^{3} \frac{\partial y}{\partial Z_{i}} \frac{\partial Z_{i}}{\partial x_{k}},$$

$$\frac{\partial^{2} y}{\partial x_{k} \partial x_{n}} = \sum_{i,j=0}^{3} \frac{\partial^{2} y}{\partial Z_{j} \partial Z_{i}} \frac{\partial Z_{i}}{\partial x_{k}} \frac{\partial Z_{j}}{\partial x_{n}} + \sum_{i=0}^{3} \frac{\partial y}{\partial Z_{i}} \frac{\partial^{2} Z_{i}}{\partial x_{n} \partial x_{k}}, \quad (10)$$

$$Z \equiv Z_{0}, t \equiv x_{0}.$$

Внесем (10) в систему (6), (7), (9) и выпишем те члены, которые содержат производные второго порядка

 $\frac{\partial^2 \sigma_{ij}}{\partial Z^2}, \frac{\partial^2 T}{\partial Z^2}, \quad i, j = \overline{1,3}$, так как только они будут важны

для последующего анализа [6]. Будем иметь

$$(\delta+3) \Big(g^2 + \overline{\varepsilon} p_i^2 - \overline{\rho} p_\theta^2 \Big) \frac{\partial^2 \sigma_{ii}}{\partial Z^2} - \\ - \Big(g^2 - (\delta+2) p_i^2 - \overline{\rho} p_\theta^2 \Big) \sum_{k=1}^3 \frac{\partial^2 \sigma_{kk}}{\partial Z^2} + \\ + \delta \beta \Big(g^2 + p_i^2 - \overline{\rho} p_\theta^2 \Big) \frac{\partial^2 T}{\partial Z^2} + \dots = \theta,$$

$$\frac{A_{1} + 2A_{2}}{A_{4}} \delta\left(g^{2} - \overline{\rho}p_{0}^{2}\right) \frac{\partial^{2}\sigma_{ij}}{\partial Z^{2}} + \frac{\partial^{2}\sigma_{jj}}{\partial Z^{2}} + \overline{\varepsilon}\left(\delta + 3\left(\frac{\partial^{2}\sigma_{ii}}{\partial Z^{2}} + \frac{\partial^{2}\sigma_{jj}}{\partial Z^{2}}\right)p_{i}p_{j} + 2\delta\beta\frac{\partial^{2}T}{\partial Z^{2}}p_{i}p_{j} + \ldots = 0, \quad (11)$$

$$\left(\lambda g^{2} - \tau\left(c_{v} + 3\alpha^{2}\left(A_{1} + 2A_{2}\right)T_{0}p_{0}^{2}\right)\right)\frac{\partial^{2}T}{\partial Z^{2}} - \tau\alpha T_{0}p_{0}^{2}\sum_{k=1}^{3}\frac{\partial^{2}\sigma_{kk}}{\partial Z^{2}} + \ldots = 0,$$
The

$$\delta = \frac{A_1}{A_2} - 1, \quad g^2 = p_1^2 + p_2^2 + p_3^2, \quad p_0 = \frac{\partial Z}{\partial t},$$
$$p_k = \frac{\partial Z}{\partial x_k}, \quad k = \overline{1,3}$$

Чтобы получить уравнение распространения характеристик, приравняем нулю определитель, составленный из коэффициентов при производных второго порядка по Z, входящих в систему (11) [6]. Будем иметь

$$det \left\| \boldsymbol{\omega}_{kl} \right\|_{k,l=\overline{1,7}} = \boldsymbol{0}, \tag{12}$$

$$\begin{split} \omega_{ii} &= \left(\delta + 2\right) \left(g^2 - \overline{\rho} p_{\theta}^2\right) + p_i^2 \left(\overline{\varepsilon} \left(\delta + 3\right) + \delta + 2\right), \ \omega_{ij} = \\ &= p_i^2 \left(\delta + 2\right) - \left(g^2 - \overline{\rho} p_{\theta}^2\right), \end{split}$$

$$\begin{aligned}
\omega_{41} &= \omega_{42} = \omega_{51} = \omega_{53} = \omega_{62} = \omega_{63} = \\
&= p_1 p_2 (\varepsilon(\delta + 3) + 2(\delta + 2)), \\
\omega_{3+i,4-i} &= 2(\delta + 2) p_1 p_2, \, \omega_{i+3,i+3} = \\
&= \frac{A_1 + 2A_2}{A_4} \delta \left(g^2 - \overline{\rho} p_0^2 \right), \, \omega_{7i} = -b \tau p_0^2, \\
\omega_{i7} &= \delta \beta \left(g^2 + p_i^2 - \overline{\rho} p_0^2 \right), \, \omega_{i+3,7} = \\
&= 2\delta \beta p_1 p_2, \, \omega_{77} = \lambda g^2 - \tau (c_v + a) p_0^2, \\
a &= 3T_0 \left(A_1 + 2A_2 \right) \alpha^2, \, b = T_0 \alpha, \, i \neq j = \overline{1,3}.
\end{aligned}$$
(13)

В формулах (13) постоянные a и b выражают связность механического и температурного полей, причем при температуре $T_0 = 293 \ K$ константа a имеет порядок $10^4 \div 10^5$ Н/град M^2 , константа $b \sim 10^{-4} \div 10^{-3}$ [7, 8] (таблица 1). Учитывая, что время релаксации теплового потока для металлов имеет порядок 10^{-11} с, в формулах (13) можно принять компоненты $\omega_{7i} \approx 0$. В этом случае для расчета скорости

распространения термоупругой волны (тепловой волны, сопровождающейся полем деформаций) из (12) будем иметь

$$V = \sqrt{\frac{\lambda}{\tau(c_v + a)}} \,. \tag{14}$$

Определенные таким образом по данным таблицы 1 значения скоростей распространения термоупругой волны в некоторых кубически анизотропных телах, а также относительное изменение скорости V по сравнению со скоростью теплового по-

тока
$$V_T = \sqrt{\frac{\lambda}{\pi c_v}}$$
 приведены в таблице 2.

Как следует из (14) и таблицы 2, скорость V меньше скорости теплового потока [1] V_T и не зависит от угла наклона нормали характеристической поверхности. Это является аналитическим подтверждением того факта, что скорость волны второго звука V меньше скорости распространения тепловой волны

$$\begin{split} V_{T}, &\text{поскольку } V_{T} = V \sqrt{I + \frac{a}{c_{v}}} \\ \text{Введем обозначения } y = I + \frac{A_{I} - A_{4}}{3A_{4}} - \overline{\rho} p_{\theta}^{2}, \\ p = (A_{I} - A_{2} - 2A_{4})(A_{I} + A_{2}) \sum_{i \neq j=1}^{3} \cos^{2} \alpha_{i} \cos^{2} \alpha_{j} - \\ - \frac{1}{3}(A_{I} - A_{4})^{2}, \quad q = \frac{2}{27}(A_{I} - A_{4})^{3} - \\ - \frac{1}{3}(A_{I} - A_{2} - 2A_{4})(A_{I} - A_{4})(A_{I} + A_{2}) \times \\ \times \sum_{i \neq j=1}^{3} \cos^{2} \alpha_{i} \cos^{2} \alpha_{j} + (A_{I} - A_{2} - 2A_{4})^{2}(A_{I} + 2A_{2} + A_{4}) \times \\ \times \cos^{2} \alpha_{1} \cos^{2} \alpha_{2} \cos \alpha_{3}. \end{split}$$

Тогда для скоростей распространения упругих волн из (12) имеем следующее выражение:

$$y^{3} + py + q = \theta, \qquad (15)$$

где $cos \alpha_i = \frac{p_i}{g}$ - направляющие косинусы нормали к ха-

рактерстической поверхности, *i* = 1,3. Для большинства кубически анизотропных тел с упругими постоянными

$$A_1, A_2, A_4$$
 дискриминант $D = \left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2$ кубиче-

ского уравнения (15) всегда неположителен, поэтому выражения для скоростей распространения упругих волн можно представить в следующем виде [9]:

$$V_k =$$

$$=\sqrt{\frac{1}{3\overline{\rho}}\left(2+\frac{A_1}{A_4}-6\sqrt{-\frac{p}{3}}\cos\left[\frac{1}{3}\left(\arccos\left(-\frac{q}{2}\sqrt{-\left(\frac{3}{p}\right)^3}\right)+2\pi k\right)\right]\right)}$$
$$k=\overline{1,3}$$
(16)

Для расчета скорости распространения поверхности разрыва, не зависящей от угла наклона нормали к характеристической поверхности, из (12) имеем

$$V^* = \sqrt{\frac{A_4}{\rho}} \,. \tag{17}$$

До сих пор полагалось, что $\omega_{7i} = 0$. Учет компонент $\omega_{7i} = -b \tau p_0^2$, $i = \overline{1,3}$ при раскрытии определителя (12) существенно усложняет расчет скоростей распространения упругих и термоупругих волн, однако дает более полную информацию о характере волн и позволяет исследовать влияние времени релаксации теплового потока τ на их распространение. В связи с этим обратимся к двумерным аналогам этой задачи (случай ПД).

ЧАСТНЫЕ СЛУЧАИ УРАВНЕНИЙ ДВИЖЕНИЯ

Рассмотрим системы координат (x_1, x_2, x_3) и (x'_1, x'_2, x'_3) кубически анизотропного тела (рисунок 1) [10].

Рисунок 1 — Системы координат (x_1, x_2, x_3) и (x'_1, x'_2, x'_3) .

Для описания динамических процессов в плоскости $x_3 = 0$ воспользуемся законом Дюамеля – Неймана в следующем виде:

$$\sigma_{11} = A_1 e_{11} + A_2 e_{22} - \beta T, \sigma_{22} = A_2 e_{11} + A_1 e_{22} - \beta T,$$

$$\sigma_{33} = A_2 (e_{11} + e_{22}) - \beta T, \sigma_{12} = \sigma_{21} = 2A_4 e_{12}.$$
(18)
При этом из (18) имеем

Физика, математика, химия

$$e_{11} = \frac{A_1 \sigma_{11} - A_2 \sigma_{22}}{A_1^2 - A_2^2} + \frac{\beta T}{A_1 + A_2},$$

$$e_{22} = \frac{A_1 \sigma_{22} - A_2 \sigma_{11}}{A_1^2 - A_2^2} + \frac{\beta T}{A_1 + A_2},$$
(19)

$$e_{11} + e_{22} = \frac{\sigma_{11} + \sigma_{22}}{A_1 + A_2} + \frac{2\beta T}{A_1 + A_2}, \ e_{12} = \frac{\sigma_{12}}{2A_4}.$$

Подставляя (19) в уравнения (3) для случаев i = j = 1,2 и i = 1, j = 2, (напряженно – деформированное состояние характеризуется тремя независимыми компонентами напряжений $\sigma_{11}, \sigma_{12}, \sigma_{22}$), после очевидных преобразований получим

$$\begin{aligned} A_{I}(A_{4}\Delta\sigma_{II} - \rho\ddot{\sigma}_{II}) + (A_{I} + A_{2})(A_{I} - A_{2} - 2A_{4})\partial_{I}^{2}\sigma_{II} - \\ &- A_{2}(A_{4}\Delta\sigma_{22} - \rho\ddot{\sigma}_{22}) + A_{4}(A_{I} + A_{2})\partial_{I}^{2}\sigma_{22} + \partial_{I}X_{I} + \\ &+ \beta(A_{I} - A_{2})(A_{4}\Delta T - \rho\ddot{T}) = \theta, \\ A_{4}\Delta\sigma_{I2} - \rho\ddot{\sigma}_{I2} + A_{4}\partial_{I}\partial_{2}(\sigma_{II} + \sigma_{22}) + \partial_{2}X_{I} + \partial_{I}X_{2} = \theta, \\ A_{I}(A_{4}\Delta\sigma_{22} - \rho\ddot{\sigma}_{22}) + (A_{I} + A_{2})(A_{I} - A_{2} - 2A_{4})\partial_{2}^{2}\sigma_{22} - \\ &- A_{2}(A_{4}\Delta\sigma_{II} - \rho\ddot{\sigma}_{II}) + A_{4}(A_{I} + A_{2})\partial_{2}^{2}\sigma_{II} + \partial_{2}X_{2} + \\ &+ \beta(A_{I} - A_{2})(A_{4}\Delta T - \rho\ddot{T}) = \theta, \end{aligned}$$

(20)

Уравнение теплопроводности (9) преобразуем с учетом того, что $e_{33} = 0$, а потому

$$\sigma_{33} = \frac{A_2(\sigma_{11} + \sigma_{22})}{A_1 + A_2} + \frac{(A_2 - A_4)\beta T}{A_1 + A_2} \cdot \text{Получим}$$
$$\lambda \Delta T - (\dot{T} + \tau \ddot{T}) \left(c_v + \frac{2\beta^2 T_0}{A_1 + A_2} \right) - \frac{\beta T_0}{A_1 + A_2} (\dot{\sigma}_{11} + \dot{\sigma}_{22} + \tau (\ddot{\sigma}_{11} + \ddot{\sigma}_{22})) = 0$$
(21)

Отметим, что система уравнений движения (20), (21) полученная для кубически анизотропного термоупругого тела в плоскости $x_3 = 0$, имеет аналогичный вид и в плоскостях

$$x_1 = \theta$$
 и $x_2 = \theta$

В плоскости $x'_2 = 0$ кубически анизотропного тела выражения для напряжений имеют тот же вид, как и для тетрагонально-анизотропной среды [10]:

$$\sigma_{11} = A_{11}e_{11} + A_{13}e_{33} - \beta_1 T, \sigma_{33} = A_{13}e_{11} + A_{33}e_{33} - \beta_3 T,$$

$$\sigma_{13} = 2A_{44}e_{13}, \sigma_{22} = A_{12}e_{11} + A_{13}e_{33} - \beta_1 T,$$

(22)

где $A_{11}, A_{12}, A_{33}, A_{13}, A_{44}$ - упругие постоянные и β_1, β_3 - термоупругие константы кубически анизотропной среды в системе координат (x'_1, x'_2, x'_3) . Уравнения движения в этом случае принимают вид

$$(A_{11}\partial_{1}^{2} + A_{44}\partial_{3}^{2})u_{1} + (A_{13} + A_{44})\partial_{1}\partial_{3}u_{3} = \rho\ddot{u}_{1} + \beta_{1}\partial_{1}T, (A_{13} + A_{44})\partial_{1}\partial_{3}u_{1} + (A_{44}\partial_{1}^{2} + A_{33}\partial_{3}^{2})u_{3} = \rho\ddot{u}_{3} + \beta_{3}\partial_{3}T.$$

$$(23)$$

Дифференцируя (23) по x_1 и x_3 , получим уравнения движения в деформациях

$$\begin{array}{l} \left(A_{11}\partial_{1}^{2}+A_{44}\partial_{3}^{2}\right)e_{11}+\left(A_{13}+A_{44}\right)\partial_{1}^{3}e_{33}+\partial_{1}X_{1}=\rho\ddot{e}_{11}+\beta_{1}\partial_{1}^{2}T,\\ \left(A_{44}\partial_{1}^{2}+A_{33}\partial_{3}^{2}\right)e_{11}+\left(A_{13}+A_{44}\right)\partial_{3}^{3}e_{11}+\partial_{3}X_{3}=\rho\ddot{e}_{33}+\beta_{3}\partial_{3}^{2}T,\\ \partial_{1}\partial_{3}\left(A_{11}e_{11}+A_{33}e_{33}\right)+A_{13}\partial_{1}\partial_{3}\left(e_{11}+e_{33}\right)+2A_{4}\left(\partial_{1}^{2}+\partial_{3}^{2}\right)e_{13}=\\ =2\rho\ddot{e}_{13}+\left(\beta_{1}+\beta_{3}\right)\partial_{1}\partial_{3}T. \end{array}$$

Из (22) имеем

$$e_{11} = \frac{A_{33}\sigma_{11} - A_{13}\sigma_{33} + T(\beta_1 A_{33} - \beta_3 A_{13})}{A_{11}A_{33} - A_{13}^2},$$

$$e_{33} = \frac{A_{11}\sigma_{33} - A_{13}\sigma_1 + T(\beta_3 A_{11} - \beta_1 A_{11})}{A_{11}A_{33} - A_{13}^2},$$
(25)

$$e_{13} = \frac{\sigma_{13}}{2A_{44}}.$$
Подставляя (25) в (24), получим
$$(A_{11}A_{33} - A_{13}^2 - A_{13}A_{44})\partial_1^2 \sigma_{11} + A_{11}A_{44}\partial_1^2 \sigma_{33} + A_{44}\partial_3^2 (A_{33}\sigma_{11} - A_{13}\sigma_{33}) + A_{44}(\beta_3A_{11} - \beta_1A_{13})\partial_1^2 T + (\beta_1A_{33} - \beta_3A_{13})(A_4\partial_3^2 T - \rho T) + \partial_1 X_1 = \rho(A_{33}\ddot{\sigma}_{11} - A_{13}\ddot{\sigma}_{33}),$$

$$(A_{11}A_{33} - A_{13}^2 - A_{13}A_{44})\partial_3^2 \sigma_{33} + A_{33}A_{44}\partial_3^2 \sigma_{11} + A_{44}\partial_1^2 (A_{11}\sigma_{33} - A_{13}\sigma_{11}) + A_{44}(\beta_1A_{33} - \beta_3A_{13})\partial_3^2 T + (\beta_3A_{11} - \beta_1A_{13})(A_4\partial_1^2 T - \rho T) + \partial_3 X_3 = \rho(A_{11}\ddot{\sigma}_{33} - A_{13}\ddot{\sigma}_{11}),$$

$$A_{44}(\partial_1\partial_3(\sigma_{11} + \sigma_{33}) + \Delta\sigma_{13}) - \rho \ddot{\sigma}_{13} + \partial_1 X_3 + \partial_3 X_1 = \theta$$
(26)

Уравнение теплопроводности для кубически анизотропных тел в плоскости $x'_2 = 0$ запишем в следующем виде

$$\lambda_{I}\partial_{I}^{2}T + \lambda_{3}\partial_{3}^{2}T - c_{v}(\dot{T} + \tau\ddot{T}) =$$

$$= T_{\theta} \left(\beta_{I}(\dot{e}_{II} + \tau\ddot{e}_{II}) + \beta_{3}(\dot{e}_{33} + \tau\ddot{e}_{33})\right).$$
⁽²⁷⁾

Выразим модули упругости $A_{11}, A_{12}, A_{33}, A_{13}, A_{44}$, термоупругие постоянные β_1, β_3 , а также коэффициенты теплопроводности λ_1, λ_3 в основной системе координат (x_1, x_2, x_3) . Для этого запишем матрицу преобразования координат

$$\gamma_i^j = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ -1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Тогда, используя известные законы преобразования тензоров [10],

$$A'_{ijkl} = \sum_{p,q,r,s=1}^{3} \gamma_i^p \gamma_j^q \gamma_k^r \gamma_l^s A_{ijkl}, \, \beta'_{ij} = \sum_{p,q=1}^{3} \gamma_i^p \gamma_j^q \beta_{ij} \,,$$

получим

$$A_{11} = A_4 + \frac{A_1 + A_2}{2}, A_{12} = A_{13} = A_2, A_{33} = A_1,$$

$$A_{44} = A_4, \ \beta_1 = \beta_3, \lambda_1 = \lambda_3.$$
(28)

ЗАКЛЮЧЕНИЕ

Окончательно, с помощью (25), (28) из (26) и (27), будем иметь следующую систему уравнений термоупругости кубически анизотропного тела в плоскости $x'_2 = 0$:

$$A^{2}\partial_{1}^{2}\sigma_{11} + \left(A_{4} + \frac{A_{1} + A_{2}}{2}\right)\partial_{1}^{2}\sigma_{33} + \partial_{3}^{2}\left(A_{1}\sigma_{11} - A_{2}\sigma_{33}\right) + \\ + \beta\left(A_{4} + \frac{A_{1} - A_{2}}{2}\right)\partial_{1}^{2}T + \beta\left(A_{1} - A_{2}\right)\left(\partial_{3}^{2}T - \overline{\rho}T\right) + \\ + A^{2}\partial_{1}\overline{X}_{1} = \rho\left(A_{1}\overline{\sigma}_{11} - A_{2}\overline{\sigma}_{33}\right), \\ A^{2}\partial_{3}^{2}\sigma_{33} + A_{1}\partial_{3}^{2}\sigma_{11} + \partial_{1}^{2}\left(\left(A_{4} + \frac{A_{1} + A_{2}}{2}\right)\sigma_{33} - A_{2}\sigma_{11}\right) + \\ + \beta\left(A_{1} - A_{2}\right)\partial_{3}^{2}T + \beta\left(A_{4} + \frac{A_{1} - A_{2}}{2}\right)\left(\partial_{1}^{2}T - \overline{\rho}T\right) + A^{2}\partial_{3}\overline{X}_{3} = \\ = \rho\left(\left(A_{4} + \frac{A_{1} + A_{2}}{2}\right)\overline{\sigma}_{33} - A_{2}\overline{\sigma}_{11}\right), \\ \partial_{1}\partial_{3}\left(\sigma_{11} + \sigma_{33}\right) + \Delta\sigma_{13} - \overline{\rho}\overline{\sigma}_{13} + \partial_{1}\overline{X}_{3} + \partial_{3}\overline{X}_{1} = \theta, \\ \lambda\Delta T\left(A^{2} + A_{2}A_{4}\right) - \left(\overline{T} + \tau\overline{T}\right) \times \\ \times \left(c_{v}\left(A^{2} + A_{2}A_{4}\right) + \beta^{2}T_{\theta}\left(A_{4} + \frac{A_{1} + A_{2}}{2}\right)\left(\overline{\sigma}_{33} + \tau\overline{\sigma}_{33}\right)\right), \end{aligned}$$

$$(29)$$

где $A^2 = A_1 \left(A_4 + \frac{A_1 + A_2}{2} \right) - A_2^2 - A_2 A_4.$

С помощью (29) можно получить аналогичным образом уравнения движения в плоскости $x'_1 = 0$; в плоскости $x'_3 = 0$ система (29) принимает вид системы уравнений (20), (21).

УДК 539.3

Босяков С. М.

ПОВЕРХНОСТИ ХРАКТЕРИСТИК В ПЬЕЗОЭЛЕКТРИЧЕСКИХ КУБИЧЕСКИ АНИ-ЗОТРОПНЫХ СРЕДАХ

При изучении упругих волн, распространяющихся в некоторых материалах, необходимо учитывать пьезоэлектрическую связь между их упругими и электрическими свойствами. Распространение плоских волн в анизотропных средах с учетом пьезоэлектрического эффекта рассмотрено, в частности, в известных монографиях [1, 2]. В стороне от внимания ученых осталось применение метода характеристик [3 – 5] для исследования нестационарных процессов в кубически анизотропной среде с учетом связи между электрическими и упругими свойствами. Данная работа в определенной степени компенсирует этот пробел.

Следует отметить, что даже в сильных пьезоэлектриках взаимодействие между упругими и электромагнитными волнами оказывается слабым из-за большой разности соответствующих скоростей [1]. Поэтому распространение волн можно рассматривать независимо, в квазистатическом приближении. В этом случае разрешающая система уравнений движения Системы уравнений (20), (21) и (28) имеют явный вид и позволяют подробно исследовать закономерности распространения термоупругих волн и изменение термоупругой энергии в кубически анизотропных телах, а также выяснить характер взаимосвязи теплового и механического полей. Особенно целесообразным, в контексте обобщенной теории теплопроводности (ввиду малости промежутка времени **7**), явля-

попроводности (ввиду малости промежутка времени v), является применение метода характеристик. Результаты, полученные с его помощью, представляют собой выражения для скоростей распространения волн высокой частоты ($\sim 10^9 \div 10^{11}$ Гц), что дает возможность исследовать влияние времени релаксации теплового потока τ на распространение термоупругих волн в зависимости от угла наклона нормали к характеристической поверхности.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Подстригач Я. С., Коляно Ю. М. Обобщенная термомеханика. Киев, 1976.
- Шашков А. С., Бубнов В. А., Яновский С. Ю. Волновые явления теплопроводности: системно структурный подход. Мн., 1993.
- Sharma J. N., Singh H. // J. Acoust. Soc. Am. 1989, Vol. 85, № 4, P. 1407 – 1413.
- Haddow J. B., Wegner J. L. // Math. and Mech. Solids. 1996, Vol. 1, №1, P. 111—127.
- Liu Kaishin, Xie Suming // Acta mech. solida sin. 1996. Vol. 17, № 3, P. 221 – 228.
- Смирнов В. И. Курс высшей математики. Т. IV, ч. 2. М., 1981.
- Современная кристаллография. Т. IV. Физические свойства кристаллов. М., 1984.
- Таблицы физических величин. Справочник. Под редакцией И. К. Кикоина. М. 1976.
- Смирнов В. И. Курс высшей математики. Т. III, ч. 1. М., 1980.
- Дьелесан Э., Руайе Д. Упругие волны в твердых телах. М., 1982.

включает уравнения движения анизотропной среды и уравнение Пуассона для непроводящей среды [1, 2]. Имеем

$$\sum_{j,k,l=1}^{3} A_{ijkl} \partial_{j} \partial_{k} u_{i} + \sum_{j,k=1}^{3} e_{kij} \partial_{j} \partial_{k} \Phi = \rho \ddot{u}_{i},$$

$$\sum_{j,k,l=1}^{3} e_{jkl} \partial_{j} \partial_{k} u_{l} - \sum_{j,k=1}^{3} \varepsilon_{jk}^{S} \partial_{j} \partial_{k} \Phi = \theta,$$
(1)

где e_{jkl} - пьезоэлектрические модули, \mathcal{E}_{jk}^{S} - диэлектрические проницаемости, A_{ijkl} - упругие постоянные анизотропной среды, $\vec{u} = (u_1, u_2, u_3)$ - вектор перемещений, ρ - плотность, Φ – электрический потенциал, $\partial_i = \frac{\partial}{\partial x_i}$, $i, j, k, l = \overline{1,3}$.