граммирования существует такое понятие, как «модный язык программирования», т.е. такой язык, который в настоящее время широко используется. Поскольку моды имеют тенденцию как приходить, так и уходить, то в целях создания наиболее технологичного комплекса, свободно перенастраиваемого на новые условия, нами планируется учесть и названное выше свойство возможности простого подключения внешних компиляторов.

Написанная среда тестирования представляет лишь начальный вариант проекта, который мы, при благоприятных условиях, собираемся развивать. Правила проведения олимпиад, некоторые нюансы будут изменяться и дополняться. В процессе эволюции нашего программного продукта мы надеемся, что он превратится из экзотического метода тестирования для отдельно взятых учебных заведений, в программный комплекс для массового использования с возможностью простой и быстрой его инсталляции.

УДК 53.087/.088

ИСПОЛЬЗОВАНИЕ ПАКЕТА "SIGNAL EXPRESS" ДЛЯ РЕГИСТРАЦИИ КИНЕТИКИ ГЕНЕРАЦИИ ЛАЗЕРА

Семёнов Г.А.

Алтайский государственный университет, г. Барнаул, Россия

Возможности программной среды LabVIEW на сегодня позволяют работать над решением огромного числа исследовательских задач, для чего создано множество различных пакетов и приложений, имеющих как специальный, так и универсальный характер. В рамках настоящей работы мы рассмотрим применение пакета "Signal Express" [1] для регистрации и обработки лазерных сигналов.

Пакет "Signal Express" содержит средства автоматического подключения внешних устройств ввода-вывода их конфигурирования, организации процедур измерения и анализа сигналов. Использование "Signal Express" позволяет быстро построить систему сбора и обработки информации. Рассмотрим прибор для измерения и отображения интенсивности лазерного излучения, его спектра мощности. Для преобразования лазерного сигнала используем 32-канальный АЦП NI 9205, преобразователь установлен в слотах системы сбора данных сDAQ-9172, которая соединена с компьютером посредством USB-порта.

Если на компьютере установлено программное обеспечение LabVIEW 8.2, после загрузки операционной системы будет выполнен автозапуск программы NI Device Monitor, которая предназначена для обнаружения подключённых устройств ввода-вывода (производства National Instruments).

После обнаружения устройства (в нашем примере это система сбора данных cDAQ-9172) программа предложит выбрать вариант используемого приложения. Выберем из предложенного меню "Начало измерений с использованием LabVIEW SignalExpress" ("Begin a Measurement with This Device Using NI LabVIEW SignalExpress").

Программа визуализирует переднюю панель реальной системы сбора данных и все установленные в ней устройства ввода-вывода. В нашем примере это аналогово-цифровой преобразователь NI 9205. В случае наличия дополнительных устройств программа "Signal Express" предложит выбрать вариант измеряемой величины (например, напряжение, температура и т.д.). В разделе конфигурирования выберем необходимое количество каналов, диапазон измеряемых интенсивностей (Signal Input Range), вариант подключения входов АЦП (Terminal Configuration) к источнику сигнала. В окне предварительного просмотра будет отображена осциллограмма сигнала, по которой можно судить о качестве преобразования сигнала.

Выбрав закладку "Калибровка" ("Calibration"), можно выполнить калибровку АЦП. В разделе "Временные установки" ("Timing Settings") можно выбрать тип преобразования (непрерывное преобразование или преобразование определённого количества выборок сигнала), количество выборок для чтения и частоту преобразования.

Перейдём из установок в окно программы "Signal Express" и добавим процедуру вычисления спектра сигнала к уже имеющейся процедуре измерения интенсивности с помощью команды "Добавить шаг" ("Add Step"). В левой части экрана после закладки "Аналоговый ввод" ("Analog Input") появится закладка "Спектр мощности" ("Power Spectrum").

Для отображения сигнала и его спектра требуется два графических индикатора. Добавим второй индикатор командой "Добавить дисплей" ("Add Display").

Для привязки индикатора к отображаемой функции спектра мощности нужно навести курсор на соответствующий индикатор и нажать правую кнопку мыши; затем выбрать последовательно "Сигналы" ("Signals"), "Добавить сигнал" ("Add Signal"), "Спектр" ("Spectrum"). На втором графическом индикаторе отобразится осциллограмма входного сигнала.

На рисунке 1 приведён пример графического представления спектра мощности хаотического сигнала (гауссовского белого шума), построенного в среде LabVIEW.

Рисунок 1 – Спектр мощности хаотического сигнала

Виртуальный прибор, созданный с помощью пакета "Signal Express" позволяет в режиме реального времени производить регистрацию и анализ лазерных сигналов в ходе физических экспериментов.

Литература

1. Виноградова, Н. А. Разработка прикладного программного обеспечения в среде LabVIEW: учебное пособие / Н. А. Виноградова, Я. И. Листратов, Е. В. Свиридов. – М.: Издательство МЭИ, 2005. – 48 с.

2. Останин, С.А. LabVIEW в биомедицине / С.А. Останин – Барнаул: Издательство ГОУ ВПО "Алтайский государственный университет". 2009.–226с.