МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЕ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра высшей математики

СБОРНИК ТЕСТОВЫХ ЗАДАНИЙ ПО ЭЛЕМЕНТАРНОЙ МАТЕМАТИКЕ

По дисциплине «Математика» для слушателей подготовительного отделения

УДК 51.07

Подготовительное отделение Брестского государственного технического университета ставит своей целью оказание помощи абитуриентам при подготовке к централизованному тестированию.

Данный сборник заданий содержит материалы для подготовки итогового повторения каждой темы программы средней школы и способствует более качественной подготовке к централизованному тестированию.

Составители: Пархимович И.В., доцент, к.ф.-м.н.

Остапчук Е.М., ассистент

Юхимук М.М., ст. преподаватель

Рецензент: доцент кафедры высшей математики учреждения образования «Брестский государственный университет имени А.С. Пушкина» к.ф. - м.н. Марзан С.А.

Предисловие

Уважаемые слушатели! Данный сборник заданий предназначен для повторения школьного курса математики. Оно поможет вам повторить, закрепить, обобщить и систематизировать изученный материал; углубит ваши знания и даст возможность подготовиться к централизованному тестированию.

В сборнике содержаться:

- 1) Тематические тесты по всем разделам элементарной математике;
- 2) Итоговый тест по всем разделам.

Тестовые задания состоят из группы А с указанием возможных вариантов ответов и группы В без указания ответов.

В конце пособия содержаться ответы по во всем группам А и В тестовых заданий.

Сборник заданий содержит различные по сложности задания и будет способствовать повышению математической подготовки слушателей.

Желаем успехов!

Содержани

Тест №1: Преобразоание выражений	5
Тест №2: Решение рациональных уравнений	9
Тест №3: Функции. Иррациональные уравнения	14
Тест №4: Неравенства. Системы неравенств	17
Тест №5:. Показательные уравнения	21
Тест №6: Преобразование логарифмических и показательных выражений	24
Тест №7: Логарифмические уравнения	28
Тест №8. Показательные неравенства	32
Тест №9. Логарифмические неравенства	35
Тест №10: Преобразование тригонометрических выражений	39
Тест №11: Тригонометрические уравнения, неравенства и системы	43
Тест №12: Планиметрия	47
Тест №13: Стереометрия	50
Тест №14: Производная	55
Тест №15: Итоговый тест	59
Ответы	64

Тематические тесты контрольных работ

Тест №1: Преобразоание выражений.

No	22 паших	
Nº	Задание	Варианты ответов
A1	Значение выражения равно: $\left(-\frac{3}{16}\right) \cdot \left(-2\frac{2}{3}\right)^2 - \left(-3\frac{1}{2}\right)$	1) $3\frac{5}{6}$; 2) $2\frac{1}{6}$; 3) $3\frac{1}{6}$; 4) $4\frac{5}{6}$; 5)10.
A2	Найдите число, если $^{12\%}$ от него равны 30	1)250; 2)200; 3)350; 4)150; 5)310.
А3	Найдите наименьшее общее кратное 360 и 189:	1)3; 2)3240; 3)7560; 4)2520; 5)8050.
A4	Разложение на множители выражения a^8+a^4-2 равно:	$1)(a^{2}-1)(a^{4}+2); 2)(a^{2}+1)(a^{4}+2);$ $3)a^{4}(a^{4}+1)(-2-a)(2-a);$ $4)(a^{2}-1)(a^{2}+1)(a^{4}+2);$ $5)(a^{4}+1)(a^{4}+8).$
A5	Найдите значение выражения $\frac{a^3-b^3}{\sqrt{a^3}\cdot\sqrt{b^3}}\cdot\frac{2\sqrt{ab}\left(a-b\right)^{-1}}{\left(\frac{ab}{a^2+b^2+ab}\right)^{-1}},$ если $a=\sqrt{5},b=\sqrt{3}$	1) 4; 2) √15; 3)15; 4) 2; 5) 7.
A6	$\frac{\sqrt{{(x-1)}^2}}{x-1}$. Найдите х из пропорции	1)1; 2)-1; 3) x -1; 5) $2x$ -1. 4)1, если $x \in (1; +\infty); -1$, если $x \in (-\infty; 1);$
A 7	Найдите x из пропорции $5\frac{3}{5}:2\frac{1}{3}=1.4x:3\frac{1}{9}$	$1)3\frac{1}{2}$; $2)5\frac{1}{3}$; $3)4$; $4)1$; $5)6$.
A8	Представьте в виде одночлена стан- $ \left(4ac^2 \right)^3 \cdot \left(0.5a^3c \right)^2 $ дартного вида:	1)16a ⁸ c ¹⁰ ; 2)4a ³ c ⁸ ; 3)16a ³ c ⁸ ; 4)16a ⁶ c ⁸ ; 5)20a ⁹ c ⁸ .
	Выделите полный квадрат у квадратного трехчлена $2x^2 + x - 3$	1)2 $\left(x+\frac{1}{4}\right)^2-\frac{50}{3}$; 2)2 $\left(x+\frac{1}{4}\right)^2-\frac{25}{8}$;
A9		$4)(2x+1)^2 + \frac{25}{8};$
	V	$3)\left(2x+\frac{1}{4}\right)^{2}+3; \ 5)\left(2x+\frac{1}{2}\right)^{2}+3.$
A10	Укажите степень многочлена:	1) 3; 2) 0; 3) 2; 4) 1; 5) 7.

	-		
	$3t^2 - 5t^2 - 11t - 3t^2 + 5t + 11$		
	Если 80% числа равны	1) 0.5; 2) 1.5; 3) 2.5;	
A11	$(\sqrt{6}-\sqrt{2}):(\sqrt{6}+\sqrt{2})+\sqrt{3},$	4)4.5; 5)6.	
711		4)4.5, 5)6.	
	число равно:		
	Укажите все номера рациональных чи-	1)2,3,4; 2)1,3,4; 3)1,2,4;	
	сел данного множества:	4)1,2,3; 5)3,4,5.	
	$\begin{bmatrix} 1 & 1 & \sqrt{2} & 3 & 3 \end{bmatrix} \frac{1}{\sqrt{2} + \sqrt{2}};$		
A12	1) $\frac{1}{\sqrt{7}-2} + \sqrt{7}$; 2) 6; 3) $\frac{1}{(\sqrt{3}+1)^0}$;	(
	'' = '		
	4) $\sqrt{28-10\sqrt{3}}(5+\sqrt{3});$		
	5) ³ √9√3 : 3 ^{-√3} .		
	/ , ,	4/040 0/500 0/400	
	Значение выражения равно:	1) 943; 2) 523; 3) 103;	
A13	$\frac{x^2 + 6x^2 + 9 - y^2}{x^2 + 9 - y^2}$	4) 310; 5) 410.	
	$\frac{x^4 + 6x^2 + 9 - y^4}{(x - y)^2 + 3 + 2y} \Big _{\text{при}} x = 31, y = 21$		
	Результат упрощения выражения	1) 4 <i>t</i> -1; 2) 1; 3) 1 - 4 <i>t</i> ;	
A14	$\sqrt{4t^2+1-4t}-2 -t $, при $t<0$ имеет	4)—1; 5) 6t.	

	вид:	4 9 2 5	
	$\sqrt{\frac{2^{6}}{3^{12}}}$ Значение числового выражения	1) $\frac{4}{27}$; 2) $\frac{8}{81}$; 3) $\frac{2}{3}$; 4) 0.5; 5) $\frac{5}{27}$.	
A15	Значение числового выражения $\sqrt{3^{12}}$	21 01 3 21	
	равно:		
	7	$6k^2-5k+9$	
B1	Укажите наибольшее целое число k, пр	и котором дробь $3k-1$ является также	
	целым числом.	1 '4	
B2	Если $\sqrt{a+b} + \sqrt{a} = 2$ то значение вы	ражения $\sqrt{a+b} - \sqrt{a}$ при b = 10 равно?	
	$\frac{1-a^{-2}}{\sqrt{a}-\frac{1}{\sqrt{a}}}-\frac{2}{\sqrt{a^3}}+\frac{a^{-2}-a}{\sqrt{a}-\frac{1}{\sqrt{a}}}$	a^2+2	
B3	$\sqrt{\frac{1}{1}} - \frac{\sqrt{3}}{\sqrt{3}} + \frac{1}{\sqrt{1}}$	$-\left :\frac{1}{\sqrt{2^3}}+1\right $	
	$\sqrt{a} - \frac{\sqrt{a}}{\sqrt{a}}$ $\sqrt{a} - \frac{\sqrt{a}}{\sqrt{a}}$	=) Va	
	Упростите `	- /	
B4	Если 80% числа равны $\frac{\left(9\sqrt[3]{32}-2\sqrt[3]{500}\right):\sqrt[3]{4}}{1.(3)\cdot 3.57+1.68\cdot \frac{1}{7}}+0.63\cdot 30$		
	теми 00 /0 числа равны 1	, то это число равно	
	$10 + 0.8(3) - \frac{1}{3}$		
B5	$\frac{3}{4(0)} = \frac{3}{1} + 0.63$	30	
	$1.(3) \cdot 3.57 + 1.68 \cdot \frac{1}{7}$		
<u> </u>	рычислите		
В6	Упростите выражение $\left(\frac{m+3}{m^2-3m}+\frac{m}{m^2-3m}\right)$	$\frac{-3}{2m}$ $\frac{3III - III}{m^2}$	
	Упростите выражение $\sqrt{m^2 - 3m} + \frac{1}{m^2}$	+ 3111 / 1111 + 9	

В8 известно, что $a = \sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}}$. Найдите a^4 В9 упростите выражение $\sqrt{(b-2)^2} + \sqrt{(4-b)^2}$ $2 \le b \le 4$ В10 Найдите $a^3 + b^3$, если $a^2 + b^2 = 58$, $ab = 3$, $a > 0$, $b > 0$.	В7	Упростите выражение и Найдите его значение $\sqrt{\frac{\sqrt{m}-1}{m+\sqrt{m}+1}}\cdot (m\sqrt{m}-1)+\sqrt{m}$, при $m=0,7$
В9 упростите выражение $\sqrt{(b-2)^2} + \sqrt{(4-b)^2}$ $2 \le b \le 4$ В10 Найдите $a^3 + b^3$, если $a^2 + b^2 = 58$, $ab = 3$, $a > 0$, $b > 0$.	В8	
В10 Найдите $a^3 + b^3$, если $a^2 + b^2 = 58, ab = 3, a > 0, b > 0$.	В9	Упростите выражение $\sqrt{(b-2)^2} + \sqrt{(4-b)^2}$ $2 \le b \le 4$
Q erlosyrio opinin (b)	B10	Найдите a^3+b^3 , если $a^2+b^2=58, ab=3, a>0, b>0.$
7		
		_

Nº	Задание	Варианты ответов
	Значение выражения	
A1	$\left(\left(-1\frac{2}{3}\right) + \left(-1\frac{1}{3}\right)^{2}\right) : \left(-3\frac{2}{3}\right)$	$1)\frac{3}{11}$; $2)\frac{1}{3}$; $3)-\frac{1}{33}$; $4)\frac{7}{33}$; $5)\frac{2}{3}$.
	у равно	1)28; 2)18; 3)20;
A2	Найдите число, если 120% от него равны 24	4)16; 5)13.
A3	Найдите наименьшее общее кратное чисел 40, 64 и 112	1)1120; 2)6680; 3)2240; 4)4480; 5)1002.
A4	Разложение на множители выражения $a^5 - a^2 - a - 1$ равно:	1) $(a^2 + 1)(a^3 - a - 1); 2)(a^2 - 1)(a^3 + a - 1);$ 3) $(a^2 + 1)(a^3 + a + 1);$ 4) $(a^2 - 1)(a^3 - a + 1); 5)(a^2 + 1)(a^3 - 1).$
A5	Найдите значение выражения если m =12, n = 3 $\frac{\sqrt{m^3 + \sqrt{n^3}}}{\sqrt[3]{m^2} \sqrt[3]{(n-m)^2}} \cdot \frac{\sqrt{m^2 - \sqrt{n^2}}}{\sqrt[3]{m^{-2}} \cdot \sqrt[3]{m-n}}$	1)21; 2)23; 3)25; 4)27; 5)17.
A6	$\frac{\sqrt{\left(1-\sqrt{2}\right)^2}}{1-\sqrt{2}}.$	1)-1; 2)1; 3) $\sqrt{2}$; 4)1- $\sqrt{2}$; 5)-2.
A7	Найдите x из пропорции: $3\frac{1}{3}x:1.5=4\frac{2}{7}:\frac{3}{14}$	1)9; 2)2.5; 3)8; $4)9\frac{1}{3}$; 5)7.
A8	Представьте в виде одночлена стандартного $-\left(-x^2y^4\right)^4\cdot\left(6x^4y\right)^2$ вида:	1) $36x^{16}y^{18}$; 2) $-36x^{16}y^{18}$; 3) $6x^{14}y^{9}$; 4) $36x^{18}y^{16}$; 5) $12x^{6}y^{6}$.
A9	Выделите полный квадрат у квадратного трех- члена $x^2 + 6x + 4$	1) $(x+3)^2 + 5$; 2) $4(x+3)^2 - 5$; 3) $(x-3)^2 - 5$; 4) $(x+3)^2 - 5$; 5) $(x+3)^2 - 6$.
A10	Укажите степень многочлена $2a \cdot a^2 \cdot 3b + a \cdot 8c$	1)3; 2)2; 3)4; 4)0; 5)1.
A11	Если 20% числа равны $\sqrt{\left(5-3\sqrt{3}\right)^2}+\sqrt{\left(5+3\sqrt{3}\right)^2}$, то это число равно:	1)50; 2)20; 3)30; 4)30 $\sqrt{3}$; 5)40.

	Укажите все номера рациональных чисел дан-		
	ного множества:	1)1,2,4; 2)1,2,3; 3)2,3,5;	
A12	1) $\frac{1}{\sqrt{3}-2}$ + $\sqrt{3}$; 2)2.3(5);	4)1,2,5; 5)3,4,5.	
	$(3)(125)^{\frac{2}{5}}; 4)(\sqrt{3}+1)^{0}; 5)\sqrt{39-12\sqrt{3}}-\sqrt{3}$	•	
	Найдите значение выражения	1)785; 2)105; 3)3097;	
A13	1 1 + 101 + 23 - 1	4) 440; 5) 500.	
	$\frac{(x-y)^2 + 5 + 2xy}{(x-y)^2 + 5 + 2xy}$ при x=44, y=34 Результат упрощения выражения	1) 3 – 2t; 2) 2t – 3;	
A14	$\sqrt{t^2 + 9 - 6t} + -t $	1)3-2t; 2)2t-3; 3)-3; 4)3; 5)2t.	
	TIPM C 1 TO MIMOCH BAIA.	1)0.6; 2)0.8; 3)1;	
A15	3/——	1)0.6; 2)0.6; 3)1; 4)0.4; 5)0.5.	
	Значение числового выражения 125 равно:	$6k^2 + k + 5$	
B1	Укажите сумму всех целых чисел k, при которых др	01 4	
	числом.		
B2	Найдите значение выражения $\sqrt{x+y} + \sqrt{x}$ при $y = 10$, если $\sqrt{x+y} - \sqrt{x} = 2$.		
В3	$\left(1 - \frac{2}{\sqrt{a}} + a^{-1}\right) : \frac{1 - a^{-2}}{\sqrt{a} + \frac{1}{\sqrt{a}}} - 1 : \frac{1 + \frac{1}{\sqrt{a}}}{\sqrt{a} - 1}$		
В4	Если 20% числа равны $\left(\sqrt{-5+3\sqrt{5}}\right)^2 - \left(\sqrt{5+3\sqrt{5}}\right)^2$, то это число равно?		
	Если 20% числа равны , , то это число равно?		
B5	Вычислите $\left(\frac{7}{8} + \frac{7}{8 \cdot 15} + \frac{7}{15 \cdot 22}\right) \cdot (10 + 30, (3)) \cdot 2$		
В6	Упростите выражение $\left(\frac{m-1}{2m+2} - \frac{m+1}{2m-2}\right)$: $\frac{m}{4-4m^2}$		
B7	Упростите выражение и Найдите его значение $\sqrt{\left(\sqrt{m}+2\right)^2-8\sqrt{m}}+\sqrt{\left(1-\sqrt{m}\right)^2+4\sqrt{m}}$ при m =2		
B8	Известно, что $a=\sqrt{4\sqrt{5\sqrt{4\sqrt{5\sqrt{4}}}}}$ Найдите a^3 . Упростите выражение $\sqrt{(t+1)^2}+\sqrt{(t+3)^2}, -3 \le t \le -1$		
В9	Упростите выражение $\sqrt{(t+1)^2} + \sqrt{(t+3)^2}, -3 \le t \le -1$		
B10	Найдите $a^3 - b^3$, если $a - b = 3, ab = 5$		

Тест №2: Решение рациональных уравнений.

Nº	Задания	Варианть	і ответов	
	Найдите все значения <i>а</i> и <i>b</i> , при которых уравне-	 		$0 = 0; 3)a \neq -1, b \neq 0;$
A1	ние <i>ax+b=x</i> имеет решения:	4)a ≠ 1,b ∈ l	R; a = 1, b =	0; 5) $a \neq 3, b > 1$.
	Прямые 3х+ау=4 и 6х+8у=3 пересекаются при зна-	1) a ≠ -4;	2)a ≠ ±4;	3) a ≠ 4;
A2	чениях а, удовлетворяющих условию:	4) a = 4;	5) a ≠ 6. (
А3	Корень уравнения <i>x-1=2(x-3)</i> равен:			5; 4)-1.5; 5)-6.
	Разность суммы и произведения корней уравнения	1)4;		
A4	$x^2 - x - 3 = 0$ pasha:	4)-4;	5)6.	3) – 3.5;
	Один из корней уравнения $2x^2 + ax + 3 = 0$ равен	1)4;	2)-4.5;	3) – 3.5;
A5	3. Произведение второго корня и значение пара-			
	метра <i>а</i> равно:	4)2;	5)7.	
	Число корней, умноженное на их произведение,	1) 1:	2)-2;	3) 1.
A6	$\frac{4x^2-7x-2}{}=0$		Z)-Z,	$3) - \frac{\pi}{4}$
	для уравнения $\frac{4x^2-7x-2}{x^2-5x+6}=0$ равно:	4)1;	5)6.	
	$\frac{30}{x^2-1} - \frac{13}{x^2+x+1} = \frac{18x+7}{x^3-1}$ лежат	1) [-3;3];	2)[-4;4];	3)[-5;5];
A7	Корни уравнения $x^2 - 1$ $x^2 + x + 1$ $x^3 - 1$ лежат	4)[-6;6];	5)(-1;1).	
	вне промежутка:	/[/]/	/(/ /	
	$\frac{2x+1}{x} + \frac{4x}{2x+1} = 5$	1) – 1;	2)1;	3)0.25;
A8	Произведение корней уравнения $x + 2x + 1 = 3$	4)-0.5;		5) 0.5.
	равно:			
	Количество целых значений k, при которых уравне-	1)4;	•	3)6;
A9	ние $x^2 - 2kx + k + 6 = 0$ не имеет решения, равно:	4)7;	5)9.	
	Parrament			4
	Решением уравнения	1)7;	2) – 7;	$3)\frac{1}{6}$;
A10	$\frac{x}{2} + \frac{x}{6} + \frac{x}{12} + \frac{x}{20} + \frac{x}{30} + \frac{x}{42} = -6$ является:			6
	2 0 12 20 30 42 является:	4)1;	2)-17;	3)-22;
A11	Сумма кубов решений уравнения $x^2 + x - 7 = 0$ рав-	1 ' '	, .	3) – 22,
	на:	4)17;		2) 2
	Произведение корней уравнения	l ' '	2) 9;	3) – 9;
A12	$\left(\frac{x^2+6}{x^2-4}\right)^2 = \left(\frac{5x}{4-x^2}\right)^2$	4)4;	5)7.	
	(x^2-4) $(4-x^2)$ pasho:			
	Сумма корней уравнения	1) – 1;	2)6;	3)2;
A13	$\frac{x+1}{x-1} + \frac{x-2}{x+2} + \frac{x-3}{x+3} + \frac{x+4}{x-4} = 4$	4)-2;	•	
	$\frac{1}{x-1}$ $\frac{1}{x+2}$ $\frac{1}{x+3}$ $\frac{1}{x-4}$ равна:	,	•	
A14	$x^2 + x + \frac{1}{x} + \frac{1}{x^2} = 4$	1)-2;	2)2;	$3)2+2\sqrt{5};$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4)2-2\sqrt{5}$, , ,
	, .i Mr	7/2-295	,J, v Z.	

	на:		
	Разность у-х решений системы уравнений	1) 0.7; 2) – 1; 3) 1;	
A15	$\int \frac{5x}{0.7} - \frac{0.3}{y} = 6,$	4)0; 5)4.	
'	10x 9	, -, -,	
	$\left \frac{10x}{7} - \frac{9}{y}\right = 31.$	•	
	равна.	2 4 0	
B1	Наименьшее значение суммы квадратов корней урав	нения $x^2 + ax + 1 = 0$ равно	
B2	Произведение корней уравнения $(x^2 + 2x)^2 - (x+1)^2$	= 55 равно	
В3	Произведение корней уравнения $(x^2+2x)^2-(x+1)^2=55$ равно Найдите сумму корней уравнения $(x+2)(x+3)(x+8)(x+12)=4x^2$.		
B4	Найдите произведение корней уравнения $(x^2 + x + 1)^2 = x^2(3x^2 + x + 1)$.		
	тамдите произведение корнеи уравнения у ² - 5 у - 10		
B5	$x^2 + 3x + 2 = 15 \frac{x^2 + 5x + 10}{x^2 + 7x + 12}$ Сумма корней уравнения		
	Сумма корней уравнения х + / х + 12 равна?		
В6	Найлите сумму корней или корень (если он алин) уравнения $\frac{3x-2}{x} + \frac{1}{2-x} = \frac{3x+4}{x^2-2x}$.		
	Найдите сумму корней или корень (если он один) ура	DITCHINA	
	Найлите сумму корней или корень (если он один) уравнения $\frac{2x-1}{14x^2+7x} + \frac{8}{12x^2-3} = \frac{2x+1}{6x^2-3x}$ и		
B7	Найдите сумму корней или корень (если он один) ура	внения $14x^2 + 7x + 12x^2 - 3 + 6x^2 - 3x$ и	
	полученный результат умножить на -2 .		
	Найдите среднее арифметическое всех действительн	ных корней уравнения	
B8	$(x+0.5)(x+2)^3+(0.5-x)(x-1)^3=9(x-0.5)$ и полученный результат умножить на -6 .		
	$(x^2 + x - 2)(x^2 + x + 2) = -2$		
В9	Паидите произведение корнеи уравнения		
	и результат умножить на $-\sqrt{2}$.		
B10	Найдите количество пар целых чисел $(x;y)$, для которых выполняется равенство $x^2 - y^2 = 7$.		

Nº	Задания	Варианты ответов		
A1	Уравнение <i>ax+b=2x</i> не имеет решений при следующих значениях <i>a</i> и <i>b</i> :	1) $a = 2, b = 0;$ 2) $a = -2, b = 2;$ 3) $a = 2, b \neq 0;$ 4) $a \neq 2, b \neq 0;$ 5) $a \neq 6, b \neq 0.$		
A2	Прямые 9 <i>x+ay</i> =-3 и <i>ax+y</i> =1 совпадают при значениях <i>a</i> , удовлетворяющих условию:	1) $a = \pm 3$; 2) $a = 3$; 3) $a = -3$; 4) $a \neq \pm 3$; 5) $a \neq 4$.		
А3	Корень уравнения <i>0,5+2x=1.5+3x</i> равен:	1)-1; 2)1; 3)-2; 4)2; 5)10.		
A4	Разность суммы и произведения корней уравнения $x^2 + x - 5 = 0$ равна:	1)1; 2)2; 3)3; 4)4; 5)8.		

		i
A5	Один из корней уравнения $3x^2 - ax - 2 = 0$ равен -2. Результат деления параметра a на второй корень равен:	1)-5; 2)5; 3)-15; 4)15; 5)18.
A6	Число корней, умноженное на их произведение, $\frac{2x^2-3x+1}{x^2-3x+2}=0$ равно:	1)0.5; 2)1; 3)2; 4)4; 5)7.
A 7	$\frac{3}{x^3+3} + \frac{2}{x^3+2} = 2$ принадлежат промежутку:	1)[-1;1]; 2)[-2;1]; 3)[-2;-1]; 4)[-1;0]; 5)(-2;-1.5).
A8	$\frac{x^2+1}{x}+\frac{x}{x^2+1}=-2.5$ принадлежат промежутку:	1)[0;1]; 2)[1;2]; 3)[-1;1]; 4)[-3;-2]; 5)(-3;-2.5).
А9	Количество целых значений k, при которых уравнение $x^2 + 2kx + 6k - 5 = 0$ не имеет решения, равно:	1)1; 2)2; 3)3; 4)4; 5)8.
A10	Решением уравнения $\frac{x}{2} - \frac{2x}{3} + \frac{x}{5} - \frac{x}{20} + \frac{x}{30} + \frac{x}{15} = -1$ является:	1)-10; 2)-12; 3)10; 4)12; 5)16.
A11	Сумма кубов решений уравнения $x^2 - 2x - 5 = 0$ равна:	1) 38; 2) 18; 3) – 12; 4) 24; 5) 21.
A12	Сумма корней уравнения $ \left(\frac{x^2 + 2x + 4}{x^2 - 1} \right)^2 = \left(\frac{3x}{1 - x^2} \right)^2 $ равна:	1)-5; 2)-4; 3)1; 4)2; 5)3.
A13	Произведение корней уравнения $\frac{x+4}{x-1} + \frac{x-4}{x+1} - \frac{x+8}{x-2} - \frac{x-8}{x+2} = -\frac{8}{3}$ равно:	1)4; 2)6; 3)-2; 4)8; 5)9.
A14	троизведение корнеи уравнения $\frac{4}{x} - \frac{2x}{3} = \frac{2}{x^2} + \frac{x^2}{18} + \frac{4}{3}$ равно:	1)6; 2)8; 3)-6; 4)-2; 5)11.
A15	Разность х-у решений системы уравнений $\left\{\frac{2}{2x-y} + \frac{3}{x-2y} = \frac{1}{2}, \right\}$ $\left\{\frac{2}{2x-y} - \frac{1}{x-2y} = \frac{1}{18}, \right\}$ равна:	1)1; 2)2; 3)4; 4)7; 5)12.
B1	Наибольшее значение суммы кубов корней уравнени	$x^2 - x + a^2 = 0$
B2	Паиоольшее значение суммы куров корней уравнени $\frac{-6}{(x+1)(x+2)} + \frac{8}{(x-1)(x+2)}$ Сумма корней уравнения	я х х т о равно 4) = 1 равна

В3	Найдите сумму корней уравнения $(x+6)(x+3)(x-1)(x-2)-12x^2=0$.			
В4	Найдите произведение корней уравнения $10x^2(x-2)^2 = 9(x^2 + (x-2)^2).$			
В5	$\frac{24}{x^2-2x} = \frac{12}{x^2-x} + x^2-x$ равна?			
В6	Найдите сумму корней или корень (если он один) уравнения $\frac{2}{x^2-x+1} = \frac{1}{x+1} + \frac{2x-1}{x^3+1}$			
В7	Найдите сумму корней или корень (если он один) уравнения $\frac{3}{8x^3+1}-\frac{1}{2x+1}=\frac{x+3}{4x^2-2x+1}$ и результат умножить на $\frac{-6}{6}$.			
В8	Найдите произведение корней уравнения $(x-0,6)(x^2-3x-4)=(4x-2,4)(x+1)^2$ и результат умножить на 10.			
В9	Найдите произведение корней уравнения $x^3 - 4x^2 - 3x + 12 = 0$			
B10	Найдите количество пар целых чисел, для которых выполняется равенство $x^2 + xy^2 = 10$.			
Q				

Тест №3: Функции. Иррациональные уравнения

Nº	Задания	Варианты ответов
A1	Сумма корней уравнения $\sqrt{2x^2 + 8x + 7} - 2 = x$ равна:	1)-4; 2)-1; 3)1; 4)4; 5)6.
A2	Сумма корней уравнения $(x+1)\sqrt{x^2+x-2} = 2x+2$ равна:	1) – 1; 2) 0; 3) 1; 4) 2; 5) 6.
A3	Сумма корней уравнения $\sqrt{x^2 - 5x + 1} = \sqrt{x - 4}$ равна:	1)6; 2)5; 3)4; 4)3; 5)7.
A4	Корень уравнения $\sqrt{2x-4} - \sqrt{x+5} = 1$ принадлежит промежутку:	1)(0;5); 2)(5;10); 3)(10;15); 4)(15;25); 5)(-1;0).
A5	Произведение корней уравнения $x^2 + 3x + \sqrt{x^2 + 3x} = 6$ равно:	1)-6; 2)-4; 3)6; 4)4; 5)7.
A6	Разность x-y решений системы уравнений $\begin{cases} \sqrt[4]{x+y} - \sqrt[4]{x-y} = 2 \\ \sqrt{x+y} - \sqrt{x-y} = 8, \end{cases}$ равна:	1)1; 2)2; 3)3; 4)4; 5)7.
A7	Укажите наименьшее целое значение функ- ции $y = x^2 + 2x + 1$	1)-2; 2)0; 3)1; 4)2; 5)4.
A8	Найдите угловой коэффициент прямой $2x + 4y = 5$	1)2; 2)4; 3) $-\frac{1}{2}$; 4)5; 5)6.
A9	Уравнение прямой, которая параллельна прямой $y=-2x+4$ и проходит через точку с координатами (3;6), имеет вид	1) $y = 3x - 3$; 2) $y = -2x - 3$; 3) $y = 2x$; 4) $y = -2x + 12$ 5) $y = 6x$.
A1 0	Найдите все значения параметра a , при которых функция $f(x) = x^2 + ax - 4$ принимает отрицательные значения при любом $x \in (-2;1)$.	1)[0;3]; 2)[3;0]; 3)(0;3); 4)(-1;2); 5)(0;8).
A1 1	$f\left(x\right)=rac{5x+1}{x-4},$ Если разность $f\left(x+2 ight)-f\left(x+6 ight)$ приводится к виду	1) $\frac{84}{x^2 - 4}$; 2) $\frac{84x}{x^2 - 4}$; 3) $\frac{84}{x - 4}$; 4) $\frac{42}{x^2 - 4}$; 5) $x + 2$.
A1 2	При каком наибольшем значении параметра $y = x^2 + 6x + m$ находится на расстоянии, равном 5 от начала координат?	1)0; 2)4; 3)9; 4)13; 5)16.

	() 0 0 5(-(-)) 0 4	1) $f(x) = 5 - 3x$; 2) $f(x) = 3x - 13$;	
A1 3	Если $g(x) = 3 - 2x$ и $f(g(x)) = 6x + 4$, то	3)f(x) = 13-3x; $4)f(x) = 8-5x$;	
	функция $f(x)$ задается выражением:	5)f(x) = 7 - 6x.	
	Сумма ординат точек пересечения прямой	· /	
A1	$-x + 3y = 6$ и параболы $3y = 2x^2 + x - 2$ рав-	1)1; 2)2; 3)3;	
4	на	4)4; 5)8.	
	Количество целых значений параметра а, при		
A1	которых абсцисса и ордината вершины пара-	1)6; 2)7; 3)3;	
5	$y = (x-12a)^2 - a^2 + 3a + 10$ положи-	4)4; 5)8.	
	тельны, равно:		
B1	Произведение корней уравнения $\sqrt{3x^2 - 3x - 5} = x + 3 - x^2$ равно		
B2	Сумма корней уравнения $(x+2)\sqrt{16x+33} = 8x^2 + x - 30$ равна		
D2	Сумма корнеи уравнения		
В3	Найдите произведение корней уравнения $\sqrt{x^2+7}\sqrt{3}x^2-2=3\sqrt{x^2-1}\sqrt{x^2+2}$.		
В4	Найдите сумму корней уравнения $8\sqrt{12+16x-16x^2}+4x-4x^2=33$ и результат умножить на 2.		
B5	Решите уравнение $\frac{x+3}{\sqrt{x-1}} = \sqrt{3x+1}$		
	Решите уравнение $\sqrt{x-1}$		
B6	Решите уравнение $\sqrt{2x+1}=2\sqrt{x}-\sqrt{x}-3$.		
	$\sqrt{x+7}$ $3\sqrt{x-1}$		
B7	Решите уравнение $\frac{\sqrt{x+7}}{\sqrt{x+2}} = \frac{3\sqrt{x-1}}{\sqrt{3x-2}}$		
Do	$\sqrt{\frac{10+x}{x}} + \sqrt{\frac{10-x}{x}} = \sqrt{6}.$		
B8	Решите уравнение $\sqrt{\frac{x}{x}} + \sqrt{\frac{x}{x}} = \sqrt{6}$.		
В9	Решите уравнение $\sqrt[3]{x+2} - \sqrt[3]{x-17} = 1$ и в ответ записать наибольший корень.		
B1 0	Решите уравнение $\sqrt{x+13} + \sqrt[4]{x+13} = 12$		
U	1 omno likabilatino		

Nº	Задания	Варианты ответов
A1	Сумма корней уравнения $x + \sqrt{2x^2 - 14x + 13} = 5$ равна:	1)-2; 2)4; 3)2; 4)-4; 5)-7.
A2	Сумма корней уравнения $(x-1)\sqrt{x^2-x-6}=6x-6$ равна:	1)4; 2)3; 3)2; 4)1; 5)9.
А3	Сумма корней уравнения $\sqrt{x^2 - 36} - \sqrt{2x - 1} = 0$ равна:	1)6; 2)2; 3)7; 4)0; 5)9.

A4	Корень уравнения $\sqrt{x+5} - \sqrt{x} = 1$ принадлежит промежут-	1)(0;1);	2)(1;4);	5) (4:0)
	ку:	3)(3;5);	4)(5;7);	5)(-1;0).
A5	Разность большего и меньшего корней уравнения	1) 2;	2)4;	3)6;
73	$x^2 + 11 + \sqrt{x^2 + 11} = 42$ pasha:	4)10;	5)9.	
	Разность х-у решений системы уравнений		A	
A6	$\int \sqrt[4]{x+y} + \sqrt[4]{x-y} = 4$	1)1;	2)2;	3)3;
	$\sqrt[3]{\sqrt{x+y} - \sqrt{x-y}} = 8,$ pasha:	4)4;	5)6.	
A7	Укажите наибольшее целое значение функции	1) 0;	2) – 2;	3)2;
A/	$y=2x^2+4x-1$	4) указат	ь нельзя;	5)3.
A8	Найдите угловой коэффициент прямой $2y + 4x = 3$	1)2; 2)3;	3)-2;	1)4; 5)-6.
		1) $y = x - 3$	3; 2) $y = -$	-x + 3;
A9	Уравнение прямой, проходящей через точку с координата- ми (2;1) и образующей с осью ОХ угол 45°, имеет вид:	3) $y = x -$	1; 4) <i>y</i>	=2x-3;
	min (E, i) in dopady logger of doble dry years to , minor bright	5) $y = 2x$.		
	11-8	4) (0,2),	0) (0.27/	2). 4\(2,).
A1	Найдите все значения параметра а, при которых функция	` ′	`	5;3); 4)(3;∞);
0	$f(x) = ax^2 - 2ax + 3$ не имеет корней на отрезке $[-2;1]$	3)(-∞;-0).375);	5)(-∞;6].
		, 52	2) 102	
A1	$f(x) = \frac{3x+2}{x-5}$, то разность $f(x+2)-f(x+8)$ приво-	1) $\frac{52}{x^2-9}$;	$(2)\frac{1}{x^2-9}$;	
1	Если х – 5 то разность (х – 2) т (х – 3) приво-	3) 102x	$4)\frac{52}{x-5}$;	5)x - 3
	дится к виду			
A1	Если вершина параболы $y = x^2 + bx + c$ имеет координа-	1) – 6;	2)11;	3) – 13;
2	ты (-2;3), то сумма $b+c$ равна:	4)5;	5)16.	
		1) $f(x) = x$	$x^2 + x - 8$;	
	$g(x) = 2x + 1 + f(g(x)) = 4x^2 + 6x$	2)f(x) = 1	$x^2 - x - 1$;	
A1	Если $g(x) = 2x + 1$ и $f(g(x)) = 4x^2 + 6x$, то функция	3)f(x)=	$x^{2} + 4x$;	
3	f(x) задается выражением:	4)f(x) = 1		
		, ()	$2x^2 - x + 2$	
	Произведение ординат точек пересечения прямой	3)1 (x)=1		•
A1		1) 1;	2) – 2;	3) – 3;
4	$3x-2y=-7$ и гиперболы $y=\frac{2}{5-3x}$ равно:	4) – 7;	5) 9.	
-	Количество целых значений параметра а, при которых аб-			
A1	списса и ордината вершины параболы	1) 6;	2)7;	3)3;
5	$y = (x - 7a)^2 + a^2 + 3a - 10$ отрицательны, равно:	4)4;	5)9.	
	трицательны, равно.			

B1	Сумма корней уравнения $\sqrt{1+3x^2-12x} = x^2-4x-1$ равна
B2	Сумма корней уравнения $(x+1)\sqrt{16x+17} = 8x^2-15x-23$ равна
В3	Найдите сумму корней уравнения $x^2 + x + 12\sqrt{x+1} = 36$.
B4	Найдите сумму корней уравнения $\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2$.
B5	$\sqrt{x-9} + \sqrt{x} = \frac{36}{\sqrt{x-9}}.$ Решите уравнение
В6	Решите уравнение $\sqrt{x+5} = \sqrt{4x+9} - \sqrt{x}$.
В7	Решите уравнение $\frac{\sqrt{6-x-x^2}}{2x-5} = \frac{\sqrt{6-x-x^2}}{x-2}$
В8	Решите уравнение $\sqrt{\frac{3-x}{x-1}} + 3\sqrt{\frac{x-1}{3-x}} = 4$ и в ответ записать наибольший корень.
В9	Решите уравнение $\frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x} - \sqrt[3]{x}} = 3$ и в ответ записать наименьший корень.
B1 0	Решите уравнение $\sqrt[3]{x+44} - \sqrt[3]{x-19} = 3$.

Тест №4: Неравенства. Системы неравенств

Nº	Задания	В	арианты с	тветов
A1	$\begin{cases} \left(1-\sqrt{3}\right)x+\sqrt{12} \leq 4, \\ x\sqrt{243} \leq -27 \\ \text{имеет вид:} \end{cases}$	1) <i>R</i> ; 3)[0;2√3	/(' /	5) $\left(-\infty; -8\sqrt{3}\right]$.
A2	Область определения функции $y = \sqrt{-x + \sqrt{3 - \sqrt{8}} + 2}$ задает множество вида:			$3)\left(-\infty;\sqrt{2}+1\right];$ $x > 3-2\sqrt{2}.$
A3	Количество целых отрицательных чисел, не являющих- $\frac{\left(x+3\right)^2}{-(2x+5)} > 0$ равно	1)1; 4)5;	2)2; 5)6.	3)3;
A4	Количество целых решений неравенства $\frac{x^4 + x^2 + 1}{x^2 - 4x - 5} < 0$ равно:	1)1; 4)7;	2)6; 5)∅.	3)5;
A5	Количество целых решений неравенства $ \sqrt{x+2} (3-x) > 0 $	1)6; 4)7;	2)4; 5)11.	3) 5;

	Число натуральных решений неравенства	1) 2;	2)9;	3) 7;
A6	$ x^2 - 36 (x - 5) \le 0$ равно:	4)5;	5)6.	
	равно.	, .	,	
	Have the property $\left \frac{x-0.5}{x-1} \right > 1$	1)3;	2)2;	3)1;
A7	Наименьшее целое решение неравенства x-1	4)-2;	5) – 4.	•
	равно:	, -,	-,	
	3 2			
A8	Решите неравенство $\frac{3}{x+2} > \frac{2}{x+3}$ и Укажите центр ин-		2)-4;	3) – 3;
Ao		4)-2.5;		5) 4.
	тервала, на котором оно не имеет места.			
	Количество целых решений неравенства	(~ ~ ~	
A9	X^4	1)7; 2)6		
	$\frac{x^{+}}{(x-2)^{2}+4x-20} \le 0$	4)5;	5)11.	
	(x-2) +4x-20 на промежутке (-6;6) равно:			
	Решением системы неравенств	$1)(-\frac{1}{2}:21$	$(2) \left(-\frac{1}{2} \right)$	3]; 3) $\left(-1;-\frac{1}{3}\right)$;
A10		''(3' - 1	' -′(3'	· 1' · '('' 3)'
AIU	$\begin{cases} -5 \le 1 - 2x < 3 \\ 3(1 - x) < 4 \end{cases}$	1,(1,)). 5\(1,2)
	является промежуток:	$ 4 (-\frac{3}{3}; 1)$); 5)(-	$-\frac{3}{3}$;3 \int .
	Количество целых решений неравенства			,
A11	$(x^2+13)(x+13)^2$	1) 23;	2)18;	
A	$\frac{(x^2+13)(x+13)^2}{143-x^2} \ge 0$	3)26;	4)24;	5) 20.
	143-х равно			
	Сумма длин интервалов, содержащих решения нера-	1)1;	2)2;	3)3;
A12	венства $x^4 - 5x^2 + 4 \le 0$ равна:	4)4;	5) 5.	, .
	Наименьшее целое решение системы неравенств	1)1;	2)2;	3)3;
A13	$\int x - 1 < 2x - 2,$	'	•	<i>აეა</i> ,
	$\begin{cases} x - 1 < 2x - 2 \\ x^2 - 3x + 2 > 0 \end{cases}$ pasho:	4)4;	5) 5.	
	2 v 1 v 1 2	1) – 10;	2)-15;	3)12.
A14	Сумма целых решений неравенства $2 x+y- x-y < 3$,	3)12;
	равна:	4)6;	5)8.	
A45	Произведение целых решений неравенства	1) 4;	2)6;	3)1;
A15	$ x^2 - 4x + 3 \le 4x - x^2 - 3$ равно:	4)2;	5)8.	
			 R	
B1	равно. Наибольшее целое решение неравенства $x(x+1)(x+2)$ Середина интервала решений, умноженная на 2, неравен	/(равно	
	y	2 v ² ⊥	2x + 1	<u>15</u> < 0
B2	Середина интервала решений, умноженная на 2, неравен	ства	$\frac{1}{x^2}$	+x+1
	равна			
	$\int x^2 - 2xv + 12 = 0.$	_		
В3	$\begin{cases} x^2 - 2xy + 12 = 0, \\ x^2 + 4y^2 \le 60 \end{cases}$	<i>x</i> ∈ <i>Z</i>		
	Сумма $x + y > 0$ решений системы $(x + 4y \le 60)$, умн	оженная н	а 2, равна

В4	Количество целых решений, удовлетворяющих неравенству $\frac{2x}{\sqrt{2x+9}} \le \sqrt{1+2x}-1$, равно	
В5	Количество целых решений, удовлетворяющих неравенству $\sqrt{x-3\sqrt{x}-18} \le \sqrt{x}-4$, равно	
В6	Для неравенства $\sqrt{4-\sqrt{1-x}}-\sqrt{2-x}>0$ количество целых решений равно	
В7	Число натуральных решений неравенства $\frac{-\left x\right ^{2}+\left x\right +12}{3-x}-2x\geq0$ равно	
В8	Среднее арифметическое целых чисел, принадлежащих области определения функции, $y = \sqrt{3- x-2 } + \left(\sqrt{x-1}-1\right)^{-1}$ равно	
В9	Решите неравенство $\sqrt{x+20} < x+2$ и Укажите наименьшее целое его решение.	
B10	Найдите длину промежутка, на котором определена функция $y = \sqrt{7x + x^2 + 12}$	

Nº	Задания	Варианты ответов
A1	Количество целых отрицательных решений совокупности $\begin{bmatrix} -3 < 1 - 2x \le -1, \\ 3x + 1 < 4x + 5 \\ \text{равно}^{\text{\Lambda}} \end{bmatrix}$	1)3; 2)4; 3)1; 4)2; 5)8.
A2	Наибольшее целое число, удовлетворяющее неравенству $(3-\sqrt{10})x>19-6\sqrt{10}$, равно:	1)31; 2)7; 3)2; 4)0; 5)-1.
A3	Количество целых отрицательных чисел, являющихся решениями неравенства $\frac{x^2(x+3)}{x^2-4} \ge 0$, равно	1)2; 2)Ø; 3)3; 4)1; 5)6.
A4	Количество целых решений неравенства $\frac{x^3 - 125}{\left(x - 5\right)^2 \left(x + 5\right)} \le 0$ равно:	1)8; 2)9; 3)5; 4)6; 5)1.
A5	Число неотрицательных решений неравенства $\sqrt{3-x}(x+2) \le 0$ равно:	1)3; 2)9; 3)1; 4)2; 5)12.
A6	Среднее арифметическое целых неотрицательных решений неравенства $ 2-x (4-5x)\ge 0$ равно:	1)1; 2)2; 3)2.5; 4)1.25; 5)4.
A7	Множество решений системы неравенств $\begin{cases} 1\!-\!3 \leq 3, \\ - -x\!-\!2 < -1 \end{cases}$ имеет вид:	1) $(-\infty;4]$; 2) $(0;4.5]$; 3) $(-1;4)$; 4) $(-1;4]$; 5) $(-1;+\infty)$.

A8	Найдите наибольшее целое решение неравенства $(x-3)^2$ 3	1) – 1;	2)0;	3)1;
10	$4 \cdot \frac{(x-3)^2}{4x+3} + 1 < \frac{3}{x}$	4)2;	5) 3.	
A9	Количество целых решений неравенства $\frac{x^{6}}{(x-5)^{2}+10x-41} \leq 0$	1)7;	A .	3)5;
	$(x-5)^2 + 10x - 41$ на промежутке (-6;6) равно:	4)11;	5)9.	
	Решением системы неравенств	1) $\left(-2; -\frac{1}{8}\right)$);	$2)\left(-\frac{1}{8};1\right];$
A10	$\begin{cases} -1 \le 1 - 2x < 5, \\ 8(1-x) < 9, \end{cases}$ является промежуток:			(2) ; $(5)\left(-\frac{1}{8};0\right]$.
A44	Количество целых решений неравенства $(x^2 + 7)(x + 7)^2$	1)14;	2)8;	3)13;
A11	$\frac{(x^2+7)(x+7)^2}{40-x^2} \ge 0$ pabho:	4)19;	5)16.	
A12	Длина интервала, содержащего решения неравенства	1) 1;	2)2;	3)3;
A12	$x^4 - 3x^2 - 4 \le 0$, равна:	4)4;	5) 5.	
A13	Наименьшее целое решение системы неравенств $x-2 < 3x-4$,	1) – 2;	2)1;	3)3;
	$\begin{cases} -x^2 + x + 6 < 0 \\ \text{равно} \end{cases}$	4)4;	5)6.	
A14	Наименьшее решение неравенства $ x+1 - x-1 \ge 1$ принадлежит промежутку:	. (/	2)(1;2); 5)(5;6).	3)(2;3);
145	Произведение целых решений неравенства	` ′	2)8;	3)16;
A15	$ x^2 - 5x + 4 \le 5x - x^2 - 4$ pasho:	4) 24;		
B1	Длина интервала решений неравенства $(x^2+2x+1)(x^2+2x-3) \le 5$, умноженная на $\sqrt{5}$, равна			
B2	Сумма целых решений неравенства $(2x-1)^2 + (2x-1)(x+2) - 2(x+2)^2 \le 0$ равна			
В3	$\begin{cases} x^2 + y^2 + 8 = z, \\ 6x + 2y - z \ge 2; \end{cases}$ равна			
В4	Длина интервала решений неравенства $\sqrt{5\sqrt{x}-x-6} < 3+2\sqrt{x}$ равна			
B5	Произведение целых решений неравенства $\sqrt{-x^4 + 6x^2 - 5} > 8 - 2x^2$ равно			
В6	Количество целых решений неравенства $\sqrt{2-\sqrt{3+x}} - \sqrt{x}$	$\overline{+4} < 0$ pag	BHO	

В7	$\frac{\left -x ight ^2 + x - 2}{\left(3 - \left 3 - x ight \right)^2} \le 0$ равно	
В8	Число целых решений системы неравенств $\begin{cases} -\sqrt{4x-7} > -x, \\ \sqrt{x+5} + \sqrt{5-x} - 4 > 0 \end{cases}$ равно	
В9	Решите неравенство $\sqrt{\frac{x^2}{4} - \frac{x}{2}} > \frac{x}{2}$ и Укажите наибольшее целое решение.	
B10	Найдите удвоенный центр промежутка области определения функции $y = \sqrt{x - x^2 + 12}$.	

Тест №5:. Показательные уравнения

Nº	Задания	Варианты ответов
	Решите уравнение	
A1	$2^{1-x} + \left(\frac{1}{2}\right)^{x+3} - \frac{1}{2^{x-4}} - \frac{1}{\sqrt{4^{x-5}}} = 130$	1)-6; 2)-5; 3)-4; 4)-3; 5)-1.
	Решите уравнение	
A2	$5^{4x+1} + \left(\frac{1}{5}\right)^{1-4x} + 25^{2x} - \frac{1}{5^{2-4x}} = 770$	1)1; 2)0,75; 3)2; 4)3; 5)3,5.
А3	Решите уравнение $9 \cdot 16^x + 2 \cdot 12^x - 32 \cdot 9^x = 0$	1)2; 2)1; 3)3; 4)3,5; 5)2,5.
A4	Решите уравнение $\sqrt{5^x - 1} = 7 - 5^x$	1)2; 2)1; 3)1,5; 4)2,5; 5)3.
A5	Решите уравнение $14 \cdot 4^{\sqrt{x+1}} + 3 \cdot 14^{\sqrt{x+1}} - 2 \cdot 49^{\sqrt{x+1}} = 0$	1)-1; 2)1; 3)2; 4)0; 5)2,5.
	Решите уравнение	
A6	$4 + \frac{2}{3^x - 1} = \frac{5}{3^{x-1}}$ В ответе запишите сумму корней	1) – 1; 2) 0 3) 1; 4) 2; 5) 3.
	Решите уравнение	
A7	$5^{x-1} + 5 \cdot 0, 2^{x-2} = 26$ В ответе запишите сумму корней	1)1; 2)3; 3)4; 4)5; 5)6;
A8	Решите уравнение 27 ^x + 3 ^{x+4} = 702	1)1; 2)log ₃ 6; 3)2; 4)log ₆ 3; 5)3.

40	Решите уравнение	4; 2)6; 3)7; 4)8; 5)9.	
A9	$3 \cdot 2^{\sqrt{x}-1} - 8^{\frac{\sqrt{x}-1}{2}} - 4 = 0$	4, 2/0, 3/1, 4/0, 3/3.	
	Решите уравнение		
A10	$25^{x-1} + \frac{1}{\sqrt{25^{-2x}}} = 475 + \left(\frac{1}{5}\right)^{1-2x}$	3; 2)2; 3)4; 4)4,5; 5)5.	
	Решите уравнение		
A11	$\left(\frac{4}{9}\right)^x \cdot \left(\frac{27}{8}\right)^{x-1} = \frac{\lg 4}{\lg 8}$	1; 2)3; 3)4; 4)2; 5)4,5.	
	Решите уравнение	X	
A12	$2^{x^2} \cdot 5^{x^2} = 0,001 (10^{3-x})^2$	-3; 2)1; 3) -2 ; 4)2; 5)3.	
	В ответе запишите сумму	-3; 2)1; 3) -2 ; 4)2; 5)3.	
	корней		
A13	Решите уравнение	1; 2)2; 3)3; 4)4; 5)3 $\log_{3+\sqrt{8}} 2$;3 $\log_{3+\sqrt{8}} \frac{1}{2}$.	
AIS	$\left(\sqrt[3]{3-\sqrt{8}}\right)^{\lambda} + \left(\sqrt[3]{3+\sqrt{8}}\right)^{\lambda} = 2.5$	33,48 2	
	Решите уравнение	$1+\sqrt{16}$	
A14	$6^{x}-9^{x}-5$	$\log_{1.5} \frac{1+\sqrt{16}}{6}$; 2)2; 3)2,5; 4)3; 5)3,5.	
A15	Решите уравнение	3 ; 2)4; 3)5; 4)7; 5)10.	
A13	$32\overline{x-7} = 0.25.128\overline{x-3}$		
B1	$\frac{(0.2)^{x+0.5}}{\sqrt{5}} = 5 \cdot 0,$	Ω4×	
	тешите уравнение		
B2	Найдите сумму целых решений	уравнения 2 ^x - 1 + 2 ^x - 2 = 1	
В3	Найдите сумму целых решений	уравнения $x^{\sqrt{x}} = \sqrt{x^x}$	
В4	Найдите целые решения уравне	$_{\text{Hия}} 3^{\log^2 3^{X}} + x^{\log_3 X} = 162$	
В5	Решите уравнение $2^{x} + 2^{-x} = -x^{2} + 2x + 3$		
В6	Найдите целые решения уравнения $3 \cdot 4^x + (3x - 10) \cdot 2^x + 3 - x = 0$		
В7	Решите уравнение $3^x + 4^x = 5^x$		
В8	Решите уравнение $1+3^{\frac{x}{2}}=2^{x}$		
В9	Найдите целое решения уравне	Найдите целое решения уравнения $3^x \cdot 8^{\frac{x}{x+1}} = 36$	
B10	Найдите число решений уравне	$_{HMR} x^{x} + 139x^{-x} - 108^{-2x} = 32$	

		ариант 2
Nº	Задания	Варианты ответов
A1	Решите уравнение $\left(\frac{1}{5}\right)^{x} + 5^{-(x+1)} - \frac{1}{\sqrt{25^{x+2}}} - 725 = 0$	1)4; 2)3; 3)2; 4)1; 5)0.
A2	Решите уравнение $6^{2x+1} + \left(\frac{1}{6}\right)^{1-2x} - 36^{x-1} = 1326$	1)1; 2)1,5; 3)2; 4)3; 5) $\frac{1}{2}$.
А3	Решите уравнение $4 \cdot 25^{x} - 9 \cdot 20^{x} + 5 \cdot 16^{x} = 0$	1)0; 2)1; 3)3; 4)1,5; 5)0;1.
A4	Решите уравнение $3\sqrt{3^{x-1}-5} = 33-3^x$	1)1; 2)2; 3)3; 4)1,5; 5)2,5.
A 5	Решите уравнение $\frac{4}{2^x + 2} - \frac{1}{2^x - 3} = 2$ В ответе укажите сумму корней	1)1; 2)-1; 3)2; 4)0; 5)-2.
A6	Решите уравнение $\left(\sqrt{2-\sqrt{3}}\right)^x + \left(\sqrt{2+\sqrt{3}}\right)^x = 4$ В ответе укажите сумму корней	1)2; 2)0; 3)-2; 4)1; 5)-1.
А7	Решите уравнение $2^{x^2-3} \cdot 5^{x^2-3} = 0,01 \cdot \left(10^{x-1}\right)^3$ В ответе Укажите сумму корней	1)1; 2)2; 3)4; 4)3; 5)1,5.
A8	Решите уравнение $\left(\sqrt[5]{3}\right)^{x} + \left(\sqrt[10]{3}\right)^{x-10} = 84$	1)10; 2)15; 3)12; 4)16; 5)20.
A9	Решите уравнение $\frac{2^{x} + 10}{4} = \frac{9}{2^{x-2}}$	1)3; 2)1; 3)2; 4)1,5; 5)2,5.
A10	Решите уравнение $7^{2x+1} + 4,21^x - 3^{2x+1} = 0$	1)1; 2)0; 3)-1; 4)2; 5)3.
A11	Решите уравнение $5 \cdot 5^{-2x} + 4 \cdot \left(\frac{1}{5}\right)^x = 1$	1)0; 2)-1; 3)2; 4)1; 5)-2.

A12	Решите уравнение $\frac{3x^2 + 5x - 2}{2^x - 0.25} = 0$	$1)\frac{1}{2}$; $2)\frac{1}{4}$; $3)\frac{1}{5}$; $4)1$; $5)\frac{1}{3}$.
A13	Решите уравнение 8 ^x – 2·20 ^x + 3·50 ^x = 6·125 ^x	1) $\log_{0,4} 2$; 2)1; 3)2; 4)-1; 5)-2.
A14	Решите уравнение $\left(\frac{1}{3}\right)^{2-x} + 3^{x-3} = \sqrt{\frac{1}{9^{4-x}}} + 297$	1)6; 2)7; 3)5; 4)4; 5)3.
A15	Решите уравнение $6(\sqrt[4]{81} + \sqrt[4]{16}) = 13 \cdot \sqrt[4]{36}$	1)3; 2)4; 3)1; 4)-1; 5)2.
B1	Найдите модуль целого решения уравнения $8^{\frac{x}{x-1}} \cdot 5^{-x} = 100$	
B2	Найдите число целых решений уравнения $x \cdot 2^x = 3x - x^2 + 2^{x+1} - 2$	
В3	Найдите число целых решений уравнения $32^{3(x^3-8)}=8^{19(2x-x^2)}$	
В4	Найдите модуль наименьшего целого решения уравнения $2^{ x+2 } - 2^{x+1} - 1 = 2^{x+1} + 1$	
B5	Найдите наименьшее целое решение уравнения $x^2 \cdot 2^{x+1} + 2^{ x-3 +2} = x^2 \cdot 2^{ x-3 } + 2^{x-1}$	
В6	Найдите целое решение уравнения $(x+3)^{\lg(x+3)}=10$	
В7	Решите уравнение $x^{1925} - 24.5^{19x} = 25$	
В8	Найдите сумму квадратов решений уравнения. $6^{\log_2 x^2} + (x^2)^{\log_2 6} = 12$	
В9	Решите уравнение $(\sqrt{6} + \sqrt{5})^{2x-4} = (\sqrt{6} - \sqrt{5})^{1-x}$	
B10	Найдите ${}^{5\chi_0}$, где ${}^{\chi_0}$ - корень уравнения ${}^{6^{4x}}-6^{-x}=5\cdot 6^{\frac{3x-1}{2}}$	

Тест №6: Преобразование логарифмических и показательных выражений

	Барлан і	
Nº	Задания	Варианты ответов
A1	Найдите значение выражения	1)1 2)2 3)2,5 4)3 5)3,5
	$\log_2^2 14 + (\log_2 14)(\log_2 7) - 2\log_2^2 7$	
	$\log_2 14 + 2\log_2 7$	
A2	Найдите значение выражения	$1)\frac{2}{3}$ $2)\frac{3}{2}$ $3)\frac{3}{4}$ $4)\frac{4}{3}$ $5)2$
	\sqrt{a}	$\frac{1}{3}$ $\frac{2}{3}$ $\frac{2}{2}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{4}{3}$ $\frac{3}{3}$
	$3\log_{\frac{a^2}{b}} \frac{\sqrt{a}}{\sqrt[3]{b}} + \log_{\frac{a^2}{b}}$ b если известно, что	
	у о если известно, что	

	log _a b=2	
А3	Найдите значение выражения	1)1 2)2 3)3 4)4 5)5
	$(\log_3 2 + \log_2 81 + 4)(\log_3 2 - 2\log_{18} 2)\log_2 3 - \log_3 2$	
A4	Найдите значение выражения	1)2log ₂ 5-1 2)1 3)0 4)2 5)3
	$ \log_3 5 - 1 + \log_3 5 $	
A5	Найдите значение выражения	1)1 2) –1 3)2 4)0 5)1,5
	$\log_{12}^{-1} 64^{-3} \cdot \log_{5}(25 \cdot 25^{-1})$	
A6	Найдите значение выражения	1)1 2)0 3)2 4)2,5
	$\sqrt{3^{4x}} \cdot 5^x \cdot 5^x 3^{3x} - 6^x$	5)3
	$\frac{\sqrt{3^{4x} \cdot 5^x \cdot 5^x}}{25^x \cdot \sqrt{9^x}} + \frac{3^{3x} - 6^x}{2^x - 9^x}$	

A7	Найдите значение выражения	1)6 2)5 3)4 4)3 5)2
	$\log_{0.2} \frac{1}{8 + 4\sqrt{3}} + \log_{\sqrt{5}} \frac{125}{\sqrt{2} + \sqrt{6}}$	
A8	Найдите значение выражения	1)1 2)2 3)3 4)4 5)5
	$\log_7 8 \cdot \log_5 7 \cdot \log_3 5 \cdot \log_2 3$	
A9	Найдите значение выражения	1)6 2)5 3)4 4)3 5)3,5
	$\log_{\sqrt{3}} \frac{27}{\sqrt{7} + \sqrt{2}} + \log_{\frac{1}{3}} \frac{1}{9 + 2\sqrt{14}}$	
A10	Найдите значение выражения	1)1 2)2 3)3 4)3,5 5) $\frac{5}{2}$
	$\log_2(\sqrt{10+\sqrt{96}}-\sqrt{10-\sqrt{96}})$	2
A11	Найдите значение выражения $5^{\log_3 2} - 2^{\log_3 5}$	1)1 2)2 3)3 4)0 5) – 1
A12	36 ^{log₄ 12}	1)3 2)3,5 3)3,6 4)4 5)4,5
	Найдите значение выражения ^{32юд, 24}	
A13	Найдите значение выражения	1) -7 2) -8 3) -9 4) -10
	$\log_{0.5}(3^{\frac{\log_4 8}{\log_4 3}} \cdot 4^{\frac{\log_2 243}{\log_2 9}})$	5) – 3
A14	Найдите значение выражения	1)6 ⁻⁸ + 3 2)6 ⁻⁸ 3)3
	$\left(\frac{1}{6}\right)^{\log_{\sqrt{2}}9\log_{\sqrt{5}}2} + 3^{\log_{25}5} \cdot 5^{\log_{25}3}$	$4)6^{-5} 6)6^{-3} + 2$
A15	Найдите значение выражения ^{lg24,} если	1)3a+b 2)2a+b 3)2a-b
	$\lg 2 = a$, $\lg 3 = b$	4)3a – b 5)4a +1
B1	Вычислите $N = \log_{ab^2}$ (ab), если $\log_a b - \log_b a = 1$,	5 . В овеете запишите 5N
B2	$N = a^{-2b}$, если b leg 2_a В ответе записать $4N$	1
В3	Если $2^x + 2^{-x} = 3$, то чему равна сумма $8^x + 8^{-x}$	×
D.4		•
B4	Вычислите $-\log_9(\sqrt{2}-\sqrt{3})^2\cdot\log_{\sqrt{2}+\sqrt{3}}27$	
B5	Вычислите $2\log_{16}(\sqrt{7}+2\sqrt{2})\log_{ \sqrt{7}-\sqrt{8} }0,25$	
В6	Вычислите $7^{1-\sqrt[5]{\log_7^3 2}} \cdot 2^{2+\sqrt[5]{\log_2^2 7}}$	
В7	Вычислите $\log_{\frac{1}{3}} \frac{1}{8} - \log_{\frac{1}{3}} \frac{1}{6} + \log_{\frac{1}{3}} \frac{3}{8} - \log_{\frac{1}{3}} \frac{1}{6}$	
В8	Найти b^b , если $a^{bc} = 81$, $b^c = 2$, $a = 9$	
В9	Вычислите $\sqrt{(\log_3 4 + 9\log_4 3 - 6)}\log_2 \sqrt{3} + \log_2 \frac{8}{3\sqrt{3}}$	

B10	Вычислите	log ₂ 40	log ₂ 320
	вычислите	log ₁₆₀ 2	log ₂₀ 2

Religation

No	З	D
Nº	Задания	Варианты ответов
A1	Найдите значение выражения	1)5 2)4 3)3 4)1 5)1,5
	$2\log_3 12 - 4\log_3^2 2 + \log_3^2 12 + 4\log_3 2$	
	3log ₃ 12 + 6log ₃ 2	
A2	Вычислите:	44 000 004 4) 1 5)45
		1)1 2)2 3)4 4) $\frac{1}{8}$ 5)1,5
	$\log_{\frac{\sqrt{b}}{a^2}} \cdot \frac{\sqrt{a}}{\sqrt[4]{b}} + \frac{1}{4} \log_{\frac{\sqrt{6}}{a^2}} b\sqrt{a}$	
	$\frac{1}{a^2} \sqrt{D} + \frac{1}{a^2}$	
	если $log_a b = 14$	
А3		1)2 2)3 3)4 4)5 5)6
	Найдите значение выражения	
	$(1)^{\log_1 3}$	
	$\left[\left(\frac{1}{4} \right)^{\log_1 3} \cdot 7^{\log_7^2 2} - 9 \cdot 2^{\log_7 2} + 3^{\log_9 4} \right]$	
A4		1)0 2)1 3) –1 4)2 5)3
77	Найдите значение выражения	1,5 2,1 0, 1 7/2 0,0
	1	
	$3^{\frac{1}{\log_5 3}} \cdot 7^{\log_3^2 4} - 5 \cdot 4^{\log_3 4} + \lg 0,1$	
A5	-	1)10 2)20 3)30 4)40 5)100
	Найдите значение выражения	-,. 5 2,25 5,55 1,16 5,165
	$3^{2 + \frac{\log_3 4}{\log_4 3}} - 9 \cdot 4^{\frac{1}{\log_4 3}} + 4^{1 + \log_4 25}$	
A6	_()	1)1 2)1,5 3)2 4)3 5)4
	Найдите значение выражения	, , , , , , , , ,
	$(\log_5 2 + \log_2 5 + 2)(\log_5 2 - \log_2 \log_2 5 - \log_5 2)$	
	7. 53 7. 52 55	
A7	0.7	1)6 2)6√2 3)6√3 4)7 5)8
	Найдите значение выражения	, , ,
L_ i	$\sqrt{25^{\frac{1}{\log_8 5}} + 45^{\frac{1}{\log_8 7}}}$	
A8		1)1 2)2 3) -1 4) -2 5)0
	Найдите значение выражения	
	1/	
	$3^{\log_3 3} \cdot 3^{\log_3^2 4} - 5 \cdot 4^{\log_3 4} + \lg 0,1$	
A9	log 27 1	1)5 2)6 3)4 4)5 5)1,5
	$\log_{\sqrt{3}} \frac{27}{\sqrt{7} + \sqrt{2}} + \log_{1/3} \frac{1}{9 + 2\sqrt{14}}$	
A10	·	1)1 2)2 3)3 4)4 5)5
	Найдите значение выражения	' ' ' ' '
	$\log_7 27 \cdot \log_4 5 \cdot \log_5 4 \cdot \log_5 7$	
	5, 54 - 55 - 55 -	
		<u>.</u>

A11	Найдите значение выражения $1)1 2)\frac{2}{3} 3)\frac{4}{5} 4)\frac{3}{8} 5)-\frac{4}{15}$
	, and the same resident and the same series and the same series and the same series are same series are same series and the same series are same s
	$\frac{\log_{\sqrt{3}} tg \frac{\pi}{6} + \log_{27} 243}{1}$
	$\log_{\sqrt{3}} 27 - \log_{\sqrt{2}} \frac{1}{4}$
A12	Найдите значение выражения $\frac{3}{1}$ $\frac{1}{1}$ $\frac{3}{7^2}$ $\frac{1}{2}$ $\frac{3}{1}$ $\frac{3}{1}$ $\frac{3}{7^2}$ $\frac{1}{7}$ $\frac{3}{7}$ $\frac{1}{7}$ $\frac{3}{7}$ $\frac{1}{7}$ $\frac{3}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{3}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{3}{7}$ $\frac{1}{7}$ $$
	$3^{\log_{3/5} 17} + 2^{\frac{1}{\log_{15} 8}}$
A13	Найдите значение выражения 1)1 2)2 3)3 4)1,5 5)0
	$5^{\sqrt{\log_5 4}} - 4^{\sqrt{\log_4 5}}$
A14	Найдите значение выражения 1)0 2)1 3)2 4)3 5)5
	$5^{\log_5^2 7} - 7^{\log_5 7}$
A15	Найдите значение выражения 1)1 2)2 3)4 4)3 5)5
	glog ₂ 6
	3log ₂ 18
B1	Вычислите 7 ^{log, 2} – 2 ^{log, 7}
B2	Вычислите $(\log_5 7 + 9\log_7 5 + 6)(\log_5 7 - 3\log_{875} 7)\log_2 5 - \log_5 7$
В3	$5^{\log_{1/2} \frac{1}{2}} + \log_{\sqrt{2}} \frac{4}{\sqrt{7} + \sqrt{3}} + \log_{1/2} \frac{1}{10 + 2\sqrt{21}}$
	вычислите (7) убразования вычислите
В4	Вычислите $4^{5\log_{4\sqrt{2}}(3-\sqrt{6})-6\log_{6}(\sqrt{3}-\sqrt{2})}$
В5	Вычислите gsin1° - gsin2° gsin90°
В6	$1+2\log_3 2$
	$\frac{1+2\log_3 2}{(1+\log_3 2)^2} + \log_6{}^2 2$ Вычислите
В7	log₅ 250 log₅ 10
	$\frac{\log_{50} 5}{\log_{50} 5} = \frac{\log_{1250} 5}{\log_{1250} 5}$
В8	
	Вычислить $\left \log_{\frac{1}{2}} \frac{1}{9} - \log_{\frac{1}{2}} \frac{1}{5}\right + \left \log_{\frac{1}{2}} \frac{8}{9} - \log_{\frac{1}{2}} \frac{1}{5}\right $
В9	Вычислите ^{lg5·lg20} + (lg2) ²
B10	
	Вычислите $3^{\frac{1}{\lg 6}} \cdot 2^{\frac{1}{\lg 6}} + 3 \cdot 4^{\frac{\log_7 3}{\log_7 4}}$

Тест №7: Логарифмические уравнения

Nº	Задания	Варианты ответов
A1	Решите уравнение	
	$\log_{6}(x-1) - \log_{6}\frac{1}{16} + 3\log_{6}(\frac{1}{\sqrt[3]{x}}) =$	1)6 2)2 3)4 4)1,5 5)3
	$=0.5\log_{6}(2x+4)^{2}$	
	В ответе запишите сумму корней	
A2	Решите уравнение	1)4 2)11,5 3)7 4)11 5)12
	g5 + g(x+10) - 1 = g(21x-20) - g(2x-1)	
	В ответе записать сумму корней	
А3	Решите уравнение	1)1 2)2 3)4 4)3 5)2,5
	$ gx - lg\frac{1}{x - 1} = lg2 + 3lg(\sqrt[3]{x + 2})$	
Α4	Решите уравнение	1)4 2)5 3)5,5 4)6 5)6,5
	$\log_4(x(x-5)) + \log_4 \frac{x-5}{x} = 0$	
A5	Решите уравнение	1)10 2)30 3)40 4)50 5)100
	$\lg x - 2\lg 100 + 4(\lg x)^{-1} = 0$	
Α6	Решите уравнение	1)1,5 2)4 3)8,5 4)9 5)8
	$\frac{2\log_2^2 x - 1}{\log_2^2 x + 2\log_2 x + 2} = 1$, The state of the
	$\log_2^2 x + 2\log_2 x + 2$	
	В ответе записать сумму корней	
	0103/10	
	2	

A7	Решите уравнение	1)0,1 2)100 3)1000 4)500 5)10	
	$\lg^2 \frac{x}{10} = 3^{\log_3 4}$		
	В ответе записать произведение		
	корней		
A8	Решите уравнение	1)27 2)3 3)9 4)5 5)7	
	$\log_3 x + \log_x 9 = 3$		
	В ответе записать произведение		
40	корней	1)8 2)6 3)2 4)3 5)5	
A9	Решите уравнение 1	1)8 2)6 3)2 4)3 5)5	
	$ g(5-x) - \frac{1}{3} g(35-x^3) = 0 $		
	В ответе записать произведение	, (C)	
	корней		
A10	Решите уравнение	1)7 2)7.5 3)6,5 4)8 5)6	
	$\log_2 \frac{x-5}{x+5} + \log_2 (x^2 - 25) = 0$	7	
A11	х + э Решите уравнение	1) –12 2) –11 3) –13 4) –10 5) –9	
AII		1, 12 2, 11 0, 10 4, 10 0, 0	
	$\lg x(x+9) + \lg \frac{x+9}{x} = 0$		
A12	Решите уравнение	1)6 2)5 3)7 4)7,5 5)8	
	$\frac{\lg x^2}{\lg(6x-5)} = 1$		
	O()		
A13	Решите уравнение	$1 - \frac{5}{4} + 2 - \frac{3}{2} + 3 - \frac{2}{3} + 4 - 1 + 5 - 2$	
	$\log_{1-x} 3 - \log_{1-x} 2 - \frac{1}{2} = 0$	4 2 3	
A14	Решите уравнение	1)100 2)1000 3)500 4)1100	
	$\frac{1}{5 - \lg x} + \frac{2}{1 + \lg x} = 1$	5)200	
445	В ответе записать сумму корней		
A15	Решите уравнение	$1)\frac{1}{2}$ $2)\frac{1}{3}$ $3)\varnothing$ $4)\frac{1}{4}$ $5)\frac{1}{5}$	
	$\lg \sqrt{1-x} + 3\lg \sqrt{1+x} = \lg \sqrt{1-x^2} + 2$	2 3 + 3	
B1	Найдите число корней уравнения ²	$\log_x 3 + \log_{3x} 3 + 3\log_{9x} 3 = 0$	
B2	Найдите модуль целого решения уравнения $[g^{x}(x-1)^{2}+[g^{2}(1-x)^{3}]=25$		
В3	Найдите число корней уравнения $\lg x^2 + \lg^2(-x) = \lg^2 7 - 1$		
В4	Найдите среднее арифметическое	корней уравнения $\log_x 2 \cdot \log_{x/16} 2 = \log_{x/64} 2$	

B5	Найдите сумму модулей корней уравнения $\sqrt{3\log_2(-x)} = \log_2\sqrt{x^2}$
В6	Найдите 2X_0 , где X_0 - корень уравнения ${}^{\log_{x+1}(2x+3)=\log_{2x+3}(x+1)}$
В7	Найдите произведение корней уравнения $\log_3^2 6 - \log_3^2 2 = (\lg^2 x - 2) \cdot \log_3 12$
B8	Найдите число корней уравнения $lg^2 x^3 + lg^3 x^2 = 1$
В9	Найдите больший корень уравнения $lg^2(100x) + lg^2(10x) + lg^2x = 14$
B10	log ₅ log ₈ x
	Решите уравнение ^{х 109₅ х} = log ₅ 14

Nº	Задание	Варианты ответов
A1	$\log_{\frac{12x-1}{x+2}} 3-1=0$	1)3 2)2 3)1 4)1,5 5)2,5
	Решите уравнение	
A2	lar 9 1 0	1) -5 2) -6 3) -4 4) -3 5)1
	$\log_{\frac{64}{7+x}} 8 - \frac{1}{2} = 0$	
4.0	т сшите уравнение	14, 0,0, 0,5, 4,0, 5,4
A3	$\log_{(2x-5)^3} 5 - \frac{1}{3} = 0$	1)1 2)2 3)5 4)3 5)4
	г ешите уравнение	· ·
A4	Решите уравнение $\log_{\sqrt{6-x}} 3-2=0$	1)1 2)2 3)4 4)3 5)5,5
A5	$\log_{-1} 5 + 2 = 0$	1)1 2)2 3)4 4)5 5)3
7.0	Решите уравнение $\sqrt{\frac{1}{\sqrt{x+2}}}$	1)1 2)2 0)4 4)0 0)0
	т ешите уравнение	
A6	$\log_2(\sqrt{3}(2x-1)) = \frac{1}{\log_3 4}$	1)1 2)2 3)3 4)3,5 5)2,5
	Решите уравнение log ₃ 4	
A7	$(\log_{\sqrt{5}} 4)\log_2(5(3-2x)) = 4$	1 3
	(109/5 1/1092(0(0 23/))	$1)2$ 2)1 3)3 4) $\frac{1}{2}$ 5) $\frac{3}{2}$
A8	log (5-2x)	12
- 10	$\log_9 5 = \frac{\log_{1/2} (5 - 2x)}{\log_9 9}$	1)1 2)2 3)0 4)1,5 5) 12 5
	Решите уравнение 109 ₂ 9	3
A9	$\log_3 \frac{4x}{2} + \log_{4x} 3 = 2^{\lg 1}$	1)1 2)2 3)0,75 4)1,5 5)2,5
	Решите уравнение	
A10	Решите уравнение	1)1 2)2 3)3 4) – 3 5) – 1
	$\log_{1/2} x(x-5) - \log_{1/2} \frac{9(x-5)}{x} = 0$	
	$\log_{1/2} X(X-5) - \log_{1/2} \frac{1}{X} = 0$	
A11	1 2 2 2 2	1) - 2 2) - 4 3)3 4) - 3 5)0
	$\log_{25} 9x^2 - \frac{1}{\log_{25} 15} = 0$	
	Решите уравнение	
	В ответе Укажите сумму корней	
A12	Решите уравнение	1)1 2)0 3) – 2 4)2 5)3

	i		
	$\log_{16} 16x^2 = -\frac{1}{\log_{12-x^2} 0,25}$		
	В ответе Укажите сумму корней		
A13	3 уравнение 1) - 9 2)3 3) - 3 4)2 5)4 Решите		
	$\log_3(9x^2) \cdot \log_{\sqrt{3}} \frac{8}{x^2} + 8 = 0$		
	В ответе запишите произведение целых		
	корней		
A14	$lg^2(100x) + \frac{2}{log_x \cdot 10} = 20$ Решите уравнение	1)100 2)10-6 3)10-8 4)10 5)1000	
	В ответе записать произведение коренй	, ()	
A15	Решите уравнение $\log_{x^2}^2 10 + \lg^2 x + \lg x^2 = 0$	1)1 2)10-4 3)1;10-4 4)10 5)100	
B1	Найдите больший корень уравнения $5\log_2 x - x \cdot \log_2 x = x - 5$		
B2	Найлите писло корней уравнения $\log_{0.5} x-5 = \log_2(2x-6)$		
B3	Найдите число корней уравнения $\left \log_2 \frac{x+4}{x-5} \right = -\log_2 x$ $4-3\sqrt[3]{\alpha x} = 3\sqrt[3]{(\alpha x)}$		
B4	уравнение $4 - \sqrt[3]{ gx } = 3\sqrt[6]{ gx }$ Решите		
B5		4	
	$\sqrt{\log_3 x}$ - Найдите больший корень уравнения	$+\sqrt{\log_x 3} = \frac{4}{\sqrt{3}}$	
В6	Найдите число корней уравнения $\log_x (3x)^{\log_3 x}$ -	$+4) = 2\log_3 x$	
B7	Найдите число корней уравнения $\log_{\sqrt{3}}(2^x-2) = \log_{\sqrt{3}}(4^x-4) - 2$		
B8	Решите уравнение $\log_3(2^{\circ} + x - 13) + x \log_3 6 =$	= X	
В9	Решите уравнение $lg(4^x + 2x - 6) = 2x(1 - lg 5)$		
B10	Решите уравнение $\log_2^2(x+2) \cdot \log_2(x -1) \cdot \sqrt{x-1} = 0$		

Тест №8. Показательные неравенства

Nº	Задание	Варианты ответов
A1	Решите неравенство	1)(0;1) 2)(0;2) 3)(0;3) 4)(1;2) 5)(3;4)
	$25^x < 6 \cdot 5^x - 5$	
A2	Решите неравенство	1)(5;+ ∞) 2)(4;+ ∞) 3)(3;+ ∞) 4)(2;+ ∞) 5)(0;+ ∞)

	$5^{2x+1} > 5^x + 4$	
А3	Решите неравенство	1)(-∞;0] 2)(-∞;-1] 3)(-∞;2] 4)(-∞;3] 5)(-∞;5]
	$25^{-x} + 5^{-x+1} \ge 50$	
A4	Решите неравенство	$1)(-2;+\infty) \ 2)(-1;+\infty) \ 3)(0;+\infty) \ 4)(1;+\infty) \ 5)(2;+\infty)$
	$\left(\frac{1}{4}\right)^x - 2^{1-x} - 8 < 0$	
A5	Решите неравенство	$1)(0;+\infty) \ 2)(1,5;+\infty) \ 3)(1;+\infty) \ 4)(2;+\infty) \ 5)(3;+\infty)$
	$4^x + 2^{x+3} > 20$	1)(0,135) 2)(1,0,135) 0)(1,135) 1)(2,135)
A6	Решите неравенство	1) -1 2) -2 3)3 4)0 5)1
	$\left(\frac{1}{4}\right)^x \le 2^{3-x} - 16$	
A7	Решите неравенство	1) 3 2) 4 3) 1 4) 5 5) 6
	$(0,2)^{2x} - 6 \cdot (0,2)^x + 5 \le 0$	
	В ответе Укажите длину про-	X) *
	межутка решения	
A8	Решите неравенство	1) 0,5 2) 1 3) 1,5 4) 2 5) 2,5
	$2^{\sqrt{x}} - 2^{1-\sqrt{x}} \le 1$	
	В ответе Укажите середину	
	промежутка решений	
A9	Решите неравенство	1)1 2)2 3)4 4)5 5)8
	$3 \cdot (\sqrt{2})^x - 7 \cdot 2^{\frac{x}{4}} - 20 \ge 0$	
	В ответе записать наимень-	
	шее целое решение неравен-	
	ства	
A10	Решите неравенство	1)[2;4] 2)[2;3] 3)[1;3] 4)[1;5] 5)[2;6]
	$4^{x}(2^{x}+2^{5-x}-12)\leq 0$	
A11	Решите неравенство	1) 0,5 2) 1 3) 1,5 4) 2 5) 2,5
	$\frac{6^{\sqrt{x}}}{\sqrt{x}} > 6^{\sqrt{x}-1}$	
	x+1	
	В ответе записать середину	
- 10	промежутка решений	(150 0) (154 0) (150 4) (150 5) (170 4)
A12	Решите неравенство	1)[2;3) 2)[1;3) 3)[2;4) 4)[2;5) 5)(3;4)
	$\frac{4^{\sqrt{x-2}+1}}{16x} > 4^{\sqrt{x-2}-2}$	
A13	Решите неравенство	1)[-2;1) 2)[-2;2) 3)[-1;1) 4)(-1;4) 5)(-1;2)
	$3^{\sqrt{x+2}} - 8 < 3^{2-\sqrt{x+2}}$	

A14	Решите неравенство	1)[0;1] 2)[0;2] 3)[0;3] 4)[0;4] 5)[1;2]
	$\frac{x^2-2}{2^{2\sqrt{x}}} \le 4^{0.5-\sqrt{x}}$	
A15	Решите неравенство	1) 1 2) 2 3) 3 4) 4 5) 5
	$x^2 \cdot 27^{\sqrt{x}} \le 3^{3(\sqrt{x} + \frac{2}{5})}$	•
	В ответе Укажите наибольшее	
	натуральное решение нера-	
	венства	
B1	Найдите середину интервала решений неравенства $(x-0,5)^{x^2-0.25} < 1$	
B2	Найдите наименьшее решение неравенства $(x-4)^{x^2-9} < 1$	
В3	Найдите наименьшее целое решение неравенства х ^{x²-5x+6} >1	
В4	Найдите наибольшее решение неравенства $5^{\log_3 x} + 3x^{\log_3 5} \le 4x^{\log_x 25}$	
B5		ное решение неравенства $\frac{e^{3x-1}-1}{x+8} \ge 0$
	Найдите наименьшее натуралы	ное решение неравенства х+о
В6	 Найлите наименьшее натуралы	HOE DELIVERING HEDARPHICTRA $2^x \cdot 5^{\frac{1}{x}} > 10$
В7	Найдите наименьшее натуральное решение неравенства $2^x \cdot 5^{\overline{x}} > 10$ Пусть $f(x) = 2^{x^2 - 3x}$. Решите неравенство: $f(x) + 2f(3 - x) \le 0.75$ и в ответе запишите	
	длину промежутка решения)
В8	Найдите наименьшее натуралы	$3^{\sqrt{(x^2-5x-14)^3}} \cdot 5^{(x-7)^2 \cdot (x+2)} \ge 1$
В9		шение неравенства $(2-\sqrt{3})^x > 7-4\sqrt{3}$
B10	Найдите наибольшее целое рец	иение неравенства ^{7× + 24× ≥ 25×}

Nº	Задания	Варианты ответов
A1	Решите неравенство $0,1^{x+1}(0,1^x+0,1^{-x-1}-11)<0$ В ответе укажите середину интервала решений	1) 0,5 2) -0,5 3) 2,5 4) 1 5) 2
A2	Решите неравенство 4 ^x (2 ^x + 2 ^{5-x} − 12) ≤ 0	1) 0,5 2) 1,5 3) 1 4) 2 5) 2,5
	В ответе укажите середину промежутка решений	
А3	Решите неравенство	1)(0;0,1) 2)(0;0,2) 3)(0;0,3) 4)(0;0,4) 5)(0;0,5)

	 	
	$\frac{3\sqrt{x-3}}{3x+3} > 3^{\sqrt{x-3}-3}$	
A4	Решите неравенство	1)(0;5) 2)(1;5) 3)(0;16) 4)(1;7) 5)(2;8)
74	l _	1/(0,0) 2/(1,0) 3/(0,10) 1/(1,1) 3/(2,0)
	$\frac{4^{\sqrt{x}+1}}{x} > 2^{2(\sqrt{2}-1)}$	
A5	Решите неравенство	1)[3;7) 2)[3;8) 3)[3;9) 4)[4;10) 5)[4;10)
^3	$2^{\sqrt{x-3}+1} - 6 < 2^{3-\sqrt{x-3}}$	1/[0,1] 2/[0,0] 3/[0,0] 1/[1,10]
A6	Решите неравенство	1)[0;2) 2)[0;1) 3)[0;3) 4)[1;3) 5)(1;4)
Αυ	'	1/[0,2] 2/[0,1] 3/[0,0] 1/[1,0] 3/(1,1)
	$11^{\sqrt{x}} - 10 < \frac{11}{11^{\sqrt{x}}}$	
A7	Решите неравенство	1)1,5 2)2 3)2,5 4)1 5)3
	$(x-2)^{x^2-4} < 1$	
	В ответе запишите се-	
	редину интервала ре-	
	шений	
A8	Решите неравенство	1)1 2)2 3)3 4)4 5)5
	$x^2 \cdot 4^{\sqrt{x}} \le 4^{\sqrt{x}+1}$	
	В ответе запишите дли-	
	ну промежутка реше-	
	ний	
A9	Решите неравенство	1) $(-\infty;-2]$ 2) $(-\infty;2]$ 3) $(3;+\infty)4$) $(-\infty;-2]\cup[2;+\infty)$ 5) $(1;+\infty)$
	$36^{0.5x^2-1} \ge \left(\frac{1}{6}\right)^{-2}$	
	(6)	
A10	Решите неравенство	1) -1 2) -2 3) 0 4) 3 5) 4
	$25 \cdot 0.04^{2x} > 0.2^{x(3-x)}$	
	В ответе укажите наи-	
	большее целое реше- ние неравенства	
A11	Решите неравенство	1)(-5;-3) 2)(3;+ ∞) 3)(-3;4) 4)(-5;-3) \cup (3;+ ∞) 5)(4;+ ∞)
	$6^{\frac{x+5}{x^2-9}} > 1$	
A12	Решите неравенство	1)[-1;1- $\sqrt{2}$] \cup [1+ $\sqrt{2}$;3] 2)(1;2) 3)(4;5) 4)(5;7) 5)(3;8)
	$-4 \le 3^{x^2 - 2x - 1} - 5 \le 4$	
A13	Решите неравенство	1)1 2)0 3)2 4)3 5)4
	$4^{-2x} + 4^{-x+1} - 12 \le 0$	
	В ответе укажите наи-	
	меньшее целое реше-	

	ние неравенства	
A14	неравенство	1) 2 2) 3 3) 4 4) 7 5) 6
	Решите .	
	$\frac{7^{\sqrt{x}+2}}{x} > 7^{\sqrt{x}+1}$	
	x	A
	В ответе укажите длину	
	промежутка решений	
A15	Решите неравенство	1)(0;1) 2)(-0,5;1) 3)(3;4) 4)(3;5) 5)(-0,25;0,5)
	$2^{2\sqrt{x+0.5}} + 2^{3-2\sqrt{x+0.5}} < 6$	
B1	Найдите наибольшее цел	$9^{\log_6 x} + 2x < 3x^{2\log_x 3}$
B2		
	$0.04^{\sqrt{x}} \geq \frac{x^2}{5^{2\sqrt{x}}}$ Найдите длину интервала решений неравенства	
B3		
	Ham gutto hamanu waa pawawa wananayartaa $\frac{x^2-x}{2^{\sqrt{x}}} < 0.5^{\sqrt{x}-1}$	
B4	паидите наименьшее решение неравенства 2	
	Найдите наименьшее целое решение неравенства $11^{\log_7 x} + x^{\log_1 1} \le 2x^{\log_2 11}$	
B5	Найдите наименьшее целое решение неравенства $2(\sqrt[3]{0.5} + \sqrt[3]{4})^x > 27$	
В6	Найдите длину интервала решений неравенства $ x-1 ^{x^2-1} < 1$	
В7	Найдите наименьшее целое решение неравенства $x^{\log_3 2} \le 2^{\log_3 x} + 2x$	
В8	Найдите сумму длин интервалов решения неравенства $1 < 3^{ x^2 - x } < 9$	
В9	Найдите наименьшее натуральное решение неравенства $(x+5)^{x^2-4x+3} > 1$	
B10	Найдите наименьшее рег	шение неравенства $4x^2 + 3^{\sqrt{x}+1} + x \cdot 3^{\sqrt{x}} < 2x^2 \cdot 3^{\sqrt{x}} + 2x + 6$

Тест №9. Логарифмические неравенства

Nº	Задание	Варианты ответов
A1	Рещите неравенство 2x log _{1/2} 5 – log _{1/2} 5 < 0	$1)\left(\frac{1}{2};+\infty\right); 2)(1;+\infty); 3)(2;+\infty); 4)(3;+\infty); 5)(4;+\infty).$
A2	Решите неравенство $\log_{1/4}(5x-x^2)<-1$	1) (1;3); 2) (1;4); 3) (1;5); 4) (1;6); 5) (2;5).
A3	Решите неравенство $2^{\log_2(x+7)} < 3$ В ответе укажите длину интер-	1) 3; 2) 4; 3) 5; 4) 6; 5) 7.

	1	
	вала решений	
A4	Решите неравенство $log_{1/3} log_3(x-1) > 0$	1) 2,5; 2) 3; 3) 3,5; 4) 4; 5) 5.
	В ответе укажите середину ин-	
	тервала решений	
A5	Решите неравенство $\log_{1/\sqrt{2}}(x-1) + \log_2(x-1) > -2$	1)(1;3); 2)(1;4); 3)(1;6); 4)(1;5); 5)(2;6).
A6	Решите неравенство $\lg(x+2) + \log_{1/\sqrt{10}}(x+2) > -1$	1) 1; 2) 3; 3) 4; 4) 5; 5) 2.
	В ответе укажите наибольшее натуральное решение	
A7	Решите неравенство $\log_{0.3} \log_6 \frac{x^2 + x}{x + 4} \le 0$	1) $(-4;-3)$; 2) $(8;+\infty]$; 3) $[5;+\infty)$; 4) $(7;+\infty)$; 5) $(-4;-3) \cup [8;+\infty)$.
A8	Решите неравенство $\log_{0.5} \log_6 \frac{x^2 - 2x}{x - 3} \le 0$	1) $(2;+\infty)$; 2) $(1;+\infty)$; 3) $(0;+\infty)$; 4) $(3;+\infty)$; 5) $(6;+\infty)$.
A9	Решите неравенство $log_{0,2}^2(x-1) > 4$	1) $(1;1,04) \cup (26;+\infty);$ 2) $(1;2);$ 3) $(1;3);$ 4) $(1;4);$ 5) $(2;7).$
A10	Решите неравенство $lg^2 x + 6 < 5 lg x$	1)(100;200); 2)(100;300); 3)(100;400); 4)(100;1000); 5)(100;2000).
A11	Решите неравенство $ g^2 x + g x > 2 $	1) $(0;10^{-2}) \cup (10;+\infty);$ 2) $(0;10^{-2});$ 3) $(10;+\infty);$ 4) $(20;+\infty);$ 5) $(100;+\infty).$
A12	Решите неравенство $\lg^2(-x) + \lg x^2 < 3$	1) $(-3;-4)$; 2) $(-10;-10^{-3})$; 3) $(-5;+6)$; 4) $(-3;4)$; 5) $(-3;7)$.
A13	Решите неравенство $\log_2^2(x-x^2+2)+$ $+3\log_{1/2}(x-x^2+2) \le -2$ В ответе укажите середину интервала решений	1) 1,5; 2) 2,5; 3) 1; 4) 2; 5) 3.
A14	Решите неравенство	$1)[1;3) \cup (3;5]; 2)[1;3); 3)(3;5]; 4)(3;6); 5)(3;7).$

	-	
	$\log_2(x-3)^2 \leq \log_2 4$	
A15	Решите неравенство	1) $\left[\frac{1}{2};1\right] \cup \left(1;\frac{3}{2}\right];$ 2) $\left[\frac{1}{2};1\right];$ 3) $\left(1;\frac{2}{3}\right];4$) (2;5);
	$\log_{1/2}(x-1)^2 \ge 2$	
		5)(2;7).
B1		$\log_{1/3} x < \log_x 3 - \frac{2}{5}$
	 Найдите наименьшее целое реше	ние неравенства 5
B2		
	Решите неравенство 109 _{log₃2} (2x =	3) > 0 и в ответе записать удвоенную длину интервала реше-
B3	117171	
63	$\frac{\log_4(x-1,3)}{1}$	->0
	$\frac{\log_4{(x-1,3)}}{\log_4{\log_4{2,75}}} > 0$ В ответе записать утроенную длину интервала решений	
B4		
B5	Найдите длину интервала решений неравенства $\log_{x-2}(x+2) < 1$	
60	Найдите длину интервала решений неравенства $\log_{2x+1}(5-2x) > 1$	
B6	Найдите наименьшее целое решение неравенства $5 \cdot 0.2^{\text{lgx}} > 0.2^{2\text{lg2}}$	
B7	4 0	
	$x \log_2 x - \frac{4}{\log_x 2} < 0$	
B8	паидите наиоольшее целое решение неравенства	
B0	$\frac{x^2 - 16x}{\log_5(x^2 + 2)} \le 0$	
	Найдите длину промежутка решений неравенства $\log_5(x^2+2)$	
В9	log 4-1 <3	
D40	Найдите наименьшее целое реше	пис перавенства
B10		$y = \sqrt{\log_{0.3} \frac{x-1}{x+5}}$. В ответе записать наименьшее
	Найдите область определения (О	(Д3) функции: $\int_{0.5}^{1.5} \int_{0.3}^{1.5} x + 5$. В ответе записать наименьшее
	целое решение неравенства	1,1,7

Nº	Задание	Варианты ответов
A1	Решите неравенство $4x \cdot \log_{0.6} 2 + \log_{0.6} 2 < 0$	1) 0; 2) 1; 3) 2; 4) 3; 5) 4.
	В ответе укажите наименьшее целое решение	
A2	Решите неравенство $(2x-5)\log_{0,3} 5 < 9\log_{0,3} 5$	1) $(6; +\infty);$ 2) $(7; +\infty);$ 3) $(5; +\infty);$ 4) $(4; +\infty);$ 5) $(2; +\infty).$
A3	Решите неравенство $\log_4 (5 - x^2) > 1$	1) (-1;2); 2) (-1;0); 3) (-1;1); 4) (-1;3); 5) (-1;4).
A4	Решите неравенство $log_{1/4} (6x-4x^2) < -0.5$	1) $\left(\frac{1}{2};2\right);$ 2) $\left(\frac{1}{2};3\right);$ 3) $\left(\frac{1}{2};4\right);$ 4) $\left(\frac{1}{2};1\right);$ 5) (1;2).
A5	Решите неравенство $12^{\log_{12}(x+5)} < 7$ В ответе укажите наибольшее	1) -4; 2) -3; 3) -2; 4) 7; 5) 1.
	целое решение неравенства	
A6	Решите неравенство $\log_{1/\sqrt{5}} \log_4 (x-2) > 0$	1) (3;6); 2) (3;5); 3) (3;7); 4) (3;8); 5) (2;7).
A7	Решите неравенство $\log_2 \log_{1/\sqrt{2}} (x-1) > 1$	1) (1;2); 2) (1;1,5); 3) (1;3); 4) (1,5;3); 5) (2;4).
A8	Решите неравенство $\log_4(x-3) + \log_2(x-3) < \frac{3}{2}$	1)(3;5); 2)(3;4); 3)(2;4); 4)(2;5); 5)(3;7).
A9	Решите неравенство $\log_{1/\sqrt{3}}\log_{1/\sqrt{2}}(2-3x)>-2$ В ответе укажите длину интервала решений	1) 1; 2) 2; 3) $\frac{1}{3}$; 4) $\frac{2}{3}$; 5) 1,5.
A10	Решите неравенство $\log_{8}(x^{2}-4x+3) \le 1$	1) (-1;1); 2) (3;5]; 3) (-1;1) \cup (3;5]; 4) (3;6); 5) (4;7).

A11	Решите неравенство $\log_{1/3}(x+4) > \log_{1/3}(x^2+2x-2)$	1) $(-4;-3)$; 2) $(2;+\infty)$; 3) $(1;+\infty)$; 4) $(-4;-3) \cup (2;+\infty)$; 5) $(4;+\infty)$.	
A12	Решите неравенство $\log_2^2 x - 3\log_2 x - 4 > 0$	1) $(0;0,5) \cup (16;+\infty)$; 2) $(0;1)$; 3) $(0;2)$; 4) $(10;+\infty)$; 5) $(16;+\infty)$.	
A13	Решите неравенство $\log_2(x-1) \leq \frac{2}{1-\log_2(x-1)}$ В ответе укажите длину интервала решений	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.	
A14	Решите неравенство $\log_{0.2}^2 (x-1) \ge 4$	1) $(1;1,5);$ 2) $(1;2);$ 3) $(1;1,04] \cup [26;+\infty);$ 4) $(1;3);$ 5) $(1;5).$	
A15	Решите неравенство $log_2(log_3(3-log_4x)-1)<1$	1) $(4^{-24};1);$ 2) $(\frac{1}{2};1);$ 3) $(\frac{1}{2};2);$ 4) $(\frac{1}{2};3);$ 5) $(1;4).$	
B1	Найдите наименьшее целое решение неравенства $\log_{x^2}(4x-4) \le 1$		
B2	Найдите наибольшее целое решение неравенства $\log_{x-4}(x^2-4x)>\lg x+1$		
В3	Найдите наибольшее целое решение неравенства $\log_{0.5}\log_2\log_{x-1}74>0$		
B4	Найдите наименьшее целое решение неравенства $\log_{x-1}(x+1) > 1$		
B5	Найдите наименьшее целое решение неравенства $\lg x + \log_x 8 > 0$		
B6	Найдите длину интервала решений неравенства $\sqrt[8]{x-1} \cdot \log_2(4x-3-x^2) \le 0$		
В7	Найдите наибольшее решение неравенства $5-\lg x \ge 4\sqrt{\lg x}$		
B8	Hay find have the first party		
B9	Найдите наименьшее натуральное	г решение перавенотва	
	Найдите наименьшее целое решен	ние неравенства √lg x > lg√x	
B10	В10 Найдите область определения (ОДЗ) функции: $y = \sqrt{\log_{0.5} \frac{x+3}{x-4}}$ В ответе Укажите модуль наибольшего целого решения.		

Тест №10: Преобразование тригонометрических выражений

	— -	
Nº	Задание	Варианты ответов

A 4	45	
A1	$\sin \frac{15\pi}{4}$ Выражение $\sin \frac{15\pi}{4}$ равно	$1)\frac{1}{2}$; $2)\frac{\sqrt{2}}{2}$; $3)-\frac{1}{2}$; $4)-\frac{\sqrt{2}}{2}$; $5)\frac{\sqrt{3}}{2}$.
A2	Выражение sin105° cos105° равно	1) $\frac{1}{2}$; 2) $-\frac{1}{4}$; 3) $-\frac{1}{2}$; 4) $\sqrt{2}$; 5) $\frac{1}{4}$.
A3	Результат упрощения выражения	1) $-\sin 2\alpha$; 2) $-\cos^2 \alpha$; 3)3;
	$(2\cos\alpha + \sin\alpha)^2 - 2\sin2\alpha - 1$	4)5 $\cos^2 \alpha$; 5)3 $\cos^2 \alpha$.
	$(2\cos \alpha + \sin \alpha) - 2\sin 2\alpha - 1$ имеет вид	1)5555 a, 5)5555 a.
A4	$_{\circ\circ\circ}$ π	1) $\frac{\sqrt{6} + \sqrt{2}}{4}$; 2) $\frac{\sqrt{3} + 1}{2}$; 3) $\frac{\sqrt{2} - \sqrt{3}}{2}$;
	$\cos \frac{\pi}{12}$ равно	$(1) \frac{1}{4}, (2) \frac{1}{2}; (3) \frac{1}{2};$
	равно	$\sqrt{6} - \sqrt{2}$
		4) $\frac{\sqrt{6}-\sqrt{2}}{4}$; 5)1.
A 5	Выражение ctg 22°30′ – tg 22°30′ равно	1)4; 2)2; 3) $\sqrt{3}$; 4)1; 5) $-\sqrt{2}$.
A6	Результат упрощения выражения	1) ctg α ; 2) $\frac{1}{\cos^2 \alpha}$; 3) -1;
	$\sin\left(\frac{\pi}{2} + \alpha\right) \operatorname{ctg}\left(\frac{\pi}{2} - \alpha\right) \operatorname{tg}\left(\frac{\pi}{2} + \alpha\right)$	u
		4) $\sin^2 \alpha$; 5)1.
	$tg(\pi-\alpha)\cos(\pi-\alpha)tg\left(\frac{\pi}{2}-\alpha\right)$	
	имеет вид	
A7	4	1)2,5; 2)3; 3)3,5; 4)4; 5)4,5.
	$\cos = -\frac{4}{5}$ и $180^{\circ} < \alpha < 270^{\circ}$, то выражение	
	$\sqrt{10}\sin\frac{\alpha}{2}$	
A8	2cos 40° – sin 70°	$1)\sqrt{3}$; $2)2$; $3)-\sqrt{3}$; $4)-1$; $5)1$.
	: 0400	$1/\sqrt{3}$, $2/2$, $3/-\sqrt{3}$, $4/-1$, $3/1$.
A9		11 7 7
1.0	Если $\operatorname{tg} \beta = 2$, $\operatorname{a}^{\operatorname{tg} (\alpha + \beta) = 9}$, то $\operatorname{tg} \alpha$ равен	$1)\frac{11}{17}$; $2)-\frac{7}{17}$; $3)\frac{7}{19}$;
		$4) - \frac{11}{17}$; $5) - \frac{7}{10}$.
		$\frac{4}{17} - \frac{7}{17}, \frac{3}{19} - \frac{7}{19}$
A10	Если $lpha \in \left[2\pi; 3\pi\right]$, то выражение	1) $\sin \frac{\alpha}{4}$; 2) $\frac{1}{2}\sin \frac{\alpha}{2}$; 3) $-\frac{1}{2}\sin \frac{\alpha}{2}$;
		$\frac{1}{4}$, $\frac{2}{2}$, $\frac{2}{3}$, $\frac{2}{3}$, $\frac{2}{3}$, $\frac{2}{3}$,
	$\sqrt{\frac{1}{2} - \frac{1}{2}} \sqrt{\frac{1}{2} + \frac{1}{2} \cos \alpha}$	$4)\cos\frac{\alpha}{4}$; $5)-\cos\frac{\alpha}{4}$.
	V 2 2 V 2 2 после упрощения примет	4, 5, 555 4
	вид	
A11	Разность между наибольшим и наименьшим из чи-	1)1 - $\sin 2^{\circ}$; 2)1 - $\sin 1^{\circ}$; 3) $\sin 2^{\circ}$ - $\sin 1^{\circ}$;
	$\sin 1^{\circ}, \sin \frac{\pi}{2}, \sin 2^{\circ}$	4) sin2° – 1; 5) sin1° – 1.
4.40	сел - равна	
A12	$ \operatorname{tg}\left(\operatorname{arcsin}\left(-\frac{1}{3}\right) + \frac{\pi}{2}\right) $	1)0; 2)1; 3)2 $\sqrt{2}$; 4) $\sqrt{2}$; 5)2.
	Выражение 3 2 равно	

A13	Выражение arccos(sin 500°) равно	1)40; 2) – 50; 3) – 40; 4)50; 5) – 410.
A14	Сумма наименьшего и наибольшего значений вы-	10. 21. 21. 41. 11. 5
	ражений $1-\sqrt{\cos^2\alpha}-2\sin^2\alpha$ равна	1)0; 2)1; 3) $\frac{1}{8}$; 4) -1 $\frac{1}{8}$; 5) - $\frac{5}{8}$.
A15	$ECDU = SID\alpha + SID\beta = A, COS\alpha + COS\beta = B$, причем	$1)\frac{A^2-B^2}{A^2+B^2}$; $2)\frac{2AB}{A^2+B^2}$; $3)\frac{A^2+B^2}{2AB}$;
	${ m A}^2+{ m B}^2 eq 0$, то выражение ${ m cos}(lpha+eta)$ равно	A TO A TO ZAD
	, то выражение равно	4) $-\frac{2AB}{A^2+B^2}$; 5) $\frac{B^2-A^2}{A^2+B^2}$.
B1	24 cos 105°	
	Вычислите $\sqrt{2}-\sqrt{6}$	
B2	$8\cos\left(2\arccos\frac{1}{4}\right)$	
	Вычислите	
В3	$\frac{4\sin\alpha - 9\cos\alpha}{2} = 2$	
	Вычислите $\frac{\operatorname{ctg}\alpha}{\sin\alpha - 5\cos\alpha} = 2$	
B4	Найдите наибольшее значение функции $y = 9 \sin^2 x$	+6cos x .
B5	$\sin(\alpha-\beta)$ 3	,
	$rac{\sin(lpha-eta)}{\sin(lpha+eta)} = rac{3}{5}$. Найдите значение вы	іражения $^{tg\hspace{0.5pt} lpha \cdot ctg\hspace{0.5pt} eta}$.
В6	Вычислите tg² 20°·tg² 40°·tg² 80°	
B7	Найдите количество целых чисел из области значен	ий функции $y = 2 + \sqrt{29} \sin 3x - \sqrt{7} \cos 3x$
B8	Transpire team teerse quisix meanine estaem eta terr	
	Найдите наименьший положительный период функц	$y = \cos\frac{\pi x}{2} + \sin\frac{\pi x}{3} + \cos\frac{\pi x}{5}$
B9		
	$\frac{7}{8} - 2 \arcsin \frac{1}{4}$. Результат запишит	
B10	Вычислите 6 4 . Результат запишите 6 Вычислите 4 странизации 6 Вычислите 6 странизации 6 странизации 6 в 6 странизации	е в градусах. $y + \beta + y = \pi$
	Вычислите част част част част част в реги в	$\lambda \cdot \beta \cdot \gamma = \lambda$.
	Вариант 2	
	2.17.13.11.2	

Nº	Задание	Варианты ответов
A1	Выражение соs 675° равно	$1)\frac{1}{2}$; $2)\frac{\sqrt{2}}{2}$; $3)-\frac{1}{2}$; $4)-\frac{\sqrt{2}}{2}$; $5)\frac{\sqrt{3}}{2}$.
A2	$\cos \frac{5\pi}{12} \sin \frac{5\pi}{12}$ Выражение	$1)\frac{1}{2}$; $2) - \frac{1}{4}$; $3) - \frac{1}{2}$; $4)\sqrt{2}$; $5)\frac{1}{4}$.
A3	Результат упрощения выражения $\frac{\sin \alpha}{1 + \cos \alpha} + \frac{1 + \cos \alpha}{\sin \alpha}$ имеет вид	1) $2\sin\alpha$; $2)\frac{1}{2}\sin\alpha$; $3)\sin\frac{\alpha}{2}$; 4) $\frac{2}{\sin\alpha}$; $5)\frac{1}{\sin\frac{\alpha}{2}}$.

A4	Выражение ^{sin15°} равно	1) $\frac{\sqrt{6} + \sqrt{2}}{4}$; 2) $\frac{\sqrt{3} + 1}{2}$; 3) $\frac{\sqrt{2} - \sqrt{3}}{2}$;
		4) $\frac{\sqrt{6}-\sqrt{2}}{4}$; 5)1.
A5	Выражение $tg\frac{\pi}{12} + ctg\frac{\pi}{12}$ равно	$1)\sqrt{3}$; $2)2$; $3)3$; $4)4$; $5)3\sqrt{2}$.
A6	Результат упрощения выражения $\frac{\operatorname{tg}(90^\circ - \alpha) \operatorname{cos}(180^\circ - \alpha) \operatorname{tg}(90^\circ - \alpha)}{\sin(90^\circ - \alpha) \operatorname{ctg}(90^\circ + \alpha) \operatorname{tg}(90^\circ + \alpha)}_{\text{имеет}}$	1) ctg α ; 2) $\frac{1}{\cos^2 \alpha}$; 3) -1; 4) $\sin^2 \alpha$; 5)1.
A7	вид $\cos\alpha = \frac{7}{18} 0 < \alpha < \frac{\pi}{2}$ Если $3\cos\frac{\alpha}{2}$ равно	1)2,5; 2)3,5; 3)4,5; 4)5,5; 5)13,5.
A8	2 sin170° + cos 40° Выражение cos130° равно	1) $-\sqrt{3}$; 2)2; 3) $\sqrt{3}$; 4) -1; 5)1.
A9	Если $\operatorname{tg} \alpha = 3$, $\operatorname{a}^{\operatorname{tg} \left(\alpha - \beta \right) = 1}$, то $\operatorname{tg} \beta$ равен	1)2; 2) $-\frac{1}{3}$; 3) $\frac{1}{2}$; 4) $\frac{3}{2}$; 5) $\frac{2}{3}$.
A10	Выражение $2\sqrt{\frac{1}{8} + \frac{1}{8}\sqrt{\frac{1}{2} - \frac{1}{2}\cos 324^{\circ}}}$ равно	1) cos 4° - sin 4°; 2)2 cos 4°; 3) cos 26° + cos 4°; 4) cos 26° - cos 4°; 5) cos 36°.
A11	Разность между наибольшим и наименьшим из $\cos 1, \cos \frac{\pi}{2}, \cos 2$ чисел равна	1) cos 2 - cos 1; 2) - cos 2; 3) cos 1 - cos 2; 4) cos 2; 5) cos 1.
A12	$\cot \cot $	1)1; 2)2 $\sqrt{2}$; 3) $\sqrt{2}$; 4) $-\frac{1}{2\sqrt{2}}$; 5) $\frac{\sqrt{2}}{4}$.
A13	Выражение arcsin(cos 500°) равно	1)40; 2) – 50; 3) – 40; 4)50; 5) – 410.
A14	Множество значений функции $y = (1 - \text{ctg}^2 x) \sin^2 x$	1)[-1;1]; 2)[-1;1); 3)(-1;1); 4)(-1;1]; 5)($-\infty$;+ ∞).
A15	Если $\sin \alpha + \sin \beta = A, \cos \alpha + \cos \beta = B$, причем $A^2 + B^2 \neq 0$, то выражение $\sin (\alpha + \beta)$ равно	1) $\frac{A^2 - B^2}{A^2 + B^2}$; 2) $\frac{2AB}{A^2 + B^2}$; 3) $\frac{A^2 + B^2}{2AB}$; 4) $-\frac{2AB}{A^2 + B^2}$; 5) $\frac{B^2 - A^2}{A^2 + B^2}$.
B1	$\frac{12 \sin 105^{\circ}}{\sqrt{2} + \sqrt{6}}$.	11 10 11 10

B2	$25\sin\left(2\arccos\frac{3}{5}\right)$
	Вычислите 5).
B3	$4\sin\alpha - 3\cos\alpha$ _ 23
	Вычислите $tglpha$, если $2\coslpha-5\sinlpha$ 2
B4	Найдите наименьшее значение функции $y = 9 \sin^2 x + 6 \cos x$
B5	$\frac{\sin(\alpha+\beta)}{=}\frac{1}{\alpha}$
	Известно, что $\frac{\overline{\sin(\alpha-\beta)}}{\sin(\alpha-\beta)} = \frac{1}{3}$. Найдите значение выражения $\frac{\log \alpha \cdot \cot \beta}{\sin(\alpha-\beta)}$.
B6	Вычислите tg9°-tg63°+tg81°-tg27°.
B7	Найдите количество целых чисел из области значений функции $y = 3 - \sqrt{21} \sin 5x + 2 \cos 5x$.
B8	$y = tg \frac{2\pi x}{2} + \cos 4\pi x + 2\sin 8\pi x$
	Найдите наименьший положительный период функции
B9	$\arctan \frac{1}{5} + \operatorname{arcctg} \frac{2}{3}$ Results a sequence of the seq
	Вычислите 5 3 . Результат запишите в градусах.
B10	$\alpha + \beta + \gamma = \frac{3\pi}{2}$
	Вычислите $\operatorname{ctg} \alpha + \operatorname{ctg} \beta + \operatorname{ctg} \gamma - \operatorname{ctg} \alpha \cdot \operatorname{ctg} \beta \cdot \operatorname{ctg} \gamma$, если $\alpha + \beta + \gamma - \frac{\alpha}{2}$.

Тест №11: Тригонометрические уравнения, неравенства и системы

Nº	Задание	Варианты ответов
A1	$\cos x = \frac{\sqrt{3}}{2}$	1)300°; 2)-210°; 3)60°; 4)420°;
	соѕ х = 2 не является число	5)-60°.
A2	$\frac{3}{\lg 3x} = \sqrt{3}$	1)-80°; 2)-60°; 3)-45°; 4)-40°;
	Наименьшее решение уравнения $tg3x = v^3$,	5)-10°.
	удовлетворяющие условию $-90^{\circ} < x < 0^{\circ}$ равно	
A3	Наибольшее отрицательное решения уравнения	1) π . 2) π . 3) π . 4) π .
	$2\sin 2x + \sqrt{2} = \sin 2010\pi$	$1) - \frac{\pi}{2}; 2) - \frac{\pi}{3}; 3) - \frac{\pi}{4}; 4) - \frac{\pi}{8};$
		$5)-\frac{\pi}{12}$.
A4	$3 \operatorname{ctg}^2 \left(\pi x + \frac{\pi}{12} \right) = 1$	1)4; 2)3; 3)2; 4)1; 5)0.
	число корнеи уравнения ,	
	принадлежащий интервалу $\left(\frac{5}{2},\frac{9}{2}\right)$, равно	
	принадлежащий интервалу (2 2), равно	
A5	Сумма корней уравнения $\cos^2 x = 5 + 5\sin x$, при-	1) π ; 2) 2π ; 3) $\frac{3\pi}{2}$; 4) $\frac{\pi}{2}$; 5) $\frac{3\pi}{8}$.

	[-]	
	надлежащий отрезку $\left[-rac{\pi}{2};2\pi ight]$, равно	
A.C.	надлежащий отрезку 📙 2 🔠 , равно	
A6	Среднее арифметическое корней уравнения	$\left[1\right] - \frac{\pi}{8}$; 2)0; 3) $-\frac{3\pi}{8}$; 4) $\frac{\pi}{8}$; 5) $\frac{3\pi}{8}$.
	$2\sin x\cos x + \sin^4 x - \cos^4 x = 0$, принадлежащих	
	отрезку $egin{bmatrix} [-\pi;\pi] \ ,$ равно	
A7	$1 - \frac{1}{\cos x} = \sin x - \operatorname{tg} x$	1)5; 2)6; 3)7; 4)8; 5)10.
	——— = siп x − tg x Число корней уравнения соs x	
	принадлежащих отрезку $\left[-4\pi;6\pi ight]$, равно	
A8	принадлежащих отрезку і ј, равно	1)5; 2)6; 3)7; 4)8; 5)10.
Ao	Число корней уравнения $sin11x + sin7x = sin9x$ на	1)5, 2)6, 3)7, 4)6, 5)10.
	отрезке ^[0°;180°] равно	
A9	Число корней уравнения $\sin x - \cos x = 1$ на отрез-	1)5; 2)6; 3)7; 4)8; 5)10.
	ке $\left[-3\pi;4\pi \right]$ равно	
A10	4	
AIU	$tg^2 x = 1 + \frac{1}{\cos x}$, Произведение корней уравнения	$1)\frac{5\pi^2}{36}$; $2)-\frac{\pi^2}{9}$; $3)\frac{\pi^2}{3}$; $4)-\frac{\pi^2}{12}$;
		00 0 12
	принадлежащих интервалу $^{\left(-\pi;\pi ight)}$, равно	$5)\frac{\pi^2}{2}$.
A11	: 2(450) : 2(450) 5	1) $\sin x = 0$; 2) $\sin x = 1$; 3) $\cos x = 0$;
***	Уравнение $\sin^2(45^\circ + x) = \sin^2(45^\circ - x) + \sqrt{7}\cos x$	4) $\cos x = 1$; 5) $\tan x = 0$, 3, 5000 $\sin x = 0$,
140	равносильно уравнению	, -
A12	Число корней уравнения $2\cos x + \sin x = -2$, при-	1)0; 2)1; 3)2; 4)3; 5)4.
	надлежащих промежутку $\left(-\pi;3\pi ight]$, равно	
	, , разло	
A13	Среднее арифметическое корней уравнения	π^{π} π^{π} π^{π} π^{π}
	$\sqrt{-\cos 2x} = \cos x - \sin x$, принадлежащих проме-	$1)\frac{\pi}{2}$; $2)\pi$; $3)-\frac{\pi}{3}$; $4)2\pi$; $5)3\pi$.
	$\lceil 5\pi \rceil$	
	жутку 6 ; π , равно	
A14		$(\pi, \pi, \pi(n+k))$
	$\cos x \sin 2y = \frac{3}{4}$	$1)\left[-\frac{\pi}{6}+\pi(n-k);\frac{\pi}{3}+\frac{\pi(n+k)}{2}\right],n,k\in\mathbb{Z};$
	}	
	$\sin x \cos 2y = \frac{1}{4}$	$2)\left(\frac{\pi}{6}(15k+8);\frac{\pi}{6}(15k+2)\right), k \in \mathbb{Z};$
	Решением системы уравнений ⁽ является	
		$3)\left(\frac{\pi}{6}(15k+8);\frac{\pi}{12}(15k+4)\right), k \in \mathbb{Z};$
		'- '-
		$4)(0;0); 5)(0;\frac{\pi}{2}).$
		(2)

A15	Найдите наименьшее положительное решение не- 1)15°; 2)30°; 3)45°; 4)60°; 5)90°.	
	$\sin^6 x + \cos^6 x \le \frac{7}{2}$	
	Наидите наименьшее положительное решение не- $1)15^\circ$; $2)30^\circ$; $3)45^\circ$; $4)60^\circ$; $5)90^\circ$. $\sin^6 x + \cos^6 x \le \frac{7}{16}$ (в градусах)	
B1	$\sin(-x) = 2\sin\frac{\pi}{22} \qquad \left(-\frac{\pi}{22}; 2\pi\right)$	
B2	Наидите число корнеи уравнения $\frac{22}{\sin 24x}$, принадлежащих интервалу $\frac{1}{\sin 24x}$ Найдите число корней уравнения $\frac{2\cos^2 24x}{\sin 24x}$, принадлежащих интервалу $\frac{1}{\cos 2\pi}$	
	$tg 12x - ctg 12x = \frac{1}{\sin 24x}$, принадлежащих интервалу	
	$[0;2\pi]$	
B3	Найдите наибольшее натуральное двузначное решение уравнения $\cos \pi \sqrt{x} = 1$	
B4	Найдите среднее арифметическое корней (в градусах) уравнения $\sin x \cos 7x = \sin 3x \cos 5x$,	
	принадлежащих отрезку [0°;90°].	
B5	1	
	$\cos^8 x - \sin^8 x = \cos^2 2x + \frac{1}{2} \cos 2x$ (в градусах), принадлежащих	
	интервалу (180°;270°) .	
DC		
B6	Найдите число корней уравнения $\frac{\cot^2 x + \cot x }{\sin^{16} x + \cos^{20} x} = 6$, принадлежащих отрезку $\left[-\frac{3\pi}{2}; \pi \right]$.	
B7	Найдите сумму корней уравнения $\sin^{16} x + \cos^{20} x = 1$ (в градусах), принадлежащих отрезку	
	[0°;290°]	
В8	Найдите число целых значений параметра a , при которых уравнение $3\sin 7x + 4\cos 7x = a$	
	имеет решение.	
B9	Найдите сумму корней уравнения	
	$3\arccos^{2}\frac{1-\sqrt{ 2x-7 +2}}{4}-4\pi\arcsin\frac{1-\sqrt{ 7-2x +2}}{4}-2\pi^{2}=0$	
B10	Найдите сумму корней уравнения $\cos \pi x + \sqrt{2 - \cos^2 \pi x} + \cos \pi x \cdot \sqrt{2 - \cos^2 \pi x} = 3$, принадлежащих интервалу(-3;6).	

Nº	Задание	Варианты ответов
A1	$\sin x = \frac{1}{x}$	1)150°; 2)—210°; 3)30°;
	Корнем уравнения 2 не является число	4)390°; 5)—30°.
A2	3	1)10°; 2)20°; 3)30°;
	Наименьшее решение уравнения $\frac{3}{\text{ctg }3x} = \sqrt{3}$,	4)90°; 5)120°.
	удовлетворяющие условию $0^{\circ} < x < 180^{\circ}$,равно	

A3	Наибольшее отрицательное решения уравнения	7π 0 5π 2 7π
	$2\cos 2x = \sqrt{3}\cos 2011\pi$	$1) - \frac{7\pi}{4}$; $2) - \frac{5\pi}{3}$; $3) - \frac{7\pi}{6}$;
	равло	$4)-\frac{3\pi}{8}$; $5)-\frac{5\pi}{12}$.
		·-
A4	$3{ m tg}^2\left(\pi x - rac{\pi}{8} ight) = 1$, при-	1)4; 2)3; 3)2; 4)1; 5)0.
	Число корней уравнения (27 8 — 7 при-	
	надлежащих интервалу $\left(\frac{3}{2};3\right)$, равно	
A5	надлежащих интервалу , равно Наименьший корень уравнения	1)-180°; 2)-90°; 3)-45°;
''	$\sin^2(180^\circ + x) = 2 + \sin x$, принадлежащий отрезку	4) – 22°30′; 5) 0.
		4)-22 30, 3)0.
	[-180°;0°] _, равен	
A6	Число корней уравнения $1 + tg^2 x = \cos^4 x - \sin^4 x$	1)0; 2)1; 3)2; 4)3; 5)4.
	не превосходящих по модулю π , равно	
A7	1	1)5; 2)9; 3)7; 4)8; 5)10.
	$1 + \frac{1}{\sin x} = \cos x + \cot x$ Число корней уравнения	
A 0	принадлежащих отрезку $\left[-6\pi;4\pi ight]$, равно	4)5 0)0 0)7 4)0 5)40
A8	Число корней уравнения	1)5; 2)0; 3)7; 4)8; 5)10.
	$\sqrt{3}\sin 2x + \cos 5x = \cos 9x \text{ Ha otpe3ke} \left[0; \frac{\pi}{3}\right]_{\text{paB-}}$	
A9	HO	1)3; 2)6; 3)7; 4)1; 5)0.
73	Число корней уравнения $\sin x + \cos x = \sqrt{2}$ на от-	170, 270, 371, 471, 370.
	резке $\left[-\pi ;\pi ight]$ равно	
A10		$1)\frac{5\pi^2}{36}$; $2)-\frac{\pi^2}{9}$; $3)\frac{\pi^2}{3}$;
	$ctg^2 x = 1 + \frac{1}{\sin x}$,	$1)\frac{1}{36}$; $2)-\frac{1}{9}$; $3)\frac{1}{3}$;
		$4)-\frac{\pi^2}{12}$; $5)\frac{\pi^2}{9}$.
	принадлежащий интервалу $\left(-90^{\circ};270^{\circ}\right)$, равно	$(4) - \frac{4}{12}$; 5) ${9}$.
A11	Уравнение	1) $\sin x = 0$; 2) $\sin x = 1$; 3) $\cos x = 0$;
	$\cos^2(45^\circ + x) = \cos^2(45^\circ - x) + \sqrt{5}\cos x$	4) $\cos x = 1$; 5) $\log x = -1$.
	сильно уравнению	
A12	Число корней уравнения $12\sin 3x + \cos 3x = 9$	1)0; 2)1; 3)2; 4)3; 5)4.
	принадлежащих отрезку ^[0°;180°] , равно	
	принадлежащих отрезку [5,755], равно	
A42		
A13	Сумма корней уравнения $\sqrt{-\cos 2x} = -\sin x$,	$1)\frac{\pi}{2}$; 2) π ; 3) $\frac{3\pi}{2}$; 4)2 π ; 5)3 π .
	принадлежащих отрезку $\left[-\pi;2\pi ight]$, равна	2 2
	inprinagromation or poorty , patina	

A14	$\int \cos x \sin y = \frac{3}{4} \qquad 1) \left(\frac{\pi}{3} + \pi (n+k); \frac{\pi}{3} + \pi (n-k) \right), n, k \in \mathbb{Z};$		
	Решением системы уравнений $\cot x \cot y = \frac{1}{3}$ яв-	≣ Z ;	
	ляется $3)\left(\frac{\pi}{3} + 2\pi k; -\frac{\pi}{2}\right), k \in \mathbb{Z};$		
	$4)\left(-\frac{\pi}{3}+2\pi k;-\frac{\pi}{2}\right), k \in \mathbb{Z}; 5)\left(\frac{\pi}{3};0\right).$		
A15	Найдите наибольшее отрицательное решение не- $1)-15^{\circ}; 2)-30^{\circ}; 3)-45^{\circ};$		
	Найдите наибольшее отрицательное решение не- 1) -15° ; 2) -30° ; 3) -45° ; $\sin^6 x + \cos^6 x \le \frac{7}{12}$ 4) -60° ; 5) -90° .		
	16		
B1			
ы	$\sin(-x) = \sin\frac{\pi}{11}, \text{ принадлежащих интервалу} \left(-\pi; \frac{3\pi}{2}\right).$		
B2			
	$tg13x - ctg13x = \frac{2\cos^2 26x}{\sin 26x}$. принадлежащих отрезку		
	7 1 11 11 11 11 11 11 11 11 11 11 11 11		
	$[0;2\pi]$		
B3	2		
	Найдите разность между наибольшим и наименьшим решениями уравнения $\cos \frac{\pi x^2}{1+x^2} = 0$		
B4	Найдите сумму корней уравнения $\sin x \sin 7x = \sin 3x \sin 5x$ (в градусах), принадлежащих ин-		
	(00.1000)		
	тервалу .		
B5	$\sin^8 x - \cos^8 x = \frac{1}{2} \cos^2 2x - \frac{1}{2} \cos 2x$ Haŭriata kononik vonenik vonenikanje vanikanje		
	Найдите корень уравнения $x - \cos x = \frac{1}{2} \cos 2x - \frac{1}{2} \cos 2x$ (в градусах), принадлежащих		
	паидите корень уравнения (в градусах), принадлежащих		
	интервалу ^(270°;360°) .		
B6	$(5+\sqrt{3})\sin^2 x + (5\sqrt{3}-1)\sin x \cos x = 5$		
	$0,\frac{3\pi}{4}$		
	отрезку [3, 4].		
B7	Найдите среднее арифметическое корней уравнения $\sin^{32} x + \cos^{11} x = 1$ (в градусах), при-		
	(Q0°·180°)		
	надлежащих интервалу ^(-90°;180°) .		
B8	Найдите число целых значений параметра a , при которых уравнение $3\sin 5x + 2\cos 5x = a$ имеет решение.		
В9			
	4 arcctg ² $\frac{\sqrt{ 3x-9 }}{3} - 15\pi \arctan \frac{\sqrt{ 9-3x }}{3} + \frac{7\pi^2}{3} = 0$		
	Найдите сумму корней уравнения		
B10	Найдите сумму корней уравнения $\sin \pi x + \sqrt{2 - \sin^2 \pi x} + \sin \pi x \cdot \sqrt{2 - \sin^2 \pi x} = 3$, принадле-		
	помдето сущиму корпол уравнопил , принадне		

жащих интервалу (-2;5).

Тест №12: Планиметрия

Группа В. Вариант 1

Nº	Задание	Варианты ответов
A1	Найдите площадь равнобедренного прямоугольного треугольника, если длина наибольшей средней линии равна 18.	1) 300; 2) 310; 3) 316; 4) 324; 5) 340.
A2	Периметр равностороннего треугольника численно равен его площади. Найдите сторону этого треугольника.	1) 2; 2) 3; 3) 4; 4) $4 \cdot \sqrt{3}$; 5) $2 \cdot \sqrt{3}$.
А3	В треугольнике основание равно 60, высота 12 и медиана к основанию 13. Определите боковые стороны.	1) $\sqrt{769}$; $\sqrt{1369}$; 2) 24; 28; 3) 27; 28; 4) 21; 29; 5) $\sqrt{750}$; $\sqrt{1240}$.
A4	Стороны треугольника равны 29, 25 и 6. Найдите радиус окружности, проведенной через середины сторон треугольника.	1) 8; 2) 9; 3) 9 1/16; 4) 10; 5) 10,5.
A 5	Длины сторон треугольника соответственно равны 11, 13 и 12. Найдите длину медианы, проведенной к большей стороне.	1) 8; 2) 9; 3) 9,5; 4) 10; 5) 10,5.
A6	Найдите площадь треугольника, ограниченного линиями $y = -3x$; $y - x = 8$; $x = 0$	1) 6; 2) 7; 3) 8; 4) 9; 5) 10.
A7	В треугольнике ABC сторона AB равна 5 и углы A и B равны соответственно 30° и 45°. Найдите длины высот треугольника ABC.	1) 2.5 ; $2.5\sqrt{2}$; $2.5(\sqrt{3} - 1)$ 2) 2 ; 3 ; 4 3) 2 ; 3.5 ; 4 4) 3.5 ; 4.5 ; 5 5) 4 ; 5 ; 6 .
A8	Определите вид треугольника (остроугольный, прямоугольный, треугольный), если его стороны равны 6, 7 и 9.	1) остроугольный; 2) прямоугольный; 3) тупоугольный; 4) вид нельзя определить;
А9	Диагонали параллелограмма равны 17 и 19, а одна из сторон 10. Найдите другую сторону.	1) 11; 2) 12; 3) 13; 4) 13,5; 5) 15
A10	Одна из диагоналей параллелограмма перпендикулярна его стороне. Найдите площадь параллелограмма, если его периметр равен 10 и смежные углы относятся как 1:5.	1) $175 \cdot \sqrt{2} - 100$; 2) $175 \cdot \sqrt{3} - 300$; 3) $100 \cdot \sqrt{3} - 50$; 4) $100 \cdot \sqrt{2} - 100$; 5) $300 - 100 \cdot \sqrt{2}$.

A11	В прямоугольной трапеции боковая сторона равна основанию и составляет с ним угол 120°. Найдите площадь трапеции, если её меньшее основание равно $2\cdot \sqrt[4]{3}$.	1) 6; 2) 7; 3) 7,5; 4) 8; 5) 8,5.
A12	Равнобочная трапеция описана около круга. Боковая сторона трапеции делится точкой касания на отрезки длиной 6 и 24. Найдите площадь трапеции.	1) 600; 2) 700; 3) 720; 4) 800; 5) 940.
A13	В трапеции, площадь которой равна 644, высота 14, а разность параллельных сторон 22, Найдите длину большого основания.	1) 50; 2) 55; 3) 57; 4) 59; 5) 60.
A14	Две окружности, каждая из которых вписана в острый угол 60°, касаются друг друга внешним образом. Найдите расстояние от точки касания окружностей до стороны угла, если радиус большей окружности равен 23.	1) 10; 2) 11; 3) 11,5; 4) 12; 5) 12,5.
A15	Радиус окружности, описанной около прямоугольного треугольника, равен 5. Один из катетов равен 8. Найдите радиус вписанной окружности.	1) 2; 2) 2,5; 3) 3; 4) 3,5; 5) 4.
B1	Длины сторон треугольника равны 5, $\sqrt{73}$, 12. Вычислите абсолютную величину разности длин отрезков, на которые высота делит сторону длиной 12.	
B2	В окружности по разные стороны от центра проведены параллельные хорды длиной 12 и 16. Расстояние между ними равно 14. Найдите радиус окружности.	
В3	Круг радиусом R=6 делится окружностью на две части – круг радиуса г и кольцо, площади которых относятся как 1:3. Найдите радиус г.	
B4	Концы диаметра окружности удалены от касательной на 1 и 4. Найдите длину диаметра.	
B5	В прямоугольном треугольнике медианы острых углов равны $\sqrt{156}$ и $\sqrt{89}$. Найдите гипотенузу треугольника.	
В6	Найдите наибольший угол (в градусах) треугольника, в котором высота и медиана, проведенные из одной вершины, делят угол при этой вершине на три равные части.	
В7	Отрезки, соединяющие основания высот остроугольного треугольника равны 5, 12 и 13. Найдите площадь треугольника.	
В8	В параллелограмме со сторонами 10 и 8 и углом 30° проведены биссектрисы четырех углов. Найдите площадь четырехугольника, ограниченного биссектрисами.	
В9	В трапеции длины оснований 5 и 15, а длины диагоналей 12 и 16. Найдите площадь трапеции.	
B10	Медианы АК и ВЕ треугольника АВС равны соответственно 6 и 9 и пересекаются в точке О, причем угол АОВ равен 30°. Найдите площадь треугольника АВС.	

Nº	Задание	Варианты ответов
A 1	Найдите периметр треугольника, две стороны которого равны 17 и 28, а высота, проведенная к большей из данных сторон, равна 15	1) 40; 2) 50; 3) 60; 4) 65; 5) 70.

A2	Найдите тупой угол ромба, если высота, проведенная из его вер- шины, делит противоположную сторону пополам. Ответ выра- зить в градусах.	1) 100°; 2) 110°; 3) 125°; 4) 150°; 5) 120°.
A3	Периметр параллелограмма равен 92. Одна из его сторон больше другой на 4. Найдите большую сторону параллелограмма, подобного данному, с площадью в 4 раза превышающей данный.	1) 30; 2) 35; 3) 40; 4) 45; 5) 50.
A4	Найдите меньшую высоту треугольника со сторонами 5, 7 и 8.	1) $3\sqrt{2}$; 2) $\frac{5\sqrt{3}}{2}$; 3) $4\sqrt{2}$.
A5	Найдите радиус окружности, описанной около равнобедренного треугольника с основанием 12 и высотой 8.	1) $\frac{25}{8}$; 2) $\frac{5}{2}$; 3) $\frac{5}{3}$; 4) 4; 5) 4,5.
A6	Сторона ромба равна 4. Радиус окружности, вписанной в ромб, равен 1. Найдите величину острого угла ромба (в градусах).	1) 45°; 2) 60°; 3) 30°; 4) 75°; 5) 120°.
A7	Сколько сторон имеет правильный многоугольник, у которого отношение длины описанной окружности к стороне многоугольника равно 2π.	1) 4; 2) 5; 3) 6; 4) 8; 5) 10.
A8	В окружность вписаны правильный треугольник и шестиугольник. Найдите отношение площади шестиугольника к площади тре- угольника.	1) 1,5; 2) 2; 3) 2,5; 4) 3; 5) 3,5.
A 9	Найдите высоту прямоугольной трапеции, у которой большая бо- ковая сторона равна 5, а разность длин оснований равна 4.	1) 3; 2) 4; 3) 4,5; 4) 5; 5) 6.
A10	Средняя линия равнобедренной трапеции, описанной около круга, равна 68. Найдите радиус этого круга, если нижнее основание трапеции больше верхнего на 64.	1) 20; 2) 2; 3) 30; 4) 32; 5) 36.
A11	Около окружности описана трапеция, площадь которой равна 20, а синусы углов при основании равны 0,8. Найдите длину средней линии трапеции.	1) 5; 2) 6; 3) 7; 4) 8; 5) 9.
A12	Радиус сектора равен R, а радиус окружности, вписанной в этот сектор равен r. Найдите площадь сектора, если r=2, R=3.	1) $\frac{3\pi}{2}$; 2) $\frac{5\pi}{2}$; 3) $\frac{4\pi}{3}$; 4) $\frac{4\pi}{5}$; 5) $\frac{5\pi}{6}$.
A13	В треугольнике АВС длина стороны АС равна 26,35, а синусы острых углов ВАС и ВСА равны соответственно 0,352 и 0,6. Найдите площадь треугольника.	1) 75; 2) 84; 3) 86,955; 4) 90; 5) 100.
A14	Высоты треугольника АВС пересекаются в точке Н. Найдите угол АВС, если СН равно АВ.	1) 30° или 150°; 2) 45° или 135°; 3) 20° или 160°; 4) 40° или 140°; 5) 50° или 130°.

A15	Две стороны треугольника равны 3 и 5, а медиана, проведенная к третьей стороне, равна 3,5. Найдите угол треугольника между данными сторонами.	1) 40°; 2) 50°; 3) 60°; 4) 70°; 5) 80°.
B1	Найдите радиус окружности, описанной около треугольника ABC, если сторона AB равна 24, а центр окружности удален от неё на 5.	
B2	Диагональ равнобедренной трапеции делит её тупой угол пополам. Меньшее основание равно 3, а периметр равен 42. Найдите площадь трапеции.	
В3	Прямоугольный треугольник, периметр которого равен 10, делится высотой, опущенной на гипотенузу, на два треугольника. Периметр одного из них равен 6. Найдите периметр второго треугольника.	
B4	Одна из сторон треугольника 10, а медианы, проведенные к двум другим сторонам, равны 9 и 12. Найдите площадь треугольника.	
В5	Биссектрисы углов A и B параллелограмма ABCD делят сторону CD на три части. Найдите длину меньшей части, если стороны параллелограмма равны 5 и 12.	
В6	Найдите площадь равнобедренной трапеции, у которой основания равны 10 и 26, а диагонали перпендикулярны боковым сторонам.	
В7	В трапеции ABCD диагонали пересекаются в точке О и AC:OC = 5:2. Найдите основание AD, если основание BC равно 12	
В8	Основания трапеции равны 10 и 20, а сумма углов при одном основании равна 90°. Найдите расстояние между серединами оснований трапеции.	
В9	Площадь выпуклого четырехугольника равна 8. Через его вершины проведены прямые, параллельные диагоналям. Найдите площадь параллелограмма, ограниченного этими прямыми.	
B10	Три окружности с радиусами 1, 2 и 3 попарно касаются друг друга внешним образом. Найдите радиус окружности, которая проходит через точки касания этих окружностей.	

Тест №13: Стереометрия

Nº	Задание	Варианты ответов
A1	Площадь поверхности куба 150. Найдите его объем.	1)200; 2)150; 3)120;
		4)300; 5)125.
A2	Объем куба равен $2\sqrt{2}$. Чему равен радиус круга, опи-	1)1; 2)4; 3)6;
	санного вокруг грани куба?	$4)\sqrt{2}$; $5)\sqrt{3}$.
A3	Найдите площадь диагонального сечения прямоуголь-	1)30; 2)65; 3)120;
	ного параллелепипеда, высота которого равна 12, а стороны основания 8 и 6.	4)110; 5)64.
A4	Основанием прямоугольного параллелепипеда служит	1)162; 2)250; 3)190;
	квадрат. Диагональ боковой грани параллелепипеда	4)192; 5)200.
	равна 8, образует с плоскостью основания угол $^{30^\circ}$.	
	Найдите объем параллелепипеда.	
A5	Объем правильной четырехугольной призмы равен	1) $\sqrt{3}$; 2)5; 3)2;
	$3\sqrt{3}$. Радиус окружности, описанной около основания	4)6; 5)3.

	$2\sqrt{3}$	
	призмы, равен 3. Найдите высоту призмы.	
A6	TIPPIONIDI, PADOTI TIANAFITO BBIOCTY TIPPIONIDI.	1)24; 2)30; 3)16√3;
	Высота правильной треугольной пирамиды равна $6\sqrt{3}$. Сторона основания пирамиды равна 4. Найдите	' ' '
	. Сторона основания пирамиды равна 4. паидите объем пирамиды.	4)20√3; 5)96.
A7	Во сколько раз увеличится боковая поверхность пра-	1)3; 2)6; 3)5;
	вильной треугольной пирамиды, если стороны основа-	4)12; 5)16.
A 0	ния увеличить в 2 раза, а апофему – в 3 раза?	
A8	Боковая грань правильной четырёхугольной пирамиды	1)25; 2)20; 3)21;
	наклонена к плоскости основания под углов 60° . Площадь основания пирамиды 16. Найдите боковую по-	4) 32; 5) 34.
	щадь основания пирамиды то. паидите ооковую по- верхность пирамиды	
A9	32π	1)45; 2)34; 3)16;
	Объем шара равен $\overline{3}$. Найдите шаровую поверх-	4)42; 5)50.
	ность, полагая π =3,14. Ответ округлить до единиц .	
A1	Площадь боковой поверхности цилиндра равна $^{24\pi}$, а	1)6; 2)12; 3)3;
0	т пощадь ооковой поверхности цилиндра равна $^{-10}$, а $^{-10}$	4)8; 5)7.
A1	его объем равен $^{48\pi}$. Найдите его высоту.	1)6; 2)8; 3)12;
1	<u> </u>	
-	Площадь осевого сечения цилиндра равна $^{\pi}$. Найди-	4) 24; 5) 18.
A1	те площадь его боковой поверхности. Высота и радиус основания конуса соответственно рав-	1)41; 2)47,1; 3)45,5;
2	ны 4 и 3. Найдите боковую поверхность конуса, полагая	4)51; 5)48.
	$\pi \approx 3,14$	4,51, 5,40.
A1	10	1)10; 2)6; 3)5;
3	Ребро куба равно $\overline{\sqrt{2}}$. Найдите расстояние от плоско-	$4)12; 5)\sqrt{2}.$
	сти диагонального сечения до непересекающего его	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	ребра.	
A1 4	Объем прямоугольного параллелепипеда равен 16. Бо-	1)60°; 2)45°; 3)20°;
4	ковое ребро равно 4. Найдите острый угол между диа- гоналями основания параллелепипеда, если его диаго-	4)30°; 5)40°.
	нальное сечение имеет форму квадрата.	
A1	В правильной треугольной призме через сторону осно-	1)6; 2)3; 3)12;
5	вания проведено сечение под углом $^{30^\circ}$ к плоскости	4)7; 5)4.
	основания. Получился треугольник, площадь которого	
B1	равна 8. Найдите сторону основания призмы. Найдите длину бокового ребра правильной четырехуголь	HOM EDMONT ACEM AC
"	_	
B2	диагональ равна $7\sqrt{2}$ и составляет с боковой гранью уго. В правильной треугольной пирамиде угол между боковым	
DZ		
	основания 60° , а радиус окружности, описанной около о	снования пирамиды, ра-
	вен $^{\sqrt[3]{4}}$. Найдите объем пирамиды.	

B3	В правильной четырехугольной пирамиде плоскость сечения, параллельного		
	основанию, разделила высоту пополам. Найдите сторону основания пирамиды,		
	если площадь сечения равна 36.		
B4	Стороны оснований правильной четырехугольной усеченной пирамиды равны 5		
	и 3. Ребро усеченной пирамиды равно $\sqrt{17}$. Найдите площадь полной поверхно-		
	сти усеченной пирамиды.		
B5	Боковые ребра треугольной пирамиды попарно перпендикулярны и равны соответственно 2, 3, 4. Найдите объем пирамиды.		
В6	В шаре на расстоянии 4 от центра проведено сечение, площадь которого 9π . Найдите радиус шара.		
В7	Площадь основания цилиндра относится к площади осевого сечения как π : 4 . Найдите угол между диагоналями осевого сечения.		
B8	64		
	В конусе площадь основания равна $^{\pi}$ и площадь осевого сечения 30. Найдите		
	объем этого конуса.		
B9	В прямой параллелепипед , объем которого равен36, вписана сфера. Если поло-		
	вина одной из сторон основания параллелепипеда равна 2, то диаметр сферы		
	равен?		
B1	В треугольную пирамиду вписан конус, площадь основания которого равна π .		
0	Если площадь боковой поверхности пирамиды равна $7\sqrt{10}$, а объем пирамиды		
	равен 7, то периметр ее основания равен		
	равен 1, то периметр ее основания равен		

Nº	Задание	Варианты ответов
A1	Площадь поверхности куба 96. Найдите ребро	1)3; 2)16; 3)4;
	куба.	4)8; 5)10.
A2	Площадь сечения куба плоскостью, проходящей	1)18; 2)16; 3)4;
	через диагонали верхнего и нижнего оснований,	4)8; 5)6.
	равна $16\sqrt{2}$ Найдите длину ребра куба.	
A3	Найдите объем прямоугольного параллелепипе-	1)30; 2)15; 3)20;
	да, если стороны основания 2 и 3, а диагональ па-	4) 45; 5) 18.
	раллелепипеда $\sqrt{38}$.	, , ,
A4	Найдите объем прямоугольного параллелепипе-	1)320; 2)64; 3)200;
	да, если стороны основания равны 6и 8, а его	4) 480; 5) 172.
	диагональ наклонена к плоскости основания под	, , ,
	углом ^{45°} .	
A5	Объем прямой призмы, основание которой – пра-	1) $\sqrt{3}$; 2) 2; 3) 6;
	вильный треугольник, равен $18\sqrt{3}$, ее высота рав-	4)5; 5)2√3.
	на 8. Найдите сторону основания.	4)0, 0)270.

A6	По данной стороне основания $a=9$ и боковому ре-	1)8; 2)4; 3)√3;
	бру <i>b</i> =6 найдите высоту правильной треугольной пирамиды.	4)2√3; 5)3.
A7	Плоский угол при вершине правильной треуголь-	1)1; 2)√3; 3)2;
	ной пирамиды равен ^{90°} . Площадь боковой по-	4)2√3; 5)1,5.
	верхности этой пирамиды равна 3. Найдите ради- ус окружности, описанной около боковой грани пи-	
	рамиды.	
A8	Высота правильной четырехугольной пирамиды равна 3. Боковая грань ее наклонена к плоскости	1) 30; 2) 36; 3) 31;
	основания под углом ^{45°} . Найдите объем пира-	4)12; 5)24.
	миды.	
A9	Во сколько раз увеличится объем шара, если его	1)15; 2)9; 3)81;
	радиус увеличить в 3 раза?	4)27; 5)3.
A1 0	Объем цилиндра $8\pi\sqrt{5}$, а высота $2\sqrt{5}$. Найди-	1)4; 2)5; 3)9;
	те диагональ осевого сечения.	4)12; 5)6.
A1 1	Площадь боковой поверхности цилиндра равна	1) 42; 2) 20; 3) 15;
'	$^{15\pi}$. Найдите площадь осевого сечения цилиндра.	4)30; 5)62.
A1	найдите площадь боковой поверхности прямого	1)16; 2)105; 3)48;
2	кругового конуса, если образующая его равна 4, а	4)8; 5)19.
	<u>16</u>	,
A4	площадь основания равна π .	4) 5 0) 0 0) 40
A1 3	Ребро куба ^{ABCDA,B,C,D,} равно 2. Найдите рас-	1)5; 2)2; 3)16;
	стояние между AD_1 и $^{B_1\!C}$	4)1; 5)3.
A1	Стороны основания прямоугольного параллеле-	1)32; 2)24; 3)90;
4	пипеда равны $2 - \sqrt{2} - u - 2 + \sqrt{2}$, а диагональ	4) 48; 5) 50.
	наклонена к плоскости основания под углом $^{60^\circ}$.	
	Найдите боковую поверхность.	
A1 5	Основанием прямой призмы служит ромб. Площа- ди диагональных сечений равны 6 и 8. Найдите	1)15; 2)18; 3)25;
	площадь боковой поверхности призмы.	4)30; 5)20.
B1	Наибольшая диагональ правильной шестиугольной	
	с боковым ребром угол ^{30°} . Найдите объем призмы	
B2	В правильной шестиугольной пирамиде проведено с середины двух смежных боковых ребер параллельн	
	площадь этого сечения, если радиус окружности, ог	
D2	рамиды, равен 30, а боковое ребро 50.	
В3	В основание пирамиды лежит ромб со стороной 15	$^{/3}$ и острым углом $^{30^{\circ}}$.
	Найдите площадь сечения, параллельного основани	ию, если сечение делит высо-
	ту в отношении 4 : 1 (считая от вершины).	

Найдите объем усеченной пирамиды, если площади ее оснований 96 и 24, а высота соответствующей полной пирамиды 16. Найдите объем правильной треугольной пирамиды, высота которой равна $\sqrt{3}$, а все плоские углы при вершине прямые. (Ответ округлить до целых) $\frac{5}{1}$ Площадь поверхности шара равна π . На расстоянии π от центра шара проведена плоскость. Найдите длину полученной в сечении окружности. Осевое сечение цилиндра – прямоугольник, диагональ которого равна образует с основанием угол 60° . Найдите объем цилиндра.
все плоские углы при вершине прямые. (Ответ округлить до целых) $\frac{5}{\pi} \frac{1}{\pi} \text{ от центра шара проведена плоскость. Найдите длину полученной в сечении окружности.}$ Осевое сечение цилиндра – прямоугольник, диагональ которого равна $8\sqrt[3]{\frac{\sqrt{3}}{\pi}} \text{ и}$
Площадь поверхности шара равна $\frac{5}{\pi}$. На расстоянии $\frac{1}{\pi}$ от центра шара проведена плоскость. Найдите длину полученной в сечении окружности. Осевое сечение цилиндра – прямоугольник, диагональ которого равна $8\sqrt[3]{\frac{\sqrt{3}}{\pi}}$ и
Площадь поверхности шара равна $\frac{\pi}{\pi}$. На расстоянии $\frac{\pi}{\pi}$ от центра шара проведена плоскость. Найдите длину полученной в сечении окружности. Осевое сечение цилиндра – прямоугольник, диагональ которого равна $8\sqrt[3]{\frac{\sqrt{3}}{\pi}}$ и
дена плоскость. Найдите длину полученной в сечении окружности.
Осевое сечение цилиндра – прямоугольник, диагональ которого равна $\sqrt[83]{\frac{\sqrt{3}}{\pi}}$ и
Осевое сечение цилиндра – прямоугольник, диагональ которого равна $\sqrt{\pi}$ и
Осевое сечение цилиндра – прямоугольник, диагональ которого равна $\sqrt{\pi}$ и
образует с основанием угол об . Найдите объем цилиндра.
$\frac{26}{3}$
Диаметр основания конуса равен образующей и равен $\sqrt[2]{\pi^2}$. Найдите объем
конуса.

B9	Определить объем шара, вписанного в правильную пирамиду, у которой высота
	равна 3, а двугранный угол при основании равен ^{60°} . (Результат умножить на
	3
	$\left(\frac{\pi}{\pi}\right)$
B1	Определить поверхность шара, описанного около конуса, у которого радиус осно-
0	1
	вания равен 2, а высота равна 4. (Результат умножить на $\frac{\pi}{\pi}$)

Тест №14: Производная

Nº	Задания	Вариант	ы ответс	В
A1	Производная функции $f(x) = x \cdot 2^{x^2} + \ln 2$ в точке $x = 0$ равна:	1)0; 4)-1;	2)1; 5) – 2.	3)2;
A2	Производная функции $f(x) = \ln^2 \sin x$ в точке $x = \frac{\pi}{2}$ равна:	1) 1; 1) 1; 4) $\frac{1}{2}$;	2) 2; $5)\frac{\pi}{4}$.	3)0;
А3	Найдите середину промежутка убывания функции $f\left(x\right)=x^{3}-9x^{2}+24x-5$	1)1; 4)4;	2)2; 5)0.	3)3;
A4	Найдите середину промежутка возрастания функции $f(x) = -x^3 + 3x^2 + 5$	1) 0; 4) – 1;	2)1; 5)3.	3)2;
A5	Найдите максимум функции $f(x) = -x^4 + 4x^3$	1)16; 4)32;	2)19; 5)24.	3)27;
A6	Найдите минимум функции $f(x) = 0.5x^4 - 2x^3$	1) – 10; 3) – 13.5; 5) 12.	, .	
A7	$f(x) = \frac{1}{3}x^3 - 2x^2 + 3x - 1$ Пусть . Тогда $x_{\min} \cdot x_{\max}$ равно: Найдите уравнение касательной к графику функции	1)1; 4)-1;	2)2; 5)-2.	3)3;
A8	$f(x) = x^3 - 3x^2 + x - 1$ в точке с абсциссой x = 1		1; 2) <i>y</i> + 2; 4) <i>y</i> c + 1.	
А9	Касательная к графику функции $y_1 = x^4 - 5x^3 - 4x^2 + 3x - 1$ в точке $x_1 = 0$ параллельна касательной к графику функции $y_2 = x^2 - 3x + 1$ в точке x_2 . Найдите $y_2(x_2)$.	1)4; 4)2;	•	3)1;
A10	Касательная к графику функции $y = 5\sqrt{x+3}$ с угловым коэффициентом к = 1,25 пересекает ось абсцисс в точке x_1 , рав-	1)6; 4)-7;	2) – 6; 5) 4.	3)7;

	· ·			
	ной:			
A11	Касательная к графику функции $y = 2 \cdot 5^{x+1}$ пересекает ось	1)9;	2)-10;	3)10
	1	4)8;	5)7.	
	$X_1 = -\frac{1}{\ln 5}$			
	$x_1 = -\frac{1}{\ln 5}.$ абсцисс в точке Найдите ординату точки пересечения этой касательной с осью ОУ.			
			-	
A12	Найдите площадь треугольника, образованного касательной	1) 3;	$2)\frac{5}{6}$;	$3)\frac{3}{-}$;
	$y = x + \frac{1}{x}$	4.	6	′7′
	$y = x + \frac{1}{x}$ к графику функции $\frac{y}{x}$ в точке с абсциссой x=2 и осями координат.	$4)\frac{2}{3}$;	5) $\frac{2}{7}$.	
	ми координат.	73	7	
A13	Найдите уравнение касательной к графику функции	1) $y = 1$;	, -	
	$f(x) = x^3 - 3x$ в точке ее максимума.	3) $y = 4$;	4) $y = 2$	(5) y = 0.
A14	$y = x \sqrt{y+1}$	1)(0:0):	2)(_1:-	(5) y = 0. (-3);
/ 12 :	В какой точке касательная к графику функции $y = x\sqrt{x+1}$ па-			
	раллельна прямой $y = x - 1$	3)(-2:-4	$(-\frac{8}{9})$; 4) $(-\frac{8}{9})$	$(-\frac{8}{8})$
		, , ,	′′′′(9	27)
		$5)\left(-\frac{3}{4};-\right)$	7)	
		$\left(-\frac{3}{4}, -\frac{1}{4}, -\frac{1}{4} \right)$	8	
A15	Найдите модуль разности экстремальных значений функции	1) 3e – e ²	2)(2e):
	$y = (x^2 - 5x + 5)e^x$,	*
		3)(5e),	4)40,	$5)4e-e^2$.
B1	Найдите минимум функции $f(x) = 4x + e^{-4x}$			
	галдите минимум функции f(v) /Б	<u></u>		
B2	Найдите уравнение касательной к графику функции $f(x) = \sqrt{5}$.	к + 4 В ТОЧК	е с абсцио	ссой х = 1. В
DZ	ответе записать 6х, где х-угловой коэффициент касательной.			
	3 22 . 4			
В3	Касательная к графику функции $y = x^3 - 3x^2 + 1$ в точке $x_1 = 1$ п	араллельна	а касатель	ной к гра-
55	фику функции $y = x^2 + 5x + 4$ в точке x_2 . Найдите x_2 .			
	II.		V =	$\sqrt{3+2x}$
B4	Найдите площадь треугольника, образованного касательной к г	рафику фу	нкции	• В
	точке с абсциссой $x_0 = 3$ и осями координат.			
B5	Найдите модуль разности экстремальных значений функции ^у	$= x^3 + 3x^2 -$	-9x + 1	
	Найдите модуль разности экстремальных значений функции ^у При каких значениях коэффициента а и b производная ф	f($x) = a \sin x$	$2x + b\cos 2x$
	При каких значениях коэффициента а и b производная ф	ункции ' '	,	
В6	удовлетворяет условиям $f'\left(\frac{\pi}{4}\right) = 4$ и $f'\left(\frac{\pi}{2}\right) = 2$. В ответе Ука			
	удовлетворяет условиям $(4)^{-4}$ и $(2)^{-2}$. В ответе Ук	ажите сумм	v модулей	й коэффици-
	ентов.		,o ₋₁ ,,10,	
D-7	Число 10 разбить на два слагаемых таким образом, чтобы су	има квадра	тов этих ч	частей была
B7	наименьшей. В ответе записать сумму квадратов полученных с			

B8	Сколько корней имеет уравнение $\frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x + a = 0$, если $a \in \left(-\frac{5}{6}; -\frac{2}{3}\right)$?
В9	Найдите наименьшее и наибольшее значение функции $f(x) = \sin^2 x - x$ на отрезке $\left[0; \frac{\pi}{2}\right]$
B10	В какой точке параболы $y = x^2$ касательная к ней будет параллельна секущей, проходящей через точки кривой с абсциссами $x\mu = 1$ х $\mu = 1$ 2 В ответ записать абсциссу искомой точки.

Nº	Задания	Варианты ответов
A1	Производная функции $f(x) = x^2 \cdot 3^{-x} + 7$ в точке $x = 1$ равна:	1) 1; 2) 3; 3) $\frac{1}{3}$ (2 - ln 3); 4) 2; 5) 2, 5.
A2	Производная функции $f(x) = \ln^3 \cos x$ в точке $x = 0$ равна:	1)3; 2)2; 3)1; 4)0; 5)-1.
А3	Производная функции $f(x) = 3\sqrt{\pi x} + x \cos x$ в точке $x = \pi$ равна:	1)2; 2)1; 3)4; 4) $\frac{3}{2}$; 5) $\frac{1}{2}$.
A4	Найдите середину промежутка убывания функции $f(x) = x^3 - 6x^2 + 9x - 1$	1)1; 2)3; 3)1,5; 4)2; 5)2,5.
A5	Найдите середину промежутка возрастания функции $f(x) = -x^3 - \frac{9}{2}x^2 + 7$	1)-1.5; 2)-1; 3)-2; 4)0; 5)1.
A6	Найдите максимум функции $f(x) = -x^4 + 16x^3$	1)-12·16 ³ ; 2)-1; 3)1; 4)2; 5)3.
A7	$f(x) = \frac{1}{4}x^4 - \frac{2}{3}x^3$ Найдите минимум функции	$ \begin{array}{ccc} 1)\frac{1}{3}; & 2) - \frac{4}{3}; \\ 3)4; & 4)4.5; & 5)5. \end{array} $
A8	$f(x) = \frac{16}{x(4-x^2)}$ Пусть . Тогда $x_{\min} \cdot x_{\max}$ равно:	1)2; 2)3; 3) $\frac{3}{2}$; 4) $-\frac{4}{3}$; 5)1.
A9	Найдите уравнение касательной к графику функции $f\left(x\right)=x^3+2x^2-4x-3$ в точке (-2;5)	$ \begin{array}{ll} (1) y - 5 = 0; & 2) y - 3 = 0; \\ (3) y - 1 = 0; & 4) y - 2 = 0; \\ (5) y - 6 = 0. \end{array} $

A10	Найдите уравнение касательной к графику функции $f(x) = \frac{1}{2-3x}$ в точке с абсциссой $x = -1$	1) $y = x - 1;$ 2) $y = x + 1;$ 3) $y = \frac{3}{25}x + \frac{8}{25};$ 4) $y = 2x;$ 5) $y = -2x.$
A11	Найдите уравнение касательной, проведенной к графику $\phi_y = e^x = e^x$ параллельно прямой $y = ex + 3$	1) $y = x$; 2) $y = 2x$; 3) $y = 3x$; 4) $y = -x$; 5) $y = ex$.
A12	Касательная к графику функции $y_1 = x^3 - 3x^2 + 5x - 1$ в точке $x_1 = 1$ параллельна касательной к графику функции $y_2 = x^2 - 4x + 5$ в точке x_2 . Найдите $y_2(x_2)$.	1)1; 2)2; 3)3; 4)4; 5)3.5.

A13	Касательная к графику функции $y = \ln(x+3)^2$ с угловым 1)6 + 9ln9; 2)1 + ln2; 3)1 + ln3; 4)2; 5)3. коэффициентом к = $\frac{1}{3}$ пересекает ось абсцисс в точке x_1 , равной:	
A14	Найдите площадь треугольника, образованного касательной к графику функции $y=\sqrt{x+3}$ в точке с абсциссой x=1 $4)\frac{3}{4}$; 2)1 3)2 $4)\frac{3}{4}$; 5) $\frac{7}{8}$. Найдите уравнение касательной к графику функции $1)y=-4$; 2) $y=-3$;	
A15	$f(x) = x^3 - 3x^2$ в точке ее минимума. 3) $y = -2$; 4) $y = -1$; 5) $y = 1$.	
B1	$f(x) = \frac{1}{3}x^3 - 3x^2 + 5x - 1$ Найдите середину промежутка убывания функции	
В2	Найдите минимум функции $f(x) = x^2(x-12)^2$	
В3	Касательная к графику функции $y=2\sqrt{x-1}$ с угловым коэффициентом к = 1 пересекает ось абсцисс в точке x_1 , равной	
В4	Найдите модуль разности экстремальных значений функции $y = x^3 - 6x^2 + 9x - 1$.	
В5	$y=2x^4-x^3-rac{4}{3}x+1$ К графику функции в точке $x_0=0$ проведена касательная. Найдите расстояние d от начала координат до этой касательной. В ответе запишите $5d$.	
В6	Найдите площадь треугольника, образованного осью абсцисс и касательными к графикам функ- $y = x^2 + 1 u \ y = 1 - \frac{1}{x}$ в точке пересечения этих графиков	
В7	Определить количество корней уравнения $x^3 + 6x^2 + 9x + 1 = 0$	
B8	Решите неравенство $x^3 + 4x > 16$. В ответе укажите наименьшее целое решение неравенства	
В9	Точка движется прямолинейно по закону $S = 6t - t^2$. В какой момент времени скорость окажется равной нулю.	
B10	Найдите наибольшую площадь прямоугольника, две вершины которого лежат на осях ОХ и ОУ прямоугольной системы декартовых координат, третья на параболе $y = 3 - x^2$, а четвертая совпадает с точкой (0;0)	

Тест №15: Итоговый тест

Nº	Задания	Варианты ответов
A1	Разделить число 70 в отношении 0,25:0,5:1	1)5;25;40 2)10;20;40 3)4;16;50
		4)12;24;34 5)18;20;32

A2	Цену на товар сначала повысили на 10%, а затем ещё	1)25 2)25,5 3)26 4)26,5
	на 15%. На сколько процентов повысилась цена товара	5)27
	после двухкратного повышения цены.	
А3	Упростить $\sqrt{4 + \sqrt{15}} - \sqrt{4 - \sqrt{15}}$	1)2 2)2,5 3)3 4)3,5 5) $\sqrt{6}$
A4	Пусть $f(x) = 3 - 5x$. Найти $f(1-x) - f(x+2)$	1)1x+ 2)2 x- 3)10x 5+
		4)5x -7 5)10x -7
A5	Один трактор засеивает поля за 4 часа, другой – за	1)2 2)2,1 3)2,2 4)2,3 5)2,4
	6часов. За сколько времени они засеют поле, раб отая	
10	вместе?	
A6	Упростите $\frac{a+c}{a-c}$: $\frac{2a^2+ac-c^2}{2a^2-3ac+c^2}$	1)1 2)1,5 3)a + c 4)a – c
47		5)2a
A7	Решите уравнение $\frac{3x^2 + 10x + 8}{8x^2 + 18x + 4} = \frac{(8x - 2)^2}{64x^2 - 4}$	1)0,9 2)1 3)1,1 4)1,2 5)1,5
A8		1)2 2)3 3)4 4)5 5)5,5
Ao	Решите уравнение $ (x-2)^3 - \frac{9}{2} = \frac{7}{2}$. В ответе	1)2 2)3 3)4 4)5 5)5,5
	запишите меньший корень	
A9	Решить систему уравнений	1)(1;2)(3;4) 2)(2;3)(3;4)
	$\int x^2 + y^2 + x + y = 18$	3)(2;-4)(-4;2) 4)(0;1)(1;0)
	$\begin{cases} xy + x^2 + y^2 = 12 \end{cases}$	5)(-1;2)(2;-1)
A10	Решить неравенство 2≤ x ≤3	1)[-1;0] \cup [1;2] 2)[-3;-2] \cup [2;3]
		3)[-2;0] \cup [1;2] 4)[1;3] \cup [4;5]
		5)[1;2] \cup [3;4]
A11	Решите систему неравенств	1)0 2)1 3)3 4)4 5)5
	$\begin{cases} 0 \le 2x + 1 \le 5 \\ x^2 - 2x + 1 > 0 \end{cases}$	
	и определите среднее арифметическое целых значений,	
	удовлетворяющих системе неравенств	
A12	Найти область определения функции	1)(0;1) 2)[1;2) 3)[2;3) 4)[2;6)
	$f(x) = \sqrt{x-2} + 3 \lg \frac{6-x}{x+3}$	5)[2;5)
A42		
A13	Упростить 3cos196° +12cos164° cos16°	1)1 2) -4 3)10 4) -10 5) -15
	cos16°	

A14	Стороны параллелограмма равны 11 и 16.	1)20	2)21	3)22	4)23	5)24								
	Длина перпендикуляра,опущенного из вершины острого													
	угла на меньшую диагональ,равна $4\sqrt{7}$.Найдите большую													
	диаганаль параллелограмма.													
A15	Найдите радиус окружности, описанной около	1)4	2)5	3)5√2	4)6	5)6,5								
	равнобедренной трапеции с основаниями 2 и14 и боковой		,											
	стороной, равной 10.													
B1	Вычислите, не пользуясь микрокалькулятором													
ы	$\sqrt[3]{9+\sqrt{80}+\sqrt[3]{9}-\sqrt{80}}$													
B2	Найдите сумму корней уравнения $ x \cdot \log_{x^2}(x^2 + 4) = 3$													
В3	Решите уравнение $(x+2)(x^2-5x+13)=29$ В ответе записать целую часть корня													
	$\begin{cases} \sqrt{x+2} - \sqrt{y-2} = 2 \\ \sqrt{y+2} - \sqrt{x-2} = 2 \end{cases}.$ Решите систему уравнений													
B4	Решите систему уравнений $\sqrt{y+2}-\sqrt{x-2}=2$.													
	В ответе записать ${}^{X_0+Y_0}$, где ${}^{\left(X_0,Y_0\right)}$ - решение системы.													
D.F.	Решите уравнение $(x^2 + 4x + 8)^2 + 3x^3 + 14x^2 + 24x = 0$. В с													
B5	Решите уравнение ` . В с корней	твете з	ваписа	ть суми	у квад	ратов								
В6	Между числами 23 и 93 вставили 13 чисел, образующих вмес	те с ни	ии ари	ифметич	ескую	про-								
D0	грессию. Найдите наибольшее из вставленных чисел.													
В7	Сумма внутренних углов выпуклого многоугольника равна 32	40° , ск	олько	сторон	имеет	много-								
	угольник?													
B8	$\log_{1} x = \frac{1}{4}(x-2 + x+2)$													
	Решите уравнение 2 ч . В ответе запи	сать су	мму к	орней										
B9	$\log_{\frac{1}{2}} x =\frac{1}{4}(x-2 + x+2)$. В ответе запи Решите уравнение $(x-2)^4+(x+1)^4=17$. В ответе записать	сумму	корнеі	й										
B10	Найдите наибольшее значение выражения $4\cos^3 x \sin x - 4\sin^2 x$	in³ x co	s x											

N	№ Задание	Варианты ответов
A1	Разделите число 19 в отношении ^{0,5:0,25:0,2} .	1) 10; 5; 4; 2) 9; 6; 4; 3) 8; 7; 4;
		4) 11; 5; 3; 5) 12; 4; 3
A2	2 Цену на товар сначала повысили на 20%, а затем понизили на 20%. На сколько процентов и как изменилась первона- чальная цена?	1) не изменилась; 2) увеличилась на 5%; 3) увеличилась на 4%; 4) уменьшилась на 4%; 5) уменьшилась на 5%.

A3	$\sqrt{7} - \sqrt{2} - \frac{5}{\sqrt{9 + 2\sqrt{14}}}$	1) 0; 2) 1; 3) 2; 4) 3; 5) $\sqrt{7}$.
	упростите	
A4	Пусть $f(x) = 7 - x^2$. Найдите $f(1 - \sqrt{2}) + f(1 + \sqrt{2})$.	1) 6; 2) 7; 3) 8; 4) 10; 5) $2\sqrt{2-1}$.
A5	Лошадь съедает стог сена за четыре дня, корова может съесть такой же стог за шесть дней, и коза за двенадцать дней. За сколько дней лошадь, корова и коза могут съесть этот стог сена?	1) 4; 2) 3; 3) 1,5; 4) 1; 5) 2.
A6	Упростите $\frac{a^2b^{-1}+a^{-1}b^2}{a^{-2}-b^{-2}}-\frac{ab}{a^{-1}-b^{-1}}.$	1) $b-a$; 2) $ab(b-a)$; 3) ab ; 4) $\frac{1}{b-a}$; 5) a^2b^2 .
A7	Решите уравнение $\frac{2x^2 - 3x - 20}{6x^2 - 20x - 16} = \frac{(6x - 4)^2}{36x^2 - 16}$	1) 1; 2) 1,5; 3) 2; 4) 2,25; 5) 2,5
A8	Решите уравнение $ (x-1)^3 - 36 = 28.$	1) 1; 2; 2) 2; 3; 3) 3; 5; 4) 4; 6; 5) – 1; 3.
A9	$\begin{cases} 2x^2 - 3xy + y^2 = 3, \\ x^2 + 2xy - 2y^2 = 6. \end{cases}$ Решите систему уравнений	1) (1;0), (1;1); 2) (2;3), (-2;-3); 3) (2;1), (-2;-1); 4) (1;3), (-1;-3); 5) (0;4), (-4;2).
A10	Решите неравенство 1≤ x ≤ 2.	1) [-3;0] \cup [1;3]; 2) [-2;-1] \cup [1;2]; 3) [-2;0] \cup [3;4]; 4) [-3;-1] \cup [1;3]; 5) [-2;2] \cup [3;5].
A11	$\begin{cases} \frac{(x+2)^2}{(x-3)(x-4)} \leq 0, \\ (5-3\sqrt{3})(x-1) \leq 0. \end{cases}$ Решите систему неравенств	1) (1;2); 2) (2;3); 3) (3;4); 4) (4;5); 5) (5;6).
A12	Найдите область определения функции $y = \sqrt{3x - 12} - 3\lg \frac{3 - x}{x - 5}.$	1) (1;2); 2) (2;3); 3) (3;4); 4) (4;5); 5) (5;6).
A13	Упростите $\frac{\cos^2(\alpha+\beta)+\cos^2(\alpha-\beta)}{2\sin^2\alpha\sin^2\beta}-\cot^2\alpha\cot^2\beta$	1) 1; 2) 2; 3) $\sin \alpha \sin \beta$; 4) $\cos \alpha \cos \beta$; 5) 0.

A14 В параллелограмме острый угол равен 60°. Вычислите длины сторон параллелограмма, если его периметр равен 22, и меньшая диагональ равна 7. 1) 2; 4; 2) 4; 5; 3) 3; 8; 4) 4; 6; 5) 5; 7. A15 Высота равнобедренной трапеции равна 17, а основание − 24 и 10. Найдите радиус окружности, описанной около трапеции. 1) 10; 2) 11; 3) 12; 4) 13; 5) 14 и 10. Найдите радиус окружности, описанной около трапеции. B1 Вычислите, не пользуясь калькулятором ³ √10 + 6√3 + ³ √10 − 6√3 B2 Найдите сумму корней уравнения log _{x²} (x² + 12) = 2 x B3 Решите уравнение (x − 2)(x² − x + 1) = 4 . В ответе записать целую часть корня B4 √x + 3 − √y − 3 = √6, √y + 3 − √x − 3 = √6; В ответе записать x₀ + y₀, где (x₀, y₀) - решение системы. B5 Решите Уравнение (x² + x + x)² − 6x (x² + x + 2) + 8x² = 0. В ответе записать сумму корней уравнения. B6 Сумма внутренних углов выпуклого многоугольника равна 2700°. Сколько сторон имеет многоугольник? B7 Решите уравнение ⁴ √x + 8 − ⁴ √x − 8 = 2 В8 Прямая, параллельная основаниям прямоугольной трапеции, делит её на две трапеции, в каждую из которых можно вмещать окружность. Найдите основания исходной трапеции, если её боковые стороны равны 3 и 5. В ответе записать сумму длин оснований. B9 Найдите наибольшее значение выражения соs² x + соs x + 5 B10 В последовательности -3;0;10;27; разности между соседним членом составляет арифметическую прогрессию. Найдите пятнадцатый член исходной последовател			
 и 10. Найдите радиус окружности, описанной около трапеции. Вычислите, не пользуясь калькулятором ³√10 + 6√3 + ³√10 - 6√3 Ваз Решите сумму корней уравнения log_{x²} (x² + 12) = 2 x Ваз Решите уравнение (x - 2)(x² - x + 1) = 4 . В ответе записать целую часть корня В	A14	ны сторон параллелограмма, если его периметр равен 22, и	_ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
 В3 Решите уравнение (x - 2)(x² - x + 1) = 4 . В ответе записать целую часть корня В4	A15	и 10. Найдите радиус окружности, описанной около трапеции.	
 В3 Решите уравнение (x - 2)(x² - x + 1) = 4 . В ответе записать целую часть корня В4	B1	Вычислите, не пользуясь калькулятором $\sqrt[3]{10+6\sqrt{3}} + \sqrt[3]{10-6\sqrt{3}}$	<u>3</u>
 В Решите уравнение (x - 2)(x² - x + 1) = 4 . В ответе записать целую часть корня В Ответе записать (x₀ + y₀), где (x₀, y₀) - решение системы. В Ответе записать (x₀ + y₀), где (x₀, y₀) - решение системы. В Ответе записать (x₀ + y₀), где (x₀, y₀) - решение системы. В Ответе записать сумму корней уравнения. В Ответе записать сумму корней уравнение (x² + x + x)² - 6x(x² + x + 2) + 8x² = 0 . В ответе записать сумму корней уравнения. В Ответе записать сумму корней уравнение (x² + x + x)² - 6x(x² + x + 2) + 8x² = 0 . В ответе записать сумму корней уравнения. В Ответе записать сумму рапин основания исходной трапеции, если её боковые стороны равны 3 и 5. В ответе записать сумму длин оснований. В Ответе записать сумму длин оснований. В Ответе записать сумму длин оснований. В Последовательности (-3;0;10;27; разности между соседним членом составляет арифметинами основания иленом составляет арифметинами иленом составляет иле	B2	Найдите сумму корней уравнения $\log_{x^2} (x^2 + 12) = 2 x $	
В4 Решите систему уравнений $\sqrt{x+3} - \sqrt{y-3} = \sqrt{6}$, Решите систему уравнений $\sqrt{y+3} - \sqrt{x-3} = \sqrt{6}$; В ответе записать $x_0 + y_0$, где (x_0, y_0) - решение системы. В5 Решите уравнение $(x^2 + x + x)^2 - 6x(x^2 + x + 2) + 8x^2 = 0$. В ответе записать сумму корней уравнения. В6 Сумма внутренних углов выпуклого многоугольника равна 2700° . Сколько сторон имеет много-угольник? В7 Решите уравнение $\sqrt[4]{x+8} - \sqrt[4]{x-8} = 2$ В8 Прямая, параллельная основаниям прямоугольной трапеции, делит её на две трапеции, в каждую из которых можно вмещать окружность. Найдите основания исходной трапеции, если её боковые стороны равны 3 и 5. В ответе записать сумму длин оснований. В9 Найдите наибольшее значение выражения $\cos^2 x + \cos x + 5$ В последовательности $-3;0;10;27;$ разности между соседним членом составляет арифмети-	B3	Решите уравнение $(x-2)(x^2-x+1)=4$. В ответе записать це	елую часть корня
В5 Решите уравнение (x² + x + x)² - 6x(x² + x + 2) + 8x² = 0 . В ответе записать сумму корней уравнения. В6 Сумма внутренних углов выпуклого многоугольника равна 2700°. Сколько сторон имеет много-угольник? В7 Решите уравнение ⁴ √x + 8 - ⁴ √x - 8 = 2 В8 Прямая, параллельная основаниям прямоугольной трапеции, делит её на две трапеции, в каждую из которых можно вмещать окружность. Найдите основания исходной трапеции, если её боковые стороны равны 3 и 5. В ответе записать сумму длин оснований. В9 Найдите наибольшее значение выражения cos² x + cos x + 5 В10 В последовательности -3;0;10;27; разности между соседним членом составляет арифмети-	B4	$\int \sqrt{x+3} - \sqrt{y-3} = \sqrt{6},$	
В5 Решите уравнение (x² + x + x)² − 6x(x² + x + 2) + 8x² = 0 . В ответе записать сумму корней уравнения. В6 Сумма внутренних углов выпуклого многоугольника равна 2700°. Сколько сторон имеет много-угольник? В7 Решите уравнение ⁴ √x + 8 − ⁴ √x − 8 = 2 В8 Прямая, параллельная основаниям прямоугольной трапеции, делит её на две трапеции, в каждую из которых можно вмещать окружность. Найдите основания исходной трапеции, если её боковые стороны равны 3 и 5. В ответе записать сумму длин оснований. В9 Найдите наибольшее значение выражения cos² x + cos x + 5 В10 В последовательности -3;0;10;27; разности между соседним членом составляет арифмети-			аписать $x_{_0}+y_{_0}$, где $\left(x_{_0},y_{_0}\right)$ - ре-
Сумма внутренних углов выпуклого многоугольника равна 2.755 °Сколько сторон имеет много- угольник? Вта Решите уравнение ⁴ √x + 8 − ⁴ √x − 8 = 2 Прямая, параллельная основаниям прямоугольной трапеции, делит её на две трапеции, в каждую из которых можно вмещать окружность. Найдите основания исходной трапеции, если её боковые стороны равны 3 и 5. В ответе записать сумму длин оснований. Вта Найдите наибольшее значение выражения cos² x + cos x + 5 В последовательности −3;0;10;27; разности между соседним членом составляет арифмети-	B5	Решите уравнение $(x^2 + x + x)^2 - 6x(x^2 + x + 2) + 8x^2 = 0$. В с	ответе записать сумму корней
 В8 Прямая, параллельная основаниям прямоугольной трапеции, делит её на две трапеции, в каждую из которых можно вмещать окружность. Найдите основания исходной трапеции, если её боковые стороны равны 3 и 5. В ответе записать сумму длин оснований. В9 Найдите наибольшее значение выражения cos² x + cos x + 5 В последовательности −3;0;10;27; разности между соседним членом составляет арифмети- 	В6		°- Сколько сторон имеет много-
 В8 Прямая, параллельная основаниям прямоугольной трапеции, делит её на две трапеции, в каждую из которых можно вмещать окружность. Найдите основания исходной трапеции, если её боковые стороны равны 3 и 5. В ответе записать сумму длин оснований. В9 Найдите наибольшее значение выражения cos² x + cos x + 5 В последовательности −3;0;10;27; разности между соседним членом составляет арифмети- 	B7	Решите уравнение $\sqrt[4]{x+8} - \sqrt[4]{x-8} = 2$	
В10 В последовательности —3;0;10;27; разности между соседним членом составляет арифмети-	B8	Прямая, параллельная основаниям прямоугольной трапеции, д из которых можно вмещать окружность. Найдите основания исх	одной трапеции, если её боковые
В последовательности —3;0;10;27; разности между соседним членом составляет арифметическую прогрессию. Найдите пятнадцатый член исходной последовательности	В9	Найдите наибольшее значение выражения $\cos^2 x + \cos x + 5$	
	B10	В последовательности —3;0;10;27; разности между соседни ческую прогрессию. Найдите пятнадцатый член исходной после	

Ответы

							Te	CT						
№ зада-	Ng	21	N	22	N:	23	N	94	N	25	Nº6		N	97
ния	Вари	иант	Вар	иант	Bapı	Вариант Вариант		Вариант		Вариант		Вариант		
	1	2	1	2	1	2	1	2	1	2	1	2	1	2
A1	2	3	4	3	2	1	4	1	1	1	1	4	1	1
A2	1	3	3	3	1	4	3	5	2	2	2	4	2	2
A3	3	3	3	1	2	3	3	4	1	5	2	1	3	3
A4	4	1	1	4	4	3	3	2	2	ფ	1 ◀	3	4	4
A5	4	4	3	3	2	4	2	3	4	4	4	5	5	5
A6	4	1	3	1	1	1	5	1	2	2	2	1	3	1
A 7	2	1	1	2	2	4	2	4	3	4	1	2	2	2
A8	3	2	4	3	3	3	4	4	2	5	3	3	1	5
A9	2	4	1	4	4	3	1	1	5	1	1	2	2	3
A10	2	3	2	2	1	2	2	2	2	3	2	3	5	4
A11	3	4	3	1	1	2	4	1	4	4	4	5	4	5
A12	1	1	3	2	4	2	2	4	3	5	4	3	2	2
A13	2	1	1	1	3	4	3	4	5	1	2	5	1	1
A14	2	4	1	3	4	1	2	1	1	2	1	1	4	2
A15	1	2	2	4	4	4	2	4	5	5	1	4	3	3
B1	3	2	2	1	-2	4	1	10	2	2	3	0	2	5
B2	5	5	-8	-3	1	3	-1	6	1	2	1	3	9	3
B3	0	0	-25	-6	-2	3	13	22	5	2	18	6	2	0
B4	10	-50	-2	-3	1	2	6	5	9	3	3	9	6	10
B5	21	77	-5	2	5	25	11	-4	1	3	1	0	9	27
B6	-2	8	4	2	4	4	2	4	1	7	28	1	1	2
B7	1	3	5	5	2	-3	2	3	2	10	1	2	1	0
										0				
B8	16	80	1	16	6	2	2	2	2	4	4	3	3	13
B9	2	2	2	-12	25	-45	3	-1	2	3	2	1	10	3
B10	440	72	4	4	68	64	1	1	3	1	3	19	14	2

								Te	CT							
Nº 3a-	∣Ranи₌			<u>∘</u> 9		10	-	11	_	12		13		14		15
и <u>я</u> за- дания			Вари-		Вари-		Вари-		Вари-		Вари-		Вари-		Вари-	
дания	ант		ант		ант		ант		ант		ант		ант		ант	
	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
A1	1	2	1	1	4	2	2	5	4	4	2	3	2	3	2	1
A2	5	1	2	2	2	5	4	3	4	5	1	3	3	4	4	4
A3	2	4	1	3	5	4	4	5	1	2	3	1	3	5	5	1
A4	1	3	2	4	1	4	1	2	3	2	4	4	2	4	3	3
A5	3	1	4	5	2	4	1	2	3	1	5	2	3	1	5 -	5
A6	2	2	5	1	3	5	1	4	3	3	1	5	3	1	1	2
A7	3	3	5	2	2	1	2	1	1	3	2	1	3	2	4	4
A8	1	2	4	1	3	1	5	1	1	1	4	2	2	4	2	3
A9	5	4	1	3	3	3	3	4	5	1	5	4	3	1	3	3
A10	2	3	4	3	5	5	2	1	2	3	3	5	4	3	2	2
A11	5	4	1	4	2	3	3	3	3	1	1	3	3	5	2	3
A12	3	1	2	1	3	4	5	5	3	1	2	1	4	2	4	4
A13	2	2	3	2	4	2	3	2	3	3	3	2	4	1	5	1
A14	2	4	1	3	4	4	1	1	3	2	4	4	1	1	4	3
A15	3	5	1	1	5	2	2	2	1	3	5	5	1	1	3	4
B1	1	5	1 0	2	6	3	2	3	4	13	7	9	1	3	3	2
B2	4	1	1	1	-7	2 4	48	52	10	96	3	60 0	5	0	0	0
В3	4	0	3	7 4	-2	-5	64	2	3	8	12	21 6	4	0	2	2
В4	9	2	1	3	1 0	-6	45	27 0	5	72	98	44 8	6	4	4	6
B5	1	4	1	2	4	-2	22 5	31 5	14	2	4	5	3 2	3	2	3
В6	3	1	1	2	3	4	5	2	90	21 6	5	1	3	3	8 8	17
B7	1	1	3	1 0	1	1	54 0	45	19 5	18	90	48	5 0	3	2	8
В8	8	3	1 6	2	6 0	3	11	7	1	5	80	1	3	3	0	5
В9	1	4	2	2	0	4 5	7	6	96	16	3	4	0	3	1	7
B10	2	0	2	4	0	0	4	3	18	1	14	25	2	2	1	67 6

Составители:

Пархимович Игорь Владимирович Остапчук Евгений Матвеевич Юхимук Михаил Михайлович

Ответственный за выпуск: Пархимович И.В. Редактор: Строкач Т.В. Компьютерная верстка: Боровикова Е.А. Корректор: Никитчик Е.В.