. 2000 . 1

						. 2000 . 1
		, , ,		".	" _	2
	. 3.	- 6, 12, 24	1.			-
70	""30%.		2.	1444444.	IV - . 1998 2 ,	- 29632. ,,
	,	" " _		, , ".1988. 46.	· ·, · ·, //"	· ., - · -
,		- - 6 10÷15 .	3.	· ·, ,		-,
	,	,	4.	. , 1995- 5	6.	-
	(. 4),	- 2-2,5		IV		. " -
				, 1998 81-	83.	

-

624.93.21

•, • •

	Eurocodeó2 [1],	[2ó4], -	 6 , ; 6 - (-) «σύε».
1. «యకా ()	- *	:	: $\{F\} = [R\{F\}, S] \times \{U(\{F\}, S)\} $ (1) : $\{F\} = \{N_{Sd,z}, M_{Sd,x}, M_{Sd,y}\} $ 6 - , , -
3.	().	; $\{U(\{F\}, S)\} = \{\varepsilon_z, k_x, k_y\}$ ó -
<i>٤</i> , . 4.		\mathcal{E}_{cs} -	, - {F} - S; [R{F},S] ó -
		-	$\{F\},$, S -
ó	: ;	- , -	$<\!\!<\!\!\sigma$ όε»; ε ₂ k _x , k _y
, ().	(). , .	, . , .	, 267.

	1	1	Δ	5
\mathcal{E}_{s} -	$\varepsilon_{\rm s} = 10.0 \ \ddot{Y}$	$\varepsilon_{\rm s} = 10.0 \ \ddot{Y}$	$\mathcal{E}_{sy} \leq \mathcal{E}_{s} < 10.0 \ \ddot{Y}$	$\mathcal{E}_{s} < \mathcal{E}_{sy}$
£ -	$\varepsilon_c < 2.0 \ \ddot{Y}$	$2.0 \ \ddot{Y} \leq \varepsilon < 2.5 \ \ddot{Y}$	$\varepsilon_c = 3.5 \ \ddot{Y}$	$\varepsilon_c = 3.5 \ \ddot{Y}$
	ξ< 0.167	0.167 ≤ ξ < 0.259	$0.259 \leq \xi < \xi_{lim}$	$\xi \ge \xi_{lim}$

_	,			
-		F_{c} $F_{c} = \omega b d \cdot \alpha f_{cd}$	$oldsymbol{z} = oldsymbol{\xi} \cdot oldsymbol{d}$	$M_{Rd} = \mu b d^2 \cdot c f_{cd}$
la	$\mathbf{F}_{\mathbf{a},\mathbf{b},\mathbf{b}}$	$\left[\frac{5\xi^2(1-\frac{8}{3}\xi)}{(1-\xi)^2}\right]bd\cdot cf_{cd}$	$\left(\frac{3\xi^2 - 12\xi + 4}{4\left(1 - \frac{8}{3}\xi\right)}\right) \cdot d$	$\left(\frac{1,25\xi^2(3\xi^2-12\xi+4)}{(1-\xi)^2}\right)bd^2\cdot \alpha f_{\alpha}$
1	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$\left(\frac{16\xi-1}{15}\right)bd\cdot cf_{cd}$	$\left(1 - \frac{8,55\xi^2 - 1,1\xi + 0,05}{16\xi - 1}\right) \cdot d$	$(1,14\xi-0,57\xi^2-0,07)bd^2 \cdot \alpha f_{cd}$
2	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	$\left(\frac{17}{21}\xi\right)bd\cdot af_{cd}$	$\left(I - \frac{99}{238}\zeta\right) \cdot d$	$\left(\frac{17}{21}\xi-\frac{33}{98}\xi^2\right)bd^2\cdot cf_{cd}$
ó	. 1 , . 1,	2,23, - f _{yd} (-)	ξlim 2 3 ($ξ_{lim} = 0.0$	0.00000000000000000000000000000000000
3	. ,	, - - 3		ζ(1).
d ó	$\xi = \frac{x}{d} \le \xi_{lim}$		$F_{c} = 0$	$\omega(\xi) \boldsymbol{b} \boldsymbol{d} \cdot \alpha \boldsymbol{f}_{cd}; \qquad (6)$

 b_w , 2.

)

 b_w

;)

1;)

2.

ó

. 3.

;)

)

;)

-	8		ω _T				$\beta = h_f / d$		
	Ę	$\beta = 0.08$	$\beta = 0,10$	$\beta = 0,12$	$\beta = 0.14$	$\beta = 0,16$	$\beta = 0.18$	$\beta = 0,2$	
	0,08	ó	ó	ó	ó	ó	ó	ó	
	0,09	0,037	ó	ó	ó	ó	ó	ó	
	0,10	0,043	ó	ó	ó	ó	ó	ó	
	0,11	0,049	0,054	ó	ó	ó	ó	Ó	
1a	0,12	0,055	0,061	Ó	ó	ó	ó	Ó	
	0,13	0,060	0,068	0,073	ó	ó	ó	Ó	
	0,14	0,065	0,074	0,081	ó	ó	ó	Ó	
	0,15	0,068	0,080	0,088	0,093	ó	ó	ó	
	0,16	0,072	0,085	0,095	0,102	ó	ó	ó	
	0,167	0,073	0,088	0,099	0,107	0,111	ó	ó	
	0,17	0,075	0,090	0,101	0,110	0,115	ó	ó	
	0,18	0,076	0,093	0,106	0,116	0,123	ó	ó	
	0,19	0,078	0,095	0,110	0,122	0,131	0,136	ó	
	0,20	0,079	0,098	0,114	0,127	0,138	0,145	ó	
1b	0,21	0,079	0,098	0,116	0,131	0,143	0,152	0,157	
	0,22	0,080	0,099	0,118	0,134	0,148	0,159	0,166	
	0,23	0,080	0,100	0,119	0,137	0,152	0,165	0,174	
	0,24	0,080	0,100	0,119	0,138	0,154	0,168	0,179	
	0,25	ó	0,100	0,120	0,139	0,157	0,172	0,185	
	0,26	ó	ó	0,120	0,139	0,158	0,175	0,189	
	0,27	ó	ó	0,120	0,140	0,159	0,177	0,192	
	0,28	ó	ó	0,120	0,140	0,160	0,178	0,194	
	0,29	ó	ó	ó	0,140	0,160	0,178	0,195	
	0,30	ó	ó	ó	0,140	0,160	0,179	0,196	
	0,31	ó	ó	ó	0,140	0,160	0,179	0,197	
	0,32	ó	ó	ó	0,140	0,160	0,179	0,197	
	0,33	ó	ó	ó	0,140	0,160	0,179	0,198	
	0,34	ó	ó	ó	ó	0,160	0,179	0,198	
	0,35	ó	ó	ó	ó	0,160	0,180	0,199	
2	0,36	ó	ó	ó	ó	0,160	0,180	0,199	
	0,37	ó	ó	ó	ó	0,160	0,180	0,200	
	0,38	Ó	ó	ó	ó	0,160	0,180	0,200	
	0,39	ó	Ó	ó	ó	ó	0,180	0,200	
	0,40	Ó	ó	ó	ó	ó	0,180	0,200	
	0,41	ó	Ó	ó	ó	ó	0,180	0,200	
	0,42	Ó	ó	ó	ó	ó	0,180	0,200	
	0,43	Ó	ó	ó	ó	Ó	Ó	0,200	
	0,44	Ó	ó	ó	ó	ó	Ó	0,200	
	0,45	ó	ó	ó	ó	ó	Ó	0,200	
	0,46	Ó	ó	Ó	Ó	Ó	ó	0,200	
	0,47	ó	Ó	Ó	Ó	ó	Ó	0,200	

 $\frac{1}{4} \int_{0}^{ay} \int_{0} \left[\varepsilon_{cy} - \frac{\varepsilon_{cy}}{4} \right] dy \left[(13) \right]$ $I_{c1} = \bigcup_{w \text{ eff}} U_{w}$ $d \begin{bmatrix} \mathbf{J} & \mathbf{C} \\ \mathbf{0} \end{bmatrix} = \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{y}$ εó , 1,1 2.

-	د			μ_T		$\beta = I$	$\beta = h_f / d$	
	ς -	$\beta = 0,08$	$\beta = 0,10$	$\beta = 0,12$	$\beta = 0.14$	$\beta = 0.16$	$\beta = 0,18$	$\beta = 0,20$
	0,08	ó	ó	ó	ó	ó	ó	ó
	0,09	0,036	ó	ó	ó	ó	ó	ó
	0,10	0,042	ó	ó	ó	ó	ó	ó
	0,11	0,048	0,052	ó	ó	ó	ó	ó
1a	0,12	0,053	0,059	ó	ó	ó	ó	ó
Iu	0,13	0,058	0,066	0,070	Ó	Ó	Ó	ó
	0,14	0,062	0,071	0,077	Ó	Ó	Ó	ó
	0,15	0,066	0,076	0,084	0,088	ó	ó	ó
	0,16	0,069	0,081	0,090	0,096	ó	ó	ó
	0,167	0,071	0,084	0,094	0,101	ó	ó	ó
	0,17	0,072	0,085	0,095	0,103	0,107	ó	ó
	0,18	0,074	0,089	0,100	0,109	0,115	Ó	Ó
	0,19	0,075	0,091	0,104	0,114	0,122	0,126	Ó
	0,20	0,076	0,092	0,107	0,118	0,127	0,133	ó
1b	0,21	0,076	0,093	0,109	0,122	0,132	0,140	0,144
	0,22	0,077	0,094	0,111	0,125	0,137	0,145	0,151
	0,23	0,077	0,095	0,112	0,127	0,140	0,150	0,158
	0,24	0,077	0,095	0,113	0,129	0,143	0,155	0,163
	0,25	ó	0,095	0,113	0,129	0,144	0,157	0,167
	0,26	ó	Ó	0,113	0,130	0,146	0,159	0,171
	0,27	ó	Ó	0,113	0,130	0,146	0,161	0,173
	0,28	Ó	Ó	0,113	0,130	0,147	0,162	0,174
	0,29	Ó	Ó	Ó	0,130	0,147	0,162	0,175
	0,30	ó	Ó	ó	0,130	0,147	0,163	0,176
	0,31	ó	Ó	ó	0,130	0,147	0,163	0,177
	0,32	Ó	ó	Ó	0,130	0,147	0,163	0,178
	0,33	Ó	Ó	ó	0,130	0,147	0,163	0,178
	0,34	Ó	Ó	Ó	Ó	0,147	0,163	0,178
	0,35	Ó	Ó	Ó	Ó	0,147	0,163	0,179
2	0,36	Ó	Ó	Ó	Ó	0,147	0,163	0,179
	0,37	0	Ó	Ò	Ó	0,147	0,163	0,179
	0,38	0	0	0	0	0,14/	0,103	0,180
	0,39	0	0	0	0	0	0,103	0,180
	0,40	<i>0</i>	<i>0</i>	Ú Á	Ú Á	<i>0</i>	0,105	0,100
	0,41	<i>0</i>	Ú	Ú ć	Ú Ó	Ú ć	0,105	0,100
	0.42	<u> </u>	ó	ó	ó	ó	 ó	0,100
	0,43	<i>0</i>	ú	Ú Ó	Ú Á	Ú Ó	Ú Á	0,100
	0.44	<u></u>	ó	ó	ó	ó	ó	0,100
	0.46	ó	ó	ó	ó	ó	ó	0,100
	0.47	<u> </u>	ó	ó	ó	ó	ó	0,180
	0,77		U	U		<u> </u>	ر ۱	0,100
. 5)	$F_{c2} = a$	$\begin{array}{c} \mathbf{F}_{cl} \\ \vdots \\ \mathcal{D} \mathbf{d}(\mathbf{b}_{eff} \mathbf{o} \mathbf{b}_w) \alpha \end{array}$	f _{cd}	(14) F_{c1}	$= \left\{ \left \frac{5\xi^2 \left(1 - \frac{8}{3}\xi^2\right)}{\left(1 - \xi^2\right)^2} \right \right\}$	$\left - \left[\frac{5(\xi - \beta)^2}{1 - \xi} \right] \right $	$-\frac{25(\xi-\beta)^3}{3(1-\xi)^2}\bigg]$	$l(b_{eff} - b_w) a f$

 $Z_{c1,A}$

(21)

-

3

ω

Εf

ó

 F_{c1} ,

 $(0.167 < \xi \le 0.259)$ $F_{i,j} = \left\{ \left\lceil \frac{16\xi - 1}{2} \right\rceil - \left\lceil \frac{5(\xi - \beta)^2}{2} - \frac{25(\xi - \beta)^3}{2} \right\rceil \right\}_{d(b)}$

),

$$= \left\{ \left[\frac{16\xi - 1}{15} \right] - \left[\frac{5(\xi - \beta)^2}{1 - \xi} - \frac{25(\xi - \beta)^3}{3(1 - \xi)^2} \right] \right\} d(b_{eff} - b_w) \alpha f_{cd} (16)$$

$$= 2(\xi > 0.259) :$$

$$F_{c1} = \left\{ \frac{17}{21}\xi - 3.5 \left[\frac{(\xi - \beta)^2}{2\xi} - \frac{3.5(\xi - \beta)^3}{12\xi^2} \right] \right\} d(b_{eff} - b_w) \alpha f_{cd} (17)$$

).

«1» (

$$M_{Rd,I} = \mu \ d^{2}(b_{eff} \circ b_{w}) \alpha f_{cd} \qquad (18)$$

$$\mu \circ \qquad (18)$$

$$\mu \qquad (18)$$

$$I , I \qquad 2.$$

$$\mu \qquad (18)$$

$$I = 1,25\xi^{2} \frac{3\xi^{2} - I2\xi + 4}{(I - \xi)^{2}} - 5 \frac{(\xi - \beta)^{2}}{(I - \xi)^{2}} \Big[(I - \xi)^{2} - (I - \xi)(\xi - \beta) - \frac{5}{4}(\xi - \beta)^{2} \Big]$$

$$(19)$$

$$\mu_{r} = \left[-0.57\xi^{2} + 1.14\xi - 0.07\right] - 5\frac{(\xi - \beta)^{2}}{(I - \xi)^{2}} \left[(I - \xi)^{2} - (I - \xi)(\xi - \beta) - \frac{5}{4}(\xi - \beta)^{2}\right]$$
(20)

2.

μ

μ ξ

 $M_{Rd} = [\mu_T(b_{eff} \circ b_w) + \mu \cdot b_w]d^2 \cdot \alpha f_{cd}$

 $F_c \circ F_{s1} = 0$

 A_{s1} .

:

$$f_{sI} = A_{sI} f_{yd}, \qquad (14) \quad (6), \qquad , \qquad F_{sI} = A_{sI} f_{yd}, \qquad \xi = 0$$

$$\omega(\xi) + \omega_T \left(\xi, \beta \left(\frac{b_{eff}}{b_w} - I\right) - \frac{A_{sI} \cdot f_{yd}}{b_w \cdot d \cdot \alpha \cdot f_{cd}} = 0 \rightarrow \xi \quad (22)$$

4 .
$$\xi \leq eta,$$

$$\mu$$
 , $b_{eff} \times h$. , ξ (9) (),

,
$$\varepsilon_f \ge 2.0 \ \ddot{Y}$$

, $\omega \quad \mu$, -
, $3 \quad 4$.

$$F_{cI} = \beta(b_{eff} \circ b_w) d \cdot \alpha f_{cd} \qquad (23)$$

$$\mu$$
 (. 4)

 $\mu = \beta (1 \circ 0.5\beta)$

- 1. ENV 1992ó1ó1:1992. Eurocode 2. Projektowanie konstrukcji z betonu. Cz 1. Regu€ ogólne i regu€ dla budynków. Wyd. ITB, Warszawa, 1992.
- 2. PNóBó03264:1999. Konstrukcje betonowe, elbetowe i spr one. Obliczenia statyczne i projektowanie. Maszynopis, Warszawa, stycze, 1999.
- 3. 5.03.01698.

- 4. DIN 104561. Deutche Norm. Tragwerke aus Beton, Stahlbeton und Spannbeton. Teil 1: Bemessung und Konstruktion. (Entwurf). Berlin. 1997.
- 5. Proceedings of International Conference on: Engineering Problems of Modern Concrete and Reinforced Concrete. Mi sk, BiaGru , listipad, 1997.
- 6. Wydania Konferencji Naukowo-Technicznej: šPodstawy projektowania konstrukcji z betonu w uj ciu normy PNóBó 03264:1998 ó w wietle Eurocodu 2ö. Pu€wy, 1998.
- 7. / apko A.: Mechanics and design of reinforced concrete members in the light of Eurocode 2. Wydawnictwo Universidade da Beira Interior. Covilha. 1996.
- 8. / apko A.: Algorytmy projektowania elbetowych przekrojów zginanych w za€ rniu paraboliczno-prostok tnego wykresu σόε dla betonu. In ynieria i Budownictwo. Z. Nr 3, 1998.
- 9. Kordina K.: Bemessunghilfsmittel zu Eurocode 2. Teil 1 (DIN ENV 1992). Heft 425 Deutcher Ausschuss fur Stahlbeton, Beuth Verlag GmbH, Berlin 1992