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Abstract. The continuous culture of micro-organisms using the chemostat is an important
research technique in microbiology and population biology. We consider here chemostat model
for the single-nutrient competition. For the model we find the solution when the parametric
relation a1 = a2 is observed. It is to be proved that integration of the original system of the
differential equations of the third order is reduced to integration of the differential equation of
the first order. By performing a numeric integration we can find the solution to the model
considered. The program module is built which allows visualizing the solutions for the concrete
values of parameters changing in the set intervals.

1 Introduction. Setting the problem

Competition modeling is one of the more challenging aspects of mathematical biology. The one of
the simplest form of competition, when two or more populations compete for the same resource
such as a common food supply. This is called exploitative competition. A simple example of this
type of competition occurs in a laboratory device, called a chemostat. The chemostat models
an open system, and although the exact assumptions of the model may be limited to laboratory
environments, it can serve as a paradigm for more complicated naturally occurring open systems.
The input and removal of nutrients to and from the chemostat represent the continuous turnover of
nutrients in nature. The outflow of organisms is formally equivalent to nonspecific death, predation,
or emigration, which always occur in nature.

An important advance of this model over classical Lotka-Volterra formulations of competition
is that the limiting resource for which competition is being expressed is represented explicitly by
an equation in the system. In the Lotka-Volterra model, only the numbers of competing organisms
are represented. The result of leaving out an equation for the resource is that the outcome of
competition cannot be predicted before the organisms are actually grown together. In the present
formulation, the outcome of competition can be predicted before the organisms compete, from
measurements of growth parameters of the organisms when grown alone on the resource.

The present analysis concerns the behavior of a predator-prey system consisting of two predator
species, x1 and x2, and a single prey species, S. We assume that the predator species compete
purely exploitatively, with no interference between rivals. Both species have access to the prey and
compete only by lowering the population of shared prey. The model is given by the system of the
differential equation. The model is given by the system of the differential equations

s′(t) = D − s(t)− m1x1(t)s(t)

a1 + s(t)
− m2x2(t)s(t)

a2 + s(t)
,

x′
1(t) =

(
m1s(t)

a1 + s(t)
−D

)
x1(t),

x′
2(t) =

(
m2s(t)

a2 + s(t)
−D

)
x2(t),

(1)
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where xi(t) (i=1 or 2) is the number of the ith predator at time t, s(t) is the number of the prey
at time t, mi is the maximum growth rate of the ith predator, D is the death rate for the ith

predator, ai is the half-saturation constant for the ith predator, which is the prey density at which
the functional response of the predator is half maximal. We analyze the behavior of solutions of
this system of ordinary differential equations in order to answer the biological question: under what
conditions will neither, one, or both species of predator survive? If only one predator survives,
we also seek to determine the limiting behavior of the surviving predator and its prey. The
mathematical results, the biological background, etc. for our system (1), may be found in Smith,
Waltman [1] and Hsu, Waltman [2].

2 Statement of results

A qualitative theory and numerical methods for solving differential equations were used to study
the properties of solutions of differential equations (1) in [1]. Let us consider the principal results
obtained for the system (1) in [1], [3].

Definition. For m > 1, λ = a
m−1 ; λ is called the break-even concentration.

THEOREM 1[1]. Suppose that mi > 1, (i = 1, 2) and that 0 < λ1 < λ2 < 1.
Then any solution of the system (1) with xi(0) > 0 satisfies

lim
t→∞

S(t) = λ1, lim
t→∞

x1(t) = 1− λ1, lim
t→∞

x2(t) = 0.

Thus the Theorem 1 is an example of the principle of competitive exclusion: only one competitor
can survive on a single resource while it survives competitor whose break-even concentration is
lower. If λ1 = λ2 then coexistence is possible [1]. This exactly balanced parameters - and cannot
be expected to be found in nature.

Problem: To find a solution of the system (1) by interpolating functions for a2 = a1 using a
numerical integration.

Solving of the problem. Using the Mathematica system we obtain two functions s, x1 in
the analytical form as a functions of variables t and x2. After this we find the function x2 in the
form of the interpolating function.

Without loss generality we set [1] D = 1. We also set a2 = a1, m2 = µ m1, where µ is a
constant. Then system (1) may be rewritten in the form

s′(t) =
a1 − s(t) (a1 +m1 (µx2(t) + x1(t))− 1)− s(t)2

a1 + s(t)
,

x′
1(t) = x1(t)

(
m1s(t)

a1 + s(t)
− 1

)
,

x′
2(t) = x2(t)

(
µm1s(t)

a1 + s(t)
− 1

)
.

(2)

We write system (2) in the codes the Mathematica system as

f [u , i ] :=
miu

ai + u
;

ex1 = 1− s[t]− f [s[t], 1]x1[t]− f [s[t], 2]x2[t];

ex2 = x1[t](f [s[t], 1]− 1);

ex3 = x2[t](f [s[t], 2]− 1);

ρ1 = {a2 → a1, m2 → µ m1};

sys = {s′[t] == ex1, x′
1[t] == ex2, x′

2[t] == ex3}/.ρ1//Simplify;

We eliminate function s(t) from the second and the third equations of the system sys
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eq0 = Eliminate[{sys[[2]], sys[[3]]}, s[t]]//FullSimplify

x1(t) (x
′
2(t)− (µ− 1)x2(t)) = µx2(t)x

′
1(t). (3)

We integrate the equation (3) and obtain function x2(t) in the form (4)

sol1 = Simplify[Solve[
∫ eq0[[1]]− eq0[[2]]

x1[t]x2[t]
dt == 0,

x2[t]], x1[t] > 0&& x2[t] > 0&& µ > 0&& t ∈ Reals][[1]]{
x2(t) → e(µ−1)tx1(t)

µ
}
. (4)

Summing up three equations of the system (2) we obtain separable differential equation in
relation to function u.

sol2 = DSolve[u′[t] == 1− u[t], u[t], t]/.u[t] → s[t] + x1[t] + x2[t]//F latten;

We integrate this equation and find function s(t) in the form (5)

sol3 = Solve[sol2/.Rule → Equal, s[t]]/.sol1//Simplify//F latten{
s(t) → e−t

(
c1 − eµtx1(t)

µ − etx1(t) + et
)}

, (5)

where c1 is an arbitrary constant. Now we can find a differential equation of the first order which
defines the function x1(t)

eq3 = sys[[2]]/.sol1/.D[sol3, t]/.sol3//Simplify

x′
1(t) = x1(t)

(
−m1 (−c1 + eµtx1(t)

µ + etx1(t)− et)

a1et + c1 − eµtx1(t)µ − etx1(t) + et
− 1

)
. (6)

Thus we have the next theorem.
THEOREM 2. Suppose that a1, m1, µ are positive numbers and m1 ̸= 1. Then the solution

of the system (2) satisfies equalities (4)-(6). Namely, functions x2(t), s(t) have the form

x2(t) = e(µ−1)tx1(t)
µ,

s(t) = e−t
(
c1 − eµtx1(t)

µ − etx1(t) + et
)
,

where c1 is an arbitrary constant and function x2(t) satisfies the first order differential equation
(6).

Remark 1. Solution of the equation (6) with the known values of parameters a1, m1, µ we
obtain with the command NDSolve [4]. We can show this by using the following Module.

3 Module for Examples

We make Module which allows visualizing the solutions of the system (2) for the known values of
parameters a1, m1, µ, initial condition for function x1 while the values of parameters are being
selected from the intervals determined by the biological conditions of the problem. We set that
the arbitrary constant c1 is equal to one.

Manipulate[Module[{sol, x1, t}, sol = First[NDSolve[{

x1′[t] ==
x1[t](Eta1 + (−1 +m1)(1− Et + Etx1[t] + Etµx1[t]µ))

1− Et − Eta1 + Etx1[t] + Etµx1[t]µ
, x1[0] == α}, x1, {t, 0, tt},

MaxSteps → 106]]; If [plot, P lot[1− E−t − x1[t]− E−t+tµx1[t]µ/.sol, {t, 0, tt}, AxesOrigin →

{0, 0}, P lotStyle → {Thick}, AxesLabel → {Style[time, 18], Style[s, 18]}, AxesStyle →

{{Thickness[0.006], Directive[14]}, {Thickness[0.006], Directive[14]}}], P lot[x1[t]/.sol, {t, 0, tt},
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AxesOrigin → {0, 0}, P lotStyle → {Thick}, AxesLabel → {Style[time, 18], Style[x1, 18]},

AxesStyle → {{Thickness[0.006], Directive[Black, 14]}, {Thickness[0.006], Directive[14]}}],

P lot[E−t+tµx1[t]µ/.sol, {t, 0, tt}, AxesOrigin → {0, 0}, P lotStyle → {Thick},

AxesLabel → {Style[time, 18], Style[x2, 18]}, AxesStyle → {{Thickness[0.006], Directive[14]},

{Thickness[0.006], Directive[14]}}]]], {plot, {True → ”nutrient ” s, False →

”predator ” x1, Indeterminate → ”predator ” x2}}, {{µ, 0.8, ”Parameter µ”}, 0.5, 2.5},

{{a1, 0.01, ”Parameter a1”}, .001, .9}, {{m1, 2, ”Parameter m1”}, 1.5, 10}, {{α, 10−3,

”the initial concentration of the x1”}, 10−6, 10}, {{tt, 2, ”time”}, 10−2, 102}]

Remark 2. Thus for a given parameters a1 = a2 = 0.01, m1 = 2, m2 = 1.99, we get that break-
even concentration of predators x1 and x2 has the following values λ1 = 0.01 and λ2 = 0.010101,
which are almost equal. For this values of the parameters we can see that short period of the
coexistence occurs between competing predators. Hence, results got according to the Module and
Theorem 1 coinside. This occurrence is displayed on the graphs of functions x1 and x2 (Fig. 2, 3).

plot nutrient s predator x1 predator x2
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time
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s

Figure 1: Graphic of the function s(t) for µ = 0.995, a1 = 0.01, m1 = 2, x1(0) = 10−3, t = 30.

о

о

133



plot nutrient s predator x1 predator x2
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Figure 2: Graphic of the function x1(t) for µ = 0.995, a1 = 0.01, m1 = 2, x1(0) = 10−3, t = 30.

plot nutrient s predator x1 predator x2
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Figure 3: Graphic of the function x2(t) for µ = 0.995, a1 = 0.01, m1 = 2, x1(0) = 10−3, t = 30.
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