МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра высшей математики

Определенный интеграл и его приложения. Дифференциальные уравнения.

Методические указания и варианты заданий по курсу «Высшая математика» для студентов технических специальностей

УДК 517.9 ББК 22.11

В соответствии с действующей программой для студентов первого курса технических специальностей подобраны индивидуальные задания к двум аттестационным работам, даны решения типовых вариантов к каждой из них перечислены основные вопросы и задачи второго семестра.

Составители: Т.А. Тузик, доцент

С.Ф. Макарук, ассистент

Рецензент: Зав. кафедрой

Брестского государственного университета

им А.С.Пушкина

канд. физ.-мат. наук, доцент Савчук В.Ф.

Учреждение образования

^{© «}Брестский государственный технический университет». 2002

Вопросы учебной программы. 2-ой семестр.

- 1. Определение и свойства неопределенного интеграла. Таблица неопределенных интегралов.
- 2. Замена переменной в неопределенном интеграле (способ подстановки).
- 3. Интегрирование по частям в неопределенном интеграле.
- 4. Интегралы от некоторых функций, содержащих квадратный трехчлен.
- 5. Интегрирование рациональных дробей. Метод неопределенных коэффициентов.
- 6. Интегралы от иррациональных функций.
- 7. Интегрирование тригонометрических функций.
- 8. Интегрирование иррациональных функций с помощью тригонометрических подстановок. Понятие о «неберущихся» интегралах.
- 9. Задачи, приводящие к понятию определенного интеграла. Определение его как предел интегральной суммы.
- 10. Основные свойства определенного интеграла (7 свойств).
- 11. Определенный интеграл с переменным пределом. Формула Ньютона-Лейбница.
- 12.Замена переменных и интегрирование по частям в определенном интеграле. Интегралы от периодических, четных и нечетных функций.
- 13. Несобственные интегралы двух типов.
- 14. Геометрические приложения определенного интеграла. Вычисление площади в декартовых и полярных координатах, в параметрическом виде.
- 15. Вычисление длины дуги кривой в декартовых координатах, в параметрическом виде и в полярных координатах.
- 16. Вычисление объемов тел по площадям параллельных сечений. Объем тел вращения.
- 17. Статические моменты и координаты центра масс дуги и плоской фигуры.
- 18. Функции нескольких переменных. Основные понятия.
- 19. Определение и вычисление частных производных для функций двух переменных и их геометрический смысл. Уравнения касательной плоскости и нормали.
- 20.Полный дифференциал для функции двух переменных, его определение, вычисление и применение в приближенных вычислениях.
- 21. Частные производные и дифференциалы высших порядков.
- 22. Производная сложной функции нескольких переменных.
- 23. Производная по направлению и ее свойства.
- 24. Градиент и его свойства.
- 25. Необходимые и достаточные условия существования локального экстремума функции нескольких переменных.
- 26. Условный экстремум. Метод множителей Лагранжа. Метод наименьших квадратов.

- 27. Дифференциальные уравнения (ДУ) первого порядка. Понятие общего, частного, особого решений.
- 28. Теорема о существовании и единственности решения ДУ 1-го порядка.
- 29. ДУ с разделяющимися переменными. Однородные ДУ 1-го порядка.
- 30. Линейные ДУ 1-го порядка. Уравнение Бернулли.
- 31. ДУ высших порядков. Теорема о существовании и единственности решения. Задача Коши и ее геометрический смысл в случае уравнения 2-го порядка.
- 32. Уравнения вида y'' = f(x); y'' = f(x, y); y'' = f(y, y').
- 33. Общие свойства линейных однородных ДУ. Понятие о линейной зависимости функции. Определитель Вронского и его свойства.
- 34. Структура общего решения однородного уравнения 2-го и более высоких порядков.
- 35. Линейные однородные дифференциальные уравнения второго и более высоких порядков с постоянными коэффициентами.
- 36. Линейные однородные дифференциальные уравнения второго и более высоких порядков. Структура общего решения линейного неоднородного уравнения.
- 37. Неоднородные дифференциальные уравнения второго и более высоких порядков с постоянными коэффициентами со специальной правой частью.
- 38. Метод Лагранжа вариации произвольных постоянных.
- 39. Системы обычных ДУ. Метод исключения неизвестных.
- 40. Определение и простейшие свойства двойных интегралов.
- 41. Вычисление двойных интегралов в декартовых координатах.
- 42.Замена переменных в двойных интегралах (полярные координаты, обобщенные полярные координаты, общий случай).
- 43. Вычисление площадей плоских фигур и объемов тел с помощью двойных интегралов.
- 44. Тройной интеграл, его определение, свойства, вычисление в декартовых координатах.
- 45.Вычисление тройного интеграла в цилиндрических и сферических координатах.
- 46. Задача о массе материальной кривой. Криволинейный интеграл 1-го типа, его вычисление.
- 47. Задача о работе силового поля. Криволинейный интеграл 2-го типа, его вычисление.
- 48. Формула Грина. Условие независимости криволинейного интеграла от пути интегрирования.
- 49. Поверхностные интегралы 1-го и 2-го типов, их вычисление. Формулы Стокса и Остроградского.
- 50. Понятие о потоке, дивергенции, циркуляции и роторе векторного поля.

Перечень основных задач по темам второго семестра. Найти неопределенные интегралы:

1.
$$\int \frac{dx}{\sin^2 5x};$$
 2.
$$\int \frac{dx}{5-2x};$$
 3.
$$\int tg2xdx;$$
 4.
$$\int tgx \cdot \frac{dx}{\cos^2 x};$$
 5.
$$\int \frac{\cos x \, dx}{\sin^2 x};$$

6.
$$\int \frac{\arcsin x \, dx}{\sqrt{1-x^2}}$$
; 7. $\int \frac{dx}{x \ln x}$; 8. $\int \frac{e^x \, dx}{4+e^{2x}}$; 9. $\int \frac{x^2 \, dx}{16-x^6}$; 10. $\int \frac{dx}{\sqrt{3-5x}}$;

11.
$$\int \frac{6x-7}{3x^2-12x+15} dx$$
; 12. $\int x \cos 2x dx$; 13. $\int \arcsin x dx$; 14. $\int x^3 \ln x dx$;

15.
$$\int (x+2)e^{x^2+4x}dx$$
; 16. $\int \frac{dx}{(x-1)^2(x+2)}$; 17. $\int \frac{3x-7}{x^3+x^2+4x+4}dx$;

18.
$$\int \frac{\sqrt{x}}{\sqrt[4]{x^3} + 1} dx$$
; 19. $\int \frac{\sqrt{x^3} - \sqrt[3]{x}}{6 \cdot \sqrt[4]{x}} dx$; 20. $\int \cos^4 x \cdot \sin^3 x \, dx$; 21. $\int \cos^2 4x \, dx$;

22.
$$\int \frac{dx}{8 - 4\sin x + 7\cos x}$$
; 23. $\int \frac{\cos x \, dx}{\sqrt[3]{\sin^2 x}}$; 24. $\int \frac{1 + tgx}{1 - tgx} \, dx$; 25. $\int \frac{\sin^2 x}{1 + \cos^2 x} \, dx$.

Вычислить определенные интегралы:

26.
$$\int_{-2}^{2} \left(\frac{25}{32} x^{2} + \frac{13}{8} x + \frac{1}{8} \right) dx; \quad 27. \int_{-\pi/4}^{\pi/4} \cos^{3} \varphi \, d\varphi; \quad 28. \int_{0}^{\pi/2} \sin^{4} x dx; \quad 29. \int_{0}^{1} x e^{2x} dx;$$

30.
$$\int_{0}^{\frac{\pi}{2}} \varphi \cdot \sin 2\varphi \, d\varphi; \quad 31. \int_{0}^{1} arc \cos x \, dx; \quad 32. \int_{1}^{2} \frac{dx}{\sqrt{3 + 2x - x^{2}}}; \quad 33. \int_{2}^{3} \frac{dx}{x^{2} + 4x};$$

34.
$$\int_{0}^{3} \frac{dx}{\sqrt{x+1}+7}$$
; 35.
$$\int_{0}^{2\pi} \sin x \cdot \sin \frac{x}{2} dx$$
.

Вычислить площадь фигуры, ограниченной линиями:

36.
$$y = 8x - x^2 - 12$$
 u осью Ox ; 37. $y = x^2 + 1$ *u* $x + y - 3 = 0$;

38.
$$r^2 = 4\sin 2\varphi$$
; 39. $x = 2\cos^3 t$; $y = 2\sin^3 t$.

Вычислить длину дуги кривой:

40.
$$y = \frac{1}{3}x\sqrt{x} - \sqrt{x}$$
 между точками пересечения линии с осью Ox ;

41.
$$x = 2(\cos t + t \sin t)$$
; $y = 2(\sin t - t \cos t)$, $0 \le t \le \frac{\pi}{2}$; 42. $t = 3(1 - \cos \phi)$.

Исследовать несобственные интегралы на сходимость:

43.
$$\int_{0}^{\infty} \frac{dx}{(x+1)^{6}};$$
 44.
$$\int_{-\infty}^{0} \frac{dx}{1+x^{2}};$$
 45.
$$\int_{-\infty}^{0} e^{x} dx;$$
 46.
$$\int_{-\infty}^{\infty} x e^{-x^{2}} dx;$$
 47.
$$\int_{0}^{4} \frac{dx}{\sqrt{x}};$$

48.
$$\int_{0}^{0.5} \frac{dx}{x \ln^2 x}$$
; 49. $\int_{0}^{0.4} \frac{dx}{\sqrt{2-5x}}$; 50. $\int_{0}^{1} \frac{dx}{x^2-1}$.

Найти частные производные указанных порядков от функций двух переменных:

51.
$$z = x \cdot e^{-y}$$
, $z''_{xy} = ?$ 52. $z = \frac{x - y}{x + y}$, z''_{xx} , z''_{xy} , $z''_{yy} = ?$

53.
$$z = \cos(x - at) + e^{x+at}$$
, z''_{xx} , $z''_{tt} = ?$

Найти экстремум функции двух переменных:

54.
$$z = x^2 - 6xy + 10y^2 - 2x + 6y + 7;$$
 55. $z = x^4 + y^4 - 2x^2 + 4xy - 2y^2;$

56.
$$z = x^3 + 3xy^2 - 51x - 24y$$
.

Найти условный экстремум функции:

57.
$$z = x^2 - y^2$$
, $ecnu$ $x + 2y - 6 = 0$; 58. $z = 8 - 2x - 4y$, $ecnu$ $x^2 + 2y^2 = 12$;

59.
$$z = x^2 + y^2 + xy - 5x - 4y + 10$$
, если $x + y = 4$.

60. Дана функция $z = 4x^3 + 2x^2y + 3xy^2 - 8xy + 2y + 3$. Найти градиент функции z в точке A(-1;3) и производную функции z в точке A в направлении вектора $\vec{a} = (12;5)$.

Найти общее или частное (если заданы начальные условия) решения дифференциальных уравнений:

61.
$$6(x^2y + y)dy - \sqrt{4 + y^2}dx = 0$$
; 62. $x^2y' - 2xy = 1$, $y(1) = 5$;

63.
$$ydx - (x + \sqrt{x^2 + y^2})dy = 0;$$
 64. $xy' + y = y^2 \ln x;$

65.
$$xy' - 4y = 2x^2 - 3x$$
.

Проинтегрировать дифференциальные уравнения второго порядка:

66.
$$y'' = 3x^2 - 4x + 1$$
; 67. $y'' = \frac{6}{v^3}$; 68. $(1+x)y'' + y' = 0$;

69.
$$y \cdot y'' = y'^2 + 1$$
; 70. $y'' - 4y' = 0$; 71. $y'' - 4y' + 4y = 0$;

72.
$$y'' - 4y' + 3y = 0$$
; 73. $y'' - 4y' + 29y = 0$.

Найти общее решение ЛНДУ 2-го порядка с постоянными коэффициентами:

74.
$$y'' - 6y' + 8y = 14e^{2x}$$
; 75. $y'' - 4y' + 3y = 20\cos 2x + 27\sin 2x$; 76. $y'' + y = 14\cos x + 6\sin x$; 77. $y'' + 2y' + y = x^2e^{2x}$.

Вычислить двойной интеграл по области D, ограниченной линиями:

78.
$$\iint_D \frac{dxdy}{(x+y)^2}$$
, $e \partial e \ D: x = 3$, $x = 4$, $y = 1$, $y = 2$.

79.
$$\iint_{D} \frac{x^2}{y^2} dx dy$$
, $\partial e D: x = 2$, $y = x$, $y = \frac{1}{x}$.

80.
$$\iint_D (x^2 + y^2) dx dy$$
, $\partial e D: x^2 + y^2 = \pi^2$, $x^2 + y^2 = 4\pi^2$.

81.
$$\iint_{D} \sqrt{25 - x^2 - y^2} \, dx \, dy, \quad \varepsilon \partial e \quad D: \quad x^2 + y^2 = 25, \quad y = x, \quad y = \sqrt{3} x.$$

Вычислить криволинейные интегралы:

82.
$$\int_L \frac{dl}{\sqrt{x^2 + y^2 + 4}}$$
, где L -отрезок прямой, соединяющей точки $O(0;0)$ и $A(1;2)$.

83.
$$\int_{l} (2xydx - x^2dy)$$
, где l – верхняя половина окружности $x^2 + y^2 = 4$, пробегаемая по ходу часовой стрелки.

Аттестационная работа № 3 «Определенный интеграл и его приложения»

Теоретические вопросы.

- 1. Определение, свойства, таблица основных неопределенных интегралов.
- 2. Основные методы интегрирования.
- 3. Интегралы от рациональных, иррациональных и тригонометрических функций.
- 4. Определение, основные свойства определенного интеграла.
- 5. Формула Ньютона-Лейбница.
- 6. Интегрирование по частям и замена переменных в определенном интеграле.
- 7. Несобственные интегралы двух типов.
- 8. Формулы для вычисления площади фигуры, длины дуги, объема тела.
- 9. Координаты центра масс однородной дуги и однородной плоской пластины.

Практические задания.

Задание 1. Вычислить определенные интегралы с точностью $\varepsilon = 0.01$.

1 a)
$$\int_{2}^{3} y \ln(y-1) dy$$
, b) $\int_{0}^{1} x^{2} \sqrt{x-x^{2}} dx$, c) $\int_{-\frac{\pi}{2}}^{2} \frac{\cos^{3} x dx}{\sqrt{\sin x}}$, c) $\int_{3}^{2} \frac{\sqrt[3]{(x-2)^{2}}}{3+\sqrt[3]{(x-2)^{2}}} dx$.

2 a) $\int_{-2}^{\pi/2} x^{2} dx$, b) $\int_{-2}^{\pi/2} \frac{dx}{2+\cos x}$, c) $\int_{0}^{1} \frac{\sqrt{4-x^{2}}}{x^{2}} dx$, c) $\int_{0}^{1} \frac{dx}{e^{x}(3+e^{-x})}$.

3 a) $\int_{0}^{\pi/2} x \cos x dx$, c) $\int_{0}^{6} \frac{\sqrt{x^{2}-9}}{x^{4}} dx$, c) $\int_{0}^{5} \frac{dx}{2x+\sqrt{3x+1}}$.

4	$a) \int_{0}^{\pi} x^{2} \sin x dx,$	$\delta) \int_{0}^{1} \sqrt{4-x^2} dx,$
	$e) \int_0^{\pi} \sin^4 \frac{x}{2} dx,$	$\varepsilon) \int_{3}^{8} \frac{\sqrt{x+1}+1}{\sqrt{x+1}-1} dx.$
5	$a) \int_{-0,5}^{0,5} \arccos 2x dx,$	$ \delta) \int_{1}^{\sqrt{3}} \frac{x^3 + 1}{x^2 \sqrt{4 - x^2}} dx, $
	$s) \int_{0}^{\pi/3} \cos^3 x \sin 2x dx,$	$\varepsilon) \int_3^8 \frac{x dx}{\sqrt{x+1}}.$
6	$a) \int_{1}^{2} (y-1) \ln y dy,$	$6) \int_{1}^{\sqrt{3}} \sqrt{3-x^2} \ dx,$
	$e) \int_{0}^{\pi/3} tg^2 x dx,$	$\varepsilon) \int_0^{\ln 5} \frac{e^x \sqrt{e^x - 1}}{e^x + 3} dx.$
7	$a) \int_{-0,5}^{0} xe^{-2x} dx,$	$\delta) \int_{-3}^{3} x^2 \sqrt{9 - x^2} \ dx,$
	$s) \int_{\pi/2}^{\pi} \frac{\sin x}{(1-\cos x)^3} dx,$	$\varepsilon) \int_{\ln 2}^{2\ln 2} \frac{dx}{e^x - 1}.$
8	$a) \int_{-\pi}^{\pi} x \sin x \cdot \cos x dx,$	$6) \int_{\sqrt{2}/2}^{1} \frac{\sqrt{1-x^2}}{x^6} dx,$
	$e) \int_{0}^{\pi/4} 2\cos x \cdot \sin 3x dx,$	$\varepsilon) \int_{0}^{\ln 2} \sqrt{e^{x} - 1} dx.$
9	a) $\int_{-\frac{1}{3}}^{-\frac{2}{3}} \frac{x}{e^{3x}} dx$,	$0) \int_{0}^{1} \sqrt{(1-x^2)^3} \ dx,$
	$s) \int_{0}^{\pi} \cos \frac{x}{2} \cdot \cos \frac{x}{3} dx,$	$\varepsilon) \int_0^5 \frac{x dx}{\sqrt{x+4}}.$
10	$a) \int_{1}^{e} \frac{\ln^2 x}{x^2} dx$	$6) \int_{\sqrt{3}/3}^{1} \frac{dx}{x^2 \sqrt{(1+x^2)^3}},$
	$s) \int_{0}^{\pi/32} (32\cos^2 4x - 16) dx,$	$\varepsilon) \int_0^4 \frac{dx}{1 + \sqrt{2x + 1}}.$

11	$a) \int_{1}^{e^2} \sqrt{x} \ln x dx,$	$6) \int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x} dx,$
	$e) \int_{0}^{\pi/2} \frac{\cos x}{1+\sin^2 x} dx,$	$\varepsilon) \int_{\frac{2}{3}}^{\frac{7}{3}} \frac{xdx}{\sqrt{2+3x}}.$
12	a) $\int_{0}^{1} arctg \sqrt{x} dx,$	$6) \int_{0}^{1} \frac{dx}{(x^2+3)^{\frac{3}{2}}},$
	$e) \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} tg^4 \varphi \ d\varphi,$	$e) \int_{\ln 2}^{\ln 3} \frac{dx}{e^x - e^{-x}}.$
13	$a) \int_{0}^{\pi} (x+2)\cos\frac{x}{2} dx,$	$6) \int_{1}^{\sqrt{2}} \sqrt{2-x^2} \ dx,$
	$e) \int_{0}^{\pi} \cos \frac{x}{2} \cos \frac{3x}{2} dx,$	$\varepsilon) \int_0^1 \frac{x^2 dx}{(1+x)^4}.$
14	$a) \int_{0}^{\pi/8} x^2 \sin 4x dx,$	$6) \int_{0}^{1} \frac{x^2 dx}{(x^2 + 1)^2},$
	$\varepsilon) \int_{0}^{\pi/4} \sin 3x \cos 5x dx,$	$\varepsilon) \int_{-1}^{0} \frac{dx}{1 + \sqrt[3]{x+1}}.$
15	$a) \int_{1}^{2} y^{2} \ln y dy,$	$6) \int_{2\sqrt{3}}^{6} \frac{dx}{x^2 \sqrt{x^2 - 9}},$
	$e) \int_{0}^{\pi/3} \frac{\sin^3 x}{\cos^4 x} dx,$	$e) \int_{0}^{\frac{1}{2}\ln 2} \frac{e^{x} dx}{e^{x} + e^{-x}}.$
16	a) $\int_{-\infty}^{2} \frac{\ln(x+1)}{(x+1)^2} dx$	$6) \int_{\frac{1}{\sqrt{3}}}^{1} \frac{dx}{x^2 \sqrt{1+x^2}},$
	$e) \int_{0}^{\pi/6} \frac{dx}{\cos x},$	$e) \int_{0}^{\sqrt[3]{7}} \frac{z^2 dz}{\sqrt{9+z^3}} .$
17	a) $\int_{1,5}^{2} arctg(2x-3) dx,$	$c) \int_{0}^{3\sqrt{7}} \frac{z^{2}dz}{\sqrt{9+z^{3}}}.$ $6) \int_{1/2}^{\sqrt{3}/2} \sqrt{1-x^{2}}dx,$
	$e) \int_{-\pi/6}^{\pi/2} ctg^3 x \ dx,$	$e) \int_0^5 \frac{x dx}{\sqrt{1+3x}} .$

18	$a) \int_{0}^{\pi/2} (x+3)\sin x dx,$	$6) \int_{0}^{3} \frac{dx}{\sqrt{(9+x^2)^3}},$
	$e) \int_{0}^{\pi/2} \cos x \cos 3x \cos 5x dx,$	$\varepsilon) \int_{0}^{2} \frac{dx}{\sqrt{x+1} + \sqrt{(x+1)^3}}.$
19	$a) \int_{1}^{e} x \ln^2 x dx,$	$6) \int_{2}^{4} \frac{\sqrt{x^2 - 4}}{x} dx,$
	$e) \int_{0}^{\pi} \cos^4 x \cdot \sin^2 x \ dx,$	e) $\int_{\ln 3}^{0} \frac{1 - e^{x}}{1 + e^{x}} dx.$ 6) $\int_{-0.5}^{0.5} \frac{dx}{\sqrt{(1 - x^{2})^{3}}},$
20	a) $\int_{-3}^{0} (x-2)e^{-x/3} dx$,	
	$e) \int_{0}^{\pi/2} \sin^6 x dx,$	$\varepsilon) \int_{0}^{\pi/2} \frac{\cos y dy}{4 + \sqrt{\sin y}} .$
21	$a) \int_{9}^{\pi/9} \frac{x dx}{\cos^2 3x},$	$6) \int_{0}^{\sqrt{2,5}} \frac{dx}{\sqrt{(5-x^2)^3}},$
	$e) \int_{-\pi/2}^{\pi} \sqrt{1+\sin x} \ dx,$	$\varepsilon) \int_{2}^{5} \frac{x^2 dx}{(x-1)\sqrt{x-1}}.$
22	$a) \int_{0,5}^{1} \arcsin(1-x) dx,$	$6) \int_{0}^{0.5} \frac{x^4 dx}{\sqrt{(1-x^2)^3}},$
	$e) \int_{-\pi/6}^{\pi/4} \frac{1 + tgx}{\sin 2x} dx,$ $a) \int_{1}^{\sqrt{3}} arctg \frac{1}{x} dx,$	$\varepsilon) \int_0^{\ln 2} \frac{dx}{e^x \sqrt{1 - e^{-2x}}}.$
23		$6) \int_{\sqrt{3}}^{2} \frac{dx}{x^4 \sqrt{x^2 - 3}},$
	$e) \int_{\pi/6}^{\pi/3} \frac{\sin 2x}{\cos^3 x} dx,$	$\varepsilon) \int_{1}^{e^3} \frac{dx}{x\sqrt{1+\ln x}} .$
24	$a) \int_{-1}^{0} x \ln(1-x) dx,$	$6) \int_{2}^{4} \frac{\sqrt{16-x^{2}}}{x^{4}} dx,$
	$e) \int_{0}^{\frac{\pi}{8}} \sin x \cdot \sin 3x \ dx,$	$e) \int_{\ln 2}^{\ln 3} \frac{dx}{\sqrt{1+e^x}}.$

$$a) \int_{0}^{1} \frac{\arcsin(x/2)}{\sqrt{2-x}} dx,$$

$$6) \int_{0}^{\sqrt{7/3}} x^3 \sqrt{7 + x^2} \, dx,$$

$$e) \int_{-\pi/4}^{\pi} \sin x \cdot \sin 2x \cdot \sin 3x \ dx,$$

$$\varepsilon) \int_{e^2}^{e^3} \frac{\ln x \, dx}{x(1-\ln^2 x)} \, .$$

$$\int_{\sqrt{8}}^{4} \frac{\sqrt{x^2 - 8}}{x^4} dx,$$

$$\varepsilon) \int_{-\pi/3}^{\pi/2} \frac{dx}{\sin x} dx,$$

$$\varepsilon) \quad \int_{4}^{9} \frac{\sqrt{x} \, dx}{\sqrt{x} - 1}.$$

$$6) \int_{1}^{\sqrt{2}} \frac{dx}{x^5 \sqrt{x^2 - 1}},$$

$$\varepsilon) \int_{0}^{\pi/2} \cos^5 x \ dx,$$

$$\begin{array}{ccc}
z) & \int_{\sqrt{7}}^{\sqrt{26}} \frac{x^3 dx}{(x^2 + 1)^{\frac{2}{3}}}. \\
\hline
\delta) & \int_{0}^{3} x^4 \sqrt{9 - x^2} dx,
\end{array}$$

28
$$a) \int_{-1}^{0} (x+1)e^{-2x} dx,$$

6)
$$\int_{0}^{3} x^{4} \sqrt{9-x^{2}} dx$$
,

$$s) \int_{\frac{\pi}{2}}^{\pi} \cos^2 x \cdot \sin^4 x \, dx,$$

$$a) \int_{0}^{\frac{\pi}{4}} x \, tg^2 x \, dx,$$

$$\varepsilon) \int_0^{13} \frac{x+1}{\sqrt[3]{2x+1}} dx.$$

$$\begin{array}{ccc}
& & \frac{\pi}{4} \\
& a) & \int\limits_{0}^{\pi} x \, tg^2 x \, dx,
\end{array}$$

$$6) \int_{0}^{3} \frac{x^3 dx}{\sqrt{9+x^2}},$$

$$e) \int_{\pi/3}^{\pi/2} \frac{dx}{\sin^3 x} ,$$

$$\varepsilon) \int_{\ln 5}^{\ln 12} \frac{dx}{\sqrt{e^x + 4}}.$$

$$\begin{array}{ccc} \mathbf{30} & & \frac{1}{\int_{0}^{1} x \operatorname{arctgx} dx,} \end{array}$$

$$6) \int_{0}^{\sqrt{6}} \sqrt{6-x^2} \, dx,$$

$$e) \int_{0}^{\pi/4} \sin^4 \frac{x}{2} dx,$$

$$\varepsilon) \int_{-1}^{1} \frac{x \, dx}{\sqrt{5 - 4x}}.$$

Задание 2. Вычислить несобственные интегралы или доказать их расходимость:

1	a) $\int_{0}^{\infty} \frac{x dx}{16x^4 + 1}$; δ) $\int_{0}^{1} \frac{dx}{\sqrt[3]{2 - 4x}}$.	2	a) $\int_{0}^{\infty} \frac{16x dx}{16x^4 - 1}$; δ) $\int_{1}^{3} \frac{dx}{\sqrt{x^2 - 6x + 9}}$
3	a) $\int_{0}^{\infty} \frac{x^3 dx}{\sqrt{16x^4 + 1}}$;	4	a) $\int_{1}^{\infty} \frac{x dx}{\sqrt{16x^4 - 1}};$
	$6) \int_{0}^{\frac{1}{3}} \frac{e^{3-\frac{1}{x}}}{x^{2}} dx.$		$6) \int_{1}^{3} \frac{dx}{\sqrt[5]{(3-x)^{3}}}.$
5	$a) \int_{-\infty}^{0} \frac{x dx}{\sqrt{\left(x^2 + 4\right)^3}};$	6	a) $\int_{0}^{\infty} \frac{x^2 dx}{\sqrt[3]{(x^3 + 8)^4}};$
	$\delta) \int_{\frac{1}{3}}^{1} \frac{\ln(3x-1)}{3x-1} dx.$		$\delta) \int_{0,25}^{1} \frac{dx}{20x^2 - 9x + 1}.$
7	a) $\int_{0}^{\infty} \frac{x dx}{\sqrt[4]{(16+x^2)^5}};$	8	$a) \int_{4}^{\infty} \frac{x dx}{\sqrt{x^2 - 4x + 1}};$
	$6) \int_{0,5}^{1} \frac{\ln 2 \ dx}{(1-x) \ln^2 (1-x)}.$		$6) \int_{0}^{2/3} \frac{dx}{(2-3x)\sqrt[3]{\ln(2-3x)}}.$
9	$a) \int_{-1}^{\infty} \frac{dx}{x^2 + 4x + 5};$	10	a) $\int_{-1}^{\infty} \frac{x dx}{x^2 + 4x + 29}$;
	$6) \int_0^1 \frac{x dx}{1 - x^4}.$		$6) \int_{0}^{\pi/6} \frac{\cos 3x dx}{\sqrt[6]{(1-\sin 3x)^5}}.$
11	$a) \int_{0}^{\infty} \frac{arctg2x}{1+4x^{2}} dx;$	12	a) $\int_{0,5}^{\infty} \frac{dx}{4x^2 + 4x + 5};$
	$0) \int_0^1 \frac{2xdx}{\sqrt{1-x^4}}.$		$6) \int_{-\frac{1}{3}}^{0} \frac{dx}{\sqrt[3]{(1+3x)^2}}.$
13	a) $\int_{0}^{\infty} \frac{xdx}{4x^2 + 12x + 10}$;	14	a) $\int_{0}^{\infty} \frac{(x+2) dx}{\sqrt[3]{(x^2+4x+7)^4}};$
	$6) \int_{0,75}^{1} \frac{dx}{\sqrt[5]{3-4x}}.$		$6) \int_{0}^{\pi/2} \frac{e^{-tgx}dx}{\cos^2 x}.$

1.5		1.0	
15	a) $\int_{0}^{\infty} \frac{3-x^2}{x^2+4} dx;$	16	$a) \int_{0}^{\infty} \frac{\sqrt{arctg2x}}{1+4x^2} dx;$
	$\delta) \int_{0}^{1} \frac{e^{-\arcsin x}}{\sqrt{1-x^2}} dx.$		$6) \int_{1}^{2} \frac{dx}{\sqrt[5]{4x-4-x^2}}.$
17	$a) \int_{1}^{\infty} \frac{dx}{x(1+\ln^2 x)};$	18	$a) \int_{0}^{\infty} x \sin x dx;$
	$\delta) \int_{\pi/2}^{\pi} \frac{\sin x dx}{\sqrt[7]{\cos^2 x}}.$		$6) \int_{-0,75}^{0} \frac{dx}{\sqrt{4x+3}}.$
19	$ \delta) \int_{\pi/2}^{\pi} \frac{\sin x dx}{\sqrt[7]{\cos^2 x}}. $ $ a) \int_{-\infty}^{-1} \frac{dx}{x^2 - 4x}; $	20	a) $\int_{\frac{1}{3}}^{\infty} \frac{dx}{(1+9x^2) \operatorname{arctg}^2 3x};$
	$6) \int_{1}^{2} \frac{x dx}{\sqrt{(x^2 - 1)^3}}.$		$6) \int_{0}^{\frac{1}{3}} \frac{dx}{9x^2 - 9x + 2}.$
21	a) $\int_{2}^{\infty} \frac{dx}{(4+x^2)\sqrt{arctg \frac{x}{2}}};$	22	$a) \int_{1}^{\infty} \frac{dx}{(x^2 + 2x) \cdot \ln 3};$
	$ \delta) \int_{0}^{\pi/2} \frac{3\sin^3 x dx}{\sqrt{\cos x}}. $		$6) \int_{0}^{3} \frac{\sqrt[3]{9} x dx}{\sqrt[3]{9-x^{2}}}.$
23	$a) \int_{0}^{\infty} x \cdot e^{-3x} dx;$	24	a) $\int_{-\infty}^{0} \left(\frac{x^2}{x^3 - 1} - \frac{x}{1 + x^2} \right) dx;$
	a) $\int_{0}^{\infty} x \cdot e^{-3x} dx$; 6) $\int_{0}^{1} \frac{x^{4} dx}{\sqrt[3]{1-x^{5}}}$.		$6) \int_{0}^{2} \frac{x^2 dx}{\sqrt{64 - x^6}}.$
	$a) \int_{0}^{\infty} \frac{dx}{2x^2 - 2x + 1};$	26	$a) \int_{1}^{\infty} \frac{dx}{x^2(x+1)};$
	$6) \int_{0,5}^{1} \frac{dx}{\sqrt[9]{1-2x}}.$		$6) \int_{1}^{5} \frac{x^2 dx}{\sqrt{x^3 - 1}}.$
27	$a) \int_{e^2}^{\infty} \frac{dx}{x(\ln x - 1)^2};$	28	$a) \int_{1}^{\infty} \frac{dx}{6x^2 - 5x + 1};$
	$6) \int_{1}^{1,5} \frac{dx}{\sqrt{3x-2-x^2}}.$		$6) \int_{0}^{4} \frac{10 x dx}{\sqrt[4]{(16-x^{2})^{3}}}.$

$$\begin{array}{|c|c|c|c|c|c|}
\hline
 a) & \int_{1}^{\infty} \frac{dx}{9x^2 + 6x + 5}; \\
 \hline
 b) & \int_{0}^{0.25} \frac{dx}{\sqrt[3]{1 - 4x}}. \\
\hline
 a) & \int_{3}^{\infty} \frac{dx}{16x^2 + 8x + 10}; \\
 \hline
 b) & \int_{0}^{0.25} \frac{dx}{\sqrt[3]{1 - 4x}}. \\
\hline
 c) & \int_{0}^{0.5} \frac{dx}{(2x - 1)^3}. \\
\hline
 d) & \int_{0}^{\infty} \frac{d$$

Задание 3. Вычислить с точностью $\varepsilon = 0{,}01$ площадь фигуры, ограниченной линиями:

1	$r = 3\sqrt{\cos 2\varphi}.$	2	$y = x^2, y = 3 - x.$
3	$y = \sqrt{x}, y = x^3.$	4	$x = 7\cos^3 t, \ y = 7\sin^3 t.$
5	$r = 4\cos 3\varphi$.	6	$r = 3\cos 2\varphi$.
7	$r = 2(1 - \cos \varphi).$	8	$r^2 = 2\sin 2\varphi.$
9	$x = 4(t - \sin t), y = 4(1 - \cos t)$	10	$r = 2(1 + \cos \varphi).$
11	$r=2\sin 3\varphi$.	12	$r = 2 + \cos \varphi$.
13	$y = \frac{1}{1+x^2}, y = \frac{x^2}{2}.$	14	$y^2 = x + 1$, $y^2 = 9 - x$.
15	$y^2 = x^3$, $x = 0$, $y = 4$.	16	$r = 4\sin^2 \varphi$.
17	$x = 3\cos t, y = 2\sin t.$	18	$y^2 = 9x, y = 3x.$
19	$x = 3(\cos t + t \sin t),$	20	$y^2 = 4x, x^2 = 4y.$
	$y = 3(\sin t - t\cos t),$		
	$y = 0, 0 \le t \le \pi.$		
21	$y^2 = x^3, x = 2.$	22	$y = x^2$, $y = 2 - x^2$.
23	$y^2 = (4-x)^3, x = 0.$	24	$r = 3\sin 4\varphi$.
25	$y = x^3$, $y = 1$, $x = 0$.	26	xy = 6, $x + y - 7 = 0$
27	$y = 2^x$, $y = 2x - x^2$, $x = 0$,	28	$x^2 = 4y$, $y(x^2 + 4) = 8$.
	x=2.		
29	$y = x + 1$, $y = \cos x$, $y = 0$.	30	$x = 2\cos^3 t, y = 2\sin^3 t.$

Задание 4. Вычислить с точностью $\varepsilon = 0.01$ длину дуги кривой:

1	2 a a 3 4 2 a i a 3 4	2	$x = 2(\cos t + t \sin t),$
1	$x = 2\cos^3 t, y = 2\sin^3 t.$	_	· · · · · · · · · · · · · · · · · · ·
			$y = 2(\sin t - t \cos t).$
			$0 \le t \le \pi$.
3	$r = \sin^3\left(\frac{\varphi}{3}\right), 0 \le \varphi \le \frac{\pi}{2}.$	4	$r = 2\sin^3\left(\frac{\varphi}{3}\right), 0 \le \varphi \le \frac{\pi}{2}.$
5	$\sqrt[3]{x^2} + \sqrt[3]{y^2} = \sqrt[3]{9}.$	6	$x^{2/3} + y^{2/3} = 4^{2/3}.$
7	$y^2 = (x+1)^3$, отсеченной прямой	8	$y = 1 - \ln \cos x, 0 \le x \le \frac{\pi}{6}.$
	x = 4.		
9	$r = 6\cos^3\left(\frac{\varphi}{3}\right), 0 \le \varphi \le \frac{\pi}{2}.$	10	$x = 4\cos^3 t, y = 4\sin^3 t.$
11	$y^2 = (x-1)^3$, om m. $A(1;0)$ do	12	$y^2 = x^3$, отсеченной прямой
	$m. \ B(6; \sqrt{125}).$		x = 5.
13	$r = 3\cos\varphi$	14	$r = 3(1 - \cos \varphi).$
15	$r = 2\cos^3\left(\frac{\varphi}{3}\right).$	16	$x = 5\cos^2 t, y = 5\sin^2 t.$ $0 \le t \le \frac{\pi}{2}.$
			$0 \le t \le \frac{1}{2}$.
17	$9y^2 = 4(3-x)^3$, между точками	18	$r = 3\sin\varphi$.
	пересечения с осью Оу.		
19	$y = \ln \sin x, \frac{\pi}{3} \le x \le \frac{\pi}{2}.$	20	$\begin{cases} x = 9 (t - \sin t), \\ y = 9(1 - \cos t), \end{cases} 0 \le t \le 2\pi.$
21	$r = 2(1 - \cos \varphi).$	22	$y^2 = (x-1)^3, \ 2 \le x \le 5.$
23	$\begin{cases} x = 7 (t - \sin t), \\ y = 7(1 - \cos t), \end{cases} 0 \le t \le 2\pi.$	24	$y = e^{x/2} + e^{-x/2}, \ 0 \le x \le 2.$
25	$x = 4\cos^3 t, \ y = 4\sin^3 t.$	26	$x = \sqrt{3} t^2, y = t - t^3$ (петля).
27	$r = 5\sin\varphi$.	28	$r = 4\cos\varphi$.
	· · · · · · · · · · · · · · · · · · ·		

29	$r = 5(1 + \cos \varphi).$	30	$y^2 = x^3$, om m. $A(0;0)$ do
			m. B (4;8).

Задание 5. Вычислить объем тела, полученный вращением фигуры Φ вокруг указанной оси координат:

1	$\Phi: y^2 = 4 - x, x = 0, \ Oy.$	2	$\Phi: \sqrt{x} + \sqrt{y} = \sqrt{2}, \ x = 0,$
			y = 0, Ox .
3	$\Phi: \frac{x^2}{9} + \frac{y^2}{4} = 1, Oy.$	4	$\Phi: y^3 = x^2, y = 1, Ox.$
5	$\Phi : \begin{cases} x = 6(t - \sin t), \\ y = 6(1 - \cos t), \end{cases} y = 0, Ox.$	6	$\Phi : \begin{cases} x = 3\cos^2 t, \\ y = 4\sin^2 t, \end{cases} 0 \le t \le \frac{\pi}{2}, Oy.$
7	$\Phi: y^2 = x, x^2 = y, \ Ox.$	8	$\Phi: y^2 = (x-1)^3, x = 2, \ Ox.$
9	$\Phi: x = \sqrt{1 - y^2}, y = \sqrt{1,5} x, Ox.$	10	$\Phi: y = \sin x, y = 0,$ $0 \le x \le \pi, Ox.$
11	$\Phi: y^2 = 4x, x^2 = 4y, \ Ox.$	12	$\Phi: x = 2\cos t, y = 5\sin t, Oy.$
13	$\Phi: y = x^2, 8x = y^2, Oy.$	14	$\Phi: y = e^x, x = 0, y = 0,$ x = 1, Ox.
15	$\Phi: y^2 = \frac{4}{3} \cdot x, x = 3, \ Ox.$	16	$\Phi: y = 2x - x^2, y = 0, Ox.$
17	$\Phi: r = 2(1 + \cos \varphi)$, полярной оси.	18	$\Phi: x = 7\cos^3 t, \ y = 7\sin^3 t, \ Oy.$
19	$\Phi: \frac{x^2}{16} + y^2 = 1, \ Ox.$	20	$\Phi: x^3 = (y-1)^2, x = 0,$ y = 0, Ox.
21	$\Phi: xy = 4, \ 2x + y - 6 = 0, Ox.$	22	$\Phi: x = \sqrt{3}\cos t, \ y = 2\sin t, \ Oy.$
23	$\Phi: y = 2 - x^2, y = x^2, Ox.$	24	$\Phi: y = 8 - x^2, y = x^2, Ox.$
25	$\Phi: y^2 = (x+4)^3, x=0, Ox.$	26	$\Phi: y = x^3, x = 0, y = 8, Oy.$
27	$\Phi: x = \cos^3 t, \ y = \sin^3 t, \ Ox.$	28	$\Phi: 2y = x^2, \ 2x + 2y - 3 = 0, \ Ox.$
29	$\Phi: y = x - x^2, \ y = 0, \ Ox.$	30	$\Phi: y = 2 - \frac{x^2}{2}, x + y = 2, Oy.$

Задание 6.1-6.23. Вычислить работу, которую необходимо затратить на выкачивание воды из резервуара Р. Удельный вес воды 9,81 κH_{M^3} , $\pi=3,14$. (точность вычислений $\varepsilon=0,1$).

- 1 P: правильная четырехугольная пирамида со стороной основания 2м и высотой 5м.
- **2** Р: правильная четырехугольная пирамида, обращенная вершиной вниз. Сторона основания пирамиды равна 2м, а высота –6м.
- **3** Р: котел, имеющий форму сферического сегмента, высота которого 1,5м и радиус 1м.
- 4 Р: полуцилиндр, радиус основания которого 1м и длина 5м.
- 5 Р: усеченный конус, у которого радиус верхнего основания 1м, нижнего-2м, высота-3м.
- **6** Р: желоб, перпендикулярное сечение которого является параболой. Длина желоба 5м, ширина 4м, глубина 4м.
- 7 Р: цилиндрическая цистерна, радиус основания которой 1м, длина 5м.
- **8** Р: правильная треугольная пирамида с основанием 2м и высотой 5м.
- 9 Р: правильная треугольная пирамида, обращенная вершиной вниз, сторона основания которой 4м, а высота 6м.
- **10** Р: конус, обращенный вершиной вниз, радиус основания которого 3м, высота 5м.
- **11** Р: усеченный конус, у которого радиус верхнего основания равен 3м, нижнего-1м, высота 3м.
- 12 Р: конус с радиусом основания 2м и высотой 5м.
- **13** Р: правильная четырехугольная усеченная пирамида, у которой сторона верхнего основания 8м, нижнего-4м, высота-2м.

- **14** Р: параболоид вращения, радиус основания которого 2м, глубина 4м.
- **15** Р: половина эллипсоида вращения, радиус основания которого 1м, глубина 2м.
- **16** Р: усеченная четырехугольная пирамида, у которой сторона верхнего основания 2м, нижнего-4м, высота-1м.
- 17 Р: правильная шестиугольная пирамида со стороной основания 1м и высотой-2м.
- **18** Р: правильная шестиугольная пирамида с вершиной, обращенной вниз, сторона которой 2м, а высота-6м.
- 19 Р: цилиндр с радиусом основания 1м и высотой 3м.
- **20** Р: правильная усеченная шестиугольная пирамида, у которой сторона верхнего основания 1м, нижнего-2м, высота-2м.
- **21** Р: желоб, в перпендикулярном сечении которого лежит полуокружность радиусом 1м, длина желоба 10м.
- **22** Р: правильная усеченная шестиугольная пирамида у которой сторона верхнего основания 2м, нижнего-1м, высота 2м.
- 23 Р: полусфера радиуса 2м.

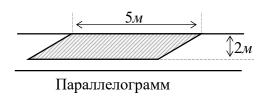
Задание. 6.24-6.30. Вычислить работу (с точностью до 0,1), затрачиваемую на преодоление силы тяжести при построении сооружения Q из некоторого материала, удельный вес которого γ .

- **24** Q: правильная усеченная четырехугольная пирамида, сторона верхнего основания которой равна 2м, нижнего-4м, высота 2м, $\gamma = 24 \frac{Kh}{M}^{3}.$
- **25** Q: правильная шестиугольная пирамида со стороной основания 1м, высотой 2м, $\gamma = 24 \frac{Kh}{M}^3$.

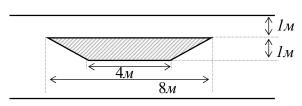
- **26** Q: правильная четырехугольная пирамида со стороной основания 2м, высотой 4м, $\gamma = 24 \frac{K \mu}{M^3}$.
- **27** Q: правильная усеченная шестиугольная пирамида, сторона верхнего основания которой равна 1м, нижнего-2м, высота 2м, $\gamma = 24 \frac{Kh}{M^3} \, .$
- **28** Q: правильная треугольная пирамида со стороной основания 3м, высотой 6м, $\gamma = 20 \frac{K_H}{M}^3$.
- **29** Q: конус, радиус основания которого 2м, высота 3м, $\gamma = 20 \frac{K_H}{M}^3$.
- **30** Q: усеченный конус, радиус верхнего основания которого равен 1м, нижнего -2м, высота- 2м, $\gamma = 21 \frac{K\mu}{M}^3$.

Задание 7. Вычислить ($\varepsilon = 0,1$) силу давления воды на пластину, вертикально погруженную в воду. Удельный вес воды 9,81 Кн/м³. Форма, размеры и расположение пластины указаны на рисунках.

1.

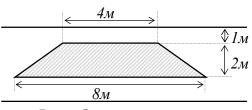


2.



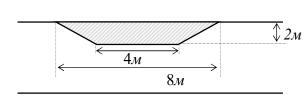
Равнобочная трапеция

3.

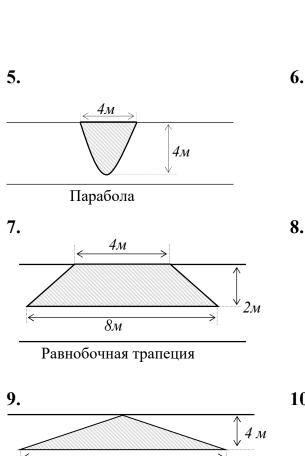


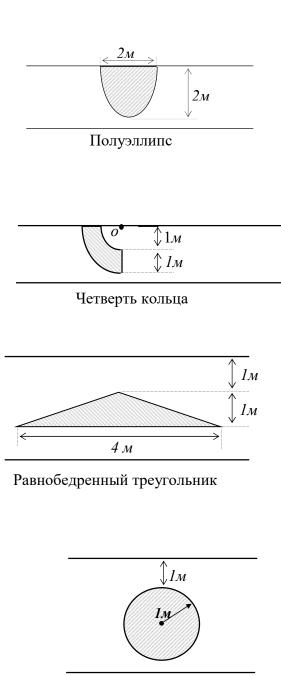
Равнобочная трапеция

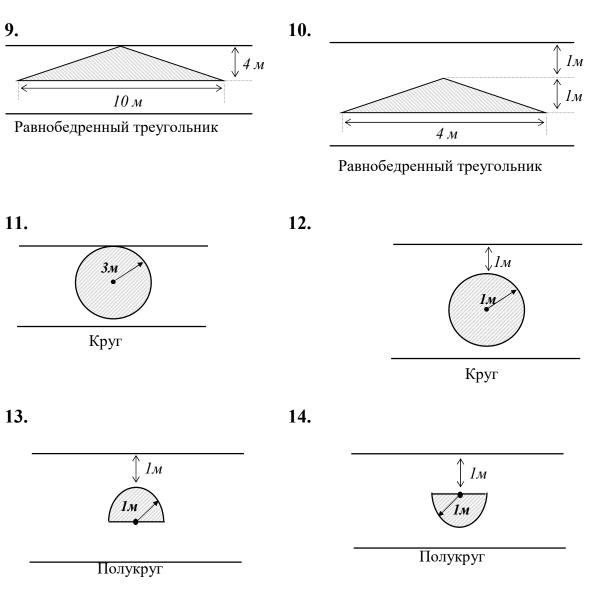
4.



Равнобочная трапеция

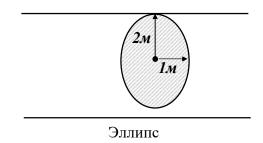




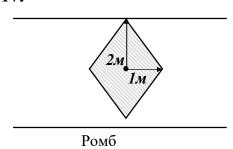


15.

Полукруг

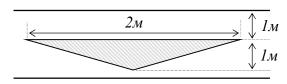


17.



18.

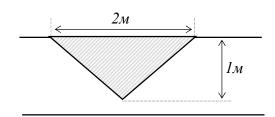
16.



Равнобедренный треугольник

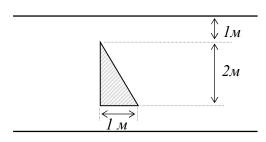
19.

20.



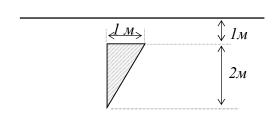
Равнобедренный треугольник

21.

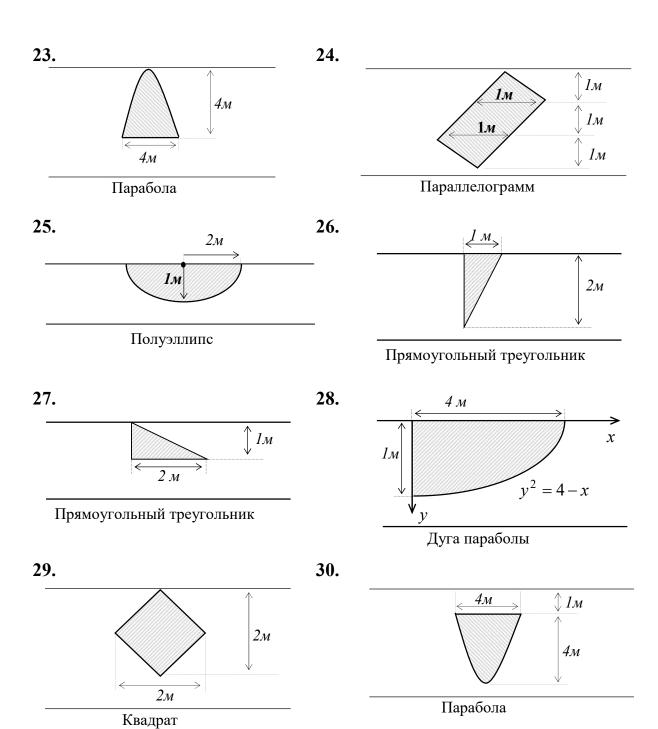


Прямоугольный треугольник

22.



Прямоугольный треугольник



Задание 8. Найти координаты центра масс однородной плоской кривой L:

1	<i>L</i> : полуокружность $x^2 + y^2 = R^2$, расположенная	2	L : первая арка циклоиды $x = a(t - \sin t), y = a(1 - \cos t).$
	над осью Ox .		,,,,
	пад осыо ол.		
3	L: дуга астроиды в третьем	4	L: дуга окружности радиуса
	квадрате, $x^{2/3} + y^{2/3} = a^{2/3}$.		<i>R</i> , стягивающая центральный
	x = x + y = x		угол α .

5	L: дуга цепной линии	6	L: дуга кардиоиды
	$y = a \ ch\left(x/a\right), -a \le x \le a.$		$r = a(1 + \cos \varphi), 0 \le \varphi \le \pi.$
7	L: дуга логарифмической	8	L: арка циклоиды
	спирали		$x = 3(t - \sin t), y = 3(1 - \cos t).$
	$r = a e^{\varphi}, \frac{\pi}{2} \leq \varphi \leq \pi.$		$0 \le t \le 2\pi.$
9	L: дуга астроиды	10	L: дуга
	$x = 2\cos^3 t, y = 2\sin^3 t,$		$x = e^t \sin t, \ y = e^t \cos t,$
	$0 \le t \le \frac{\pi}{2}$.		$0 \le t \le \frac{\pi}{2}$.
11	L: кардиоида	12	$L: r = 2\sin \varphi$.om точки $A(0;0)$
	$r = 2\left(1 + \cos\varphi\right).$		до точки $B\left(\sqrt{2};\pi/4\right)$
13	L: дуга развертки окружности	14	$L: r = 2\sqrt{3} \cos \varphi, \ 0 \le \varphi \le \frac{\pi}{4}.$
	$x = a(\cos t + t\sin t),$		/ / 4
	$y = a (\sin t - t \cos t), 0 \le t \le \pi.$		•
15	$L: x = \sqrt{3}t^2, y = t - t^3, \ ecnu = 0$	$\leq t \leq$	1.

Задание 8.16-8.30. Найти координаты центра масс плоской однородной фигуры Д, ограниченной линиями:

1.0	п о о		
16	Д: $x + y = a$, $x = 0$, $y = 0$.		
17	Д: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(x \ge 0, y \ge 0)$	18	$ \exists \exists \begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t), y \ge 0. \end{cases} $
	и оси координат.		
19	$\mathbf{\Pi} \colon \ y = x^2, \ y = \sqrt{x}.$	20	
21	Д: $y = \sqrt{R^2 - x^2}, y \ge 0.$	22	Д: $y = b\sqrt{\frac{x}{a}}$ $(a > 0, b > 0),$ $y = 0, x = a.$
23	Д: $y = b\sqrt{\frac{x}{a}}$ $(a > 0, b > 0),$ $y = b, x = 0.$	24	$\text{Д: } y^2 = ax^3 - x^4, \ a > 0.$
25	Д:	26	
27	$\mathcal{A}: r = a (1 + \cos \varphi).$	28	Д: $r^{2} = a^{2} \cos 2\varphi,$ $-\frac{\pi}{4} \le \varphi \le \frac{\pi}{4}.$
29	$\mathbf{\Pi} \colon \ \sqrt{x} + \sqrt{y} = \sqrt{a}, \ x \ge 0, \ y \ge 0.$	30	Д: $ay^2 = x^3$, $x = a$ $(a > 0)$.

Решение типового варианта аттестационной работы № 3 «Определенный интеграл и его приложения»

Задание 1. Вычислить определенные интегралы с точностью до двух знаков после запятой: a) $\int_{1}^{e} \ln^2 x \, dx$; б) $\int_{0}^{1} \frac{x^3 \, dx}{\sqrt{x^2 + 1}}$;

B)
$$\int_{0}^{\pi/4} \frac{dx}{4 - 3\cos^{2} x + 5\sin^{2} x}; \quad \Gamma$$
)
$$\int_{2/3}^{10/3} \frac{x \, dx}{(3x - 1)\sqrt{3x - 1}}.$$

$$\mathbf{a)} \int_{1}^{e} \ln^2 x \, dx.$$

Дважды применив метод интегрирования по частям, получим:

$$\int_{1}^{e} \ln^{2} x \, dx = \begin{vmatrix} u = \ln^{2} x, & du = 2 \ln x \cdot \frac{1}{x} \, dx \\ dv = dx, & v = x \end{vmatrix} = x \ln^{2} x \begin{vmatrix} e \\ 1 - 2 \int_{1}^{e} \ln x \, dx = x \end{vmatrix}$$

$$= \begin{vmatrix} u = \ln x, & du = \frac{1}{x} \, dx \\ dv = dx, & v = x \end{vmatrix} = e \cdot \ln^{2} e - 0 - 2 (x \ln x - x) \begin{vmatrix} e \\ 1 - 2 \int_{1}^{e} \ln x \, dx = x \end{vmatrix}$$

$$= e \cdot \ln^{2} e - 0 - 2 (x \ln x - x) \begin{vmatrix} e \\ 1 - 2 \int_{1}^{e} \ln x \, dx = x \end{vmatrix}$$

6)
$$\int_{0}^{1} \frac{x^3}{\sqrt{x^2 + 1}} dx.$$

Подинтегральная функция представляет собой дифференциальный бином $x^m(a+bx^n)^p$, где $m=3,\ n=2,\ p=-\frac{1}{2}.\ \frac{m+1}{n}=\frac{3+1}{2}=2\in Z.$ Для вычисления интеграла применяем подстановку $x^2+1=t^2$. Получаем:

$$\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2}+1}} dx = \begin{vmatrix} x^{2}+1=t^{2}, & xdx=tdt \\ x=0, & t=1 \\ x=1, & t=\sqrt{2} \end{vmatrix} = \int_{1}^{\sqrt{2}} \frac{t^{2}-1}{t} \cdot t \, dt = \int_{1}^{\sqrt{2}} (t^{2}-1) \, dt = \left(\frac{1}{3}t^{3}-t\right) \Big|_{1}^{\sqrt{2}} = \left(\frac{2\sqrt{2}}{3}-\sqrt{2}\right) - \left(\frac{1}{3}-1\right) = \frac{2-\sqrt{3}}{3} = 0,09.$$

B)
$$\int_{0}^{\pi/4} \frac{dx}{4 - 3\cos^2 x + 5\sin^2 x}.$$

Подынтегральная функция является рациональной функцией от $\cos^2 x \ u \sin^2 x$, поэтому принимаем подстановку t = tgx:

$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{4 - 3\cos^{2}x + 5\sin^{2}x} = \begin{vmatrix} t = tgx, & dx = \frac{dt}{1 + t^{2}} \\ \cos^{2}x = \frac{1}{1 + t^{2}}, & \sin^{2}x = \frac{t^{2}}{1 + t^{2}} \end{vmatrix} = \\ x = 0, & t = 0, & x = \frac{\pi}{4}, & t = 1 \end{vmatrix} = \\ = \int_{0}^{1} \frac{dt}{\left(4 - \frac{3}{1 + t^{2}} + \frac{5t^{2}}{1 + t^{2}}\right)\left(1 + t^{2}\right)} = \int_{0}^{1} \frac{dt}{9t^{2} + 1} = \frac{1}{3} \arctan(3t) \left| \frac{1}{0} = \frac{1}{3} \left(\arctan(3t) - \arctan(3t)\right) \approx 0,42.$$

$$\mathbf{r}) \int_{\frac{2}{3}}^{10} \frac{x \, dx}{(3x - 1)\sqrt{3x - 1}}.$$

Данный интеграл от иррациональной функции приводится к интегралу от рациональной функции с помощью подстановки $\sqrt{3x-1} = t$. Имеем:

$$\int_{\frac{2}{3}}^{10/3} \frac{x \, dx}{(3x-1)\sqrt{3x-1}} = \begin{cases} \sqrt{3x-1} = t, & x = \frac{t^2+1}{3}, \\ dx = \frac{2}{3}t \, dt, \\ x = \frac{2}{3}, & t = 1, \\ x = \frac{10}{3}, & t = 3. \end{cases} = \int_{1}^{3} \frac{\frac{1}{3}(t^2+1)\frac{2}{3}t \, dt}{t^2t} = \frac{2}{9} \int_{1}^{3} \left(1 + \frac{1}{t^2}\right) dt = \frac{2}{9} \left(t - \frac{1}{t}\right) \left(1 + \frac{1}{t^2}\right) dt = \frac{2}{9} \left(1 - \frac{$$

Задание 2. Вычислить несобственные интегралы или доказать их расходимость:

a)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 9};$$

$$6) \int_{-1}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^2}} dx;$$

$$e) \int_{1}^{3} \frac{dx}{x^2 - 4x + 4}.$$

$$a) \int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 9} = \int_{-\infty}^{0} \frac{dx}{x^2 + 4x + 9} + \int_{0}^{\infty} \frac{dx}{x^2 + 4x + 9} = \lim_{M \to -\infty} \int_{M}^{0} \frac{dx}{(x + 2)^2 + 5} + \lim_{N \to +\infty} \int_{0}^{N} \frac{dx}{(x + 2)^2 + 5} = \lim_{M \to -\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \begin{vmatrix} 0 \\ M \end{vmatrix} + \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \begin{vmatrix} N \\ 0 \end{vmatrix} = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{x + 2}{\sqrt{5}} \left| \frac{N}{\sqrt{5}} \right| = \lim_{N \to +\infty} \frac{1}{\sqrt{5}} \left| \frac{N}$$

$$= \lim_{M \to -\infty} \left(\frac{1}{\sqrt{5}} \arctan \frac{2}{\sqrt{5}} - \frac{1}{\sqrt{5}} \arctan \frac{M+2}{\sqrt{5}} \right) + \lim_{N \to +\infty} \left(\frac{1}{\sqrt{5}} \arctan \frac{N+2}{\sqrt{5}} - \frac{1}{\sqrt{5}} \arctan \frac{2}{\sqrt{5}} \right) =$$

$$= \frac{1}{\sqrt{5}} \arctan \frac{2}{\sqrt{5}} - \frac{1}{\sqrt{5}} \left(-\frac{\pi}{2} \right) + \frac{1}{\sqrt{5}} \frac{\pi}{2} - \frac{1}{\sqrt{5}} \arctan \frac{2}{\sqrt{5}} = \frac{\pi}{\sqrt{5}} = 1,40.$$

Отсюда следует, что данный интеграл сходящийся.

$$\delta) \int_{-1}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^2}} dx.$$

Подынтегральная функция терпит разрыв в точке x = 0, поэтому имеем:

$$\int_{-1}^{1} \frac{3x^{2} + 2}{\sqrt[3]{x^{2}}} dx = \int_{-1}^{0} \frac{3x^{2} + 2}{\sqrt[3]{x^{2}}} dx + \int_{0}^{1} \frac{3x^{2} + 2}{\sqrt[3]{x^{2}}} dx = \lim_{\beta \to 0-0} \int_{-1}^{\beta} \left(3x^{\frac{4}{3}} + 2x^{-\frac{2}{3}} \right) dx + \lim_{\alpha \to 0+0} \int_{\alpha}^{1} \left(3x^{\frac{4}{3}} + 2x^{-\frac{2}{3}} \right) dx = \lim_{\beta \to 0-0} \left(\frac{9}{7}x^{\frac{7}{3}} + 6x^{\frac{1}{3}} \right) \left| \beta + \lim_{\alpha \to 0+0} \left(\frac{9}{7}x^{\frac{7}{3}} + 6x^{\frac{1}{3}} \right) \right| \frac{1}{\alpha} = \lim_{\beta \to 0-0} \left(\frac{9}{7}\beta^{\frac{7}{3}} + 6\beta^{\frac{1}{3}} + \frac{9}{7} + 6 \right) + \lim_{\alpha \to 0+0} \left(\frac{9}{7} + 6 - \frac{9}{7}\alpha^{\frac{7}{3}} - 6\alpha^{\frac{1}{3}} \right) = \frac{9}{7} + \frac{9}{7} + 6 + 6 = 14\frac{4}{7} = 14,57 \Rightarrow$$
 интеграл сходящийся.

$$=14\frac{4}{7}=14,57 \Rightarrow$$
 интеграл сходящийся.

$$e) \int_{1}^{3} \frac{dx}{x^{2} - 4x + 4} = \int_{1}^{3} \frac{dx}{(x - 2)^{2}} = \int_{1}^{2} \frac{dx}{(x - 2)^{2}} + \int_{2}^{3} \frac{dx}{(x - 2)^{2}} = \lim_{\alpha \to 0} \int_{1}^{2 - \alpha} \frac{dx}{(x - 2)^{2}} + \lim_{\beta \to 0} \int_{2 + \beta}^{3} \frac{dx}{(x - 2)^{2}} = \lim_{\alpha \to 0} \frac{-1}{x - 2} \left| \frac{2 - \alpha}{1} + \lim_{\beta \to 0} \frac{-1}{x - 2} \right| \frac{3}{2 + \beta} = \lim_{\alpha \to 0} \left(\frac{1}{\alpha} - 1 \right) + \lim_{\beta \to 0} \left(-1 + \frac{1}{\beta} \right) = \lim_{\alpha \to 0} \frac{1}{\alpha} + \lim_{\beta \to 0} \frac{1}{\beta} - 2 = \infty, \text{ Tak kak } \alpha > 0 \ u \ \beta > 0.$$

Следовательно, данный интеграл расходится.

Вычислить с точностью $\varepsilon = 0.01$ площадь фигуры, Задание 3. ограниченной линиями:

a)
$$r^2 = a^2 \sin 2\varphi$$
; **6)** $\begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases}$ $0 \le t \le 2\pi$; **B)** $y = 2 - x^2, y^3 = x^2.$

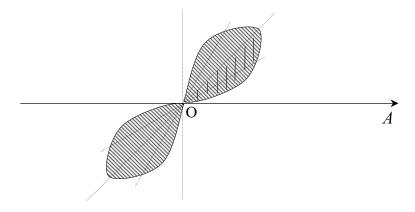
а) Линия задана полярным уравнением $r^2 = a^2 \sin 2\phi$. Определим допустимые значения угла φ и построим график.

$$\sin 2\varphi \ge 0 \iff 0 + 2k\pi \le 2\varphi \le \pi + 2k\pi, \ k \in Z \iff k\pi \le \varphi \le \frac{\pi}{2} + k\pi, \ k \in Z.$$

$$\Pi pu \quad k = 0 \quad 0 \le \varphi \le \frac{\pi}{2}, \quad npu \quad k = 1 \quad \pi \le \varphi \le \frac{3}{2}\pi.$$

В этих секторах $r = a\sqrt{\sin 2\varphi}$ и строим график:

φ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
r	0	0,71 <i>a</i>	а	0,93a	0

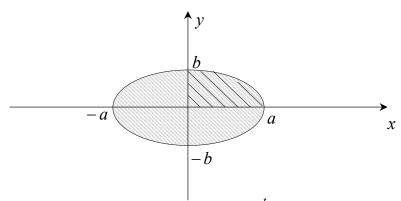


В силу симметрии кривой определим одну четверть искомой площади:

$$\frac{1}{4}S = \frac{1}{2} \int_{\varphi_0}^{\varphi_1} f^2(\varphi) \, d\varphi = \frac{1}{2} \int_0^{\frac{\pi}{4}} a^2 \sin 2\varphi \, d\varphi = \frac{a^2}{4} (-\cos 2\varphi) \Big|_0^{\frac{\pi}{4}} = \frac{a^2}{4}. \text{ Torda} \quad S = a^2.$$

б) Кривая задана параметрически $\begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases} 0 \le t \le 2\pi.$

Эти уравнения определяют эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.



В этом случае справедлива формула: $S = \int_{t_1}^{t_2}$

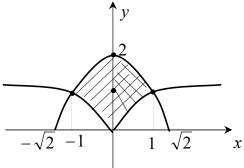
$$S = \int_{t_1}^{t_2} y(t) \cdot x'(t) dt, \quad t_1 = ? \quad x(t_1) = 0,$$

$$t_2 = ? \quad x(t_2) = a.$$

$$S = 4 \cdot \int_{-\pi/2}^{0} b \sin t \cdot (-a \sin t) dt = 4ab \int_{0}^{\pi/2} \sin^{2} t dt = 2ab \int_{0}^{\pi/2} (1 - \cos 2t) dt =$$

$$=2ab\left(t-\frac{1}{2}\sin 2t\right)\bigg|_{0}^{\pi/2}=\pi ab.$$

B)
$$y = 2 - x^2$$
, $y^3 = x^2$.



Найдем пределы интегрирования, для этого решим систему уравнений:

$$\begin{cases} y = 2 - x^2, & y = 2 - y^3, \\ y^3 = x^2. & y^3 + y - 2 = 0. \end{cases}$$

Если
$$y_1 = 1$$
 $1+1-2=0$; если $y_2 = -1$ $-1-1-2 \neq 0$.

Если
$$y = 1$$
, то $x^2 = 1$ и $x = \pm 1$.

Площадь фигуры определим по формуле $S = \int_{1}^{1} \left(2 - x^2 - x^{\frac{2}{3}}\right) dx =$

$$=2\int_{0}^{1} \left(2-x^{2}-x^{\frac{2}{3}}\right) dx = 2\left(2x-\frac{x^{3}}{3}-\frac{3}{5}x^{\frac{5}{3}}\right) \begin{vmatrix} 1\\0 = 2\left(2-\frac{1}{3}-\frac{3}{5}\right) = 2\frac{2}{15} \approx 2,13$$

Задание 4. Вычислить ($\varepsilon = 0.01$) длину дуги кривой:

a)
$$x^{2/3} + y^{2/3} = a^{2/3}$$
; **6)** $\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t), \end{cases}$ $0 \le t \le 2\pi$; **B)** $r = a \sin^3 \frac{\varphi}{3}$, $\varphi \in [0; 3\pi]$.

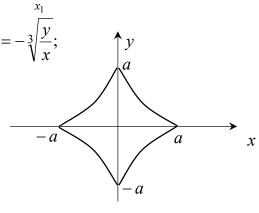
а) Астроида $x^{2/3} + y^{2/3} = a^{2/3}$ - кривая, симметричная относительно координатных осей - определена неявным уравнением y = y(x).

Длина дуги вычисляется по формуле $l = \int_{0}^{x_{2}} \sqrt{1 + {y'}^{2}(x)} dx$,

$$y^{\frac{2}{3}} = a^{\frac{2}{3}} - x^{\frac{2}{3}}, \quad \frac{2}{3}y^{-\frac{1}{3}} \cdot y' = -\frac{2}{3}x^{-\frac{1}{3}}, \quad y' = -\sqrt[3]{\frac{y}{x}};$$

$$1 + y'^{2} = 1 + \frac{\sqrt[3]{y^{2}}}{\sqrt[3]{x^{2}}} = \sqrt[3]{\frac{a^{2}}{x^{2}}}.$$

$$l = 4\int_{-\infty}^{a} \sqrt[3]{\frac{a}{x}} dx = 4\sqrt[3]{a} \cdot \frac{3}{2}\sqrt[3]{a^{2}} = 6a.$$

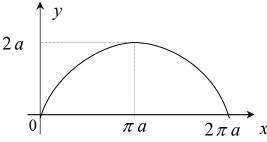


б) Найдем длину одной арки циклоиды:

$$\begin{cases} x = a (t - \sin t) \\ y = a (t - \cos t) \end{cases}$$

Кривая задана уравнениями в параметрической форме x = x(t),

$$y = y(t)$$
, тогда



$$S = \int_{t_1}^{t_2} \sqrt{{x'}^2(t) + {y'}^2(t)} dt$$
, t_1, t_2 – значения параметра, соответствующие

концам дуги.

В нашем случае, $x' = a(1-\cos t)$, $y' = a\sin t$. Поэтому:

$$S = \int_{0}^{2\pi} \sqrt{a^{2} (1 - \cos t)^{2} + a^{2} \sin^{2} t} dt = 2a \int_{0}^{2\pi} \sin \frac{t}{2} dt = 8a.$$

Пределы интегрирования $t_1=0,\ t_2=2\pi$ соответствуют крайним точкам арки циклоиды.

в) $r = a \sin^3 \frac{\varphi}{3}$. Вся кривая описывается точкой $M(r, \varphi)$ при

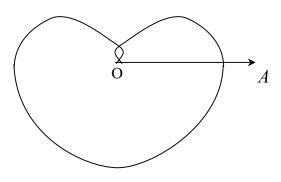
изменении φ от 0 ∂o 3π .

Кривая задана уравнением в полярных координатах $r = f(\varphi)$, тогда

$$S = \int_{\alpha}^{\beta} \sqrt{r^2 + {r'}^2} \ d\varphi$$
, где α и β — значения

полярного угла в крайних точках дуги.

Имеем $r' = a \sin^2 \frac{\varphi}{3} \cos \frac{\varphi}{3}$, поэтому



$$S = \int_{0}^{3\pi} \sqrt{a^{2} \sin^{6} \frac{\varphi}{3} + a^{2} \sin^{4} \frac{\varphi}{3} \cos^{2} \frac{\varphi}{3}} dt = a \int_{0}^{3\pi} \sin^{2} \frac{\varphi}{2} d\varphi =$$

$$= a \int_{0}^{3\pi} \frac{1 - \cos^{2} \frac{\varphi}{3}}{2} d\varphi = \frac{a}{2} \left(\varphi - \frac{3}{2} \sin \frac{2\varphi}{3} \right) \Big|_{0}^{3\pi} = \frac{a}{2} \cdot 3\pi = \frac{3}{2} \pi a = 4,71a.$$

Задание 5. Вычислить объем тела, полученного вращением фигуры Ф вокруг указанной оси:

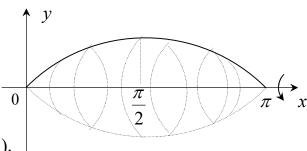
- a) $\Phi: y = \sin x$, вокруг оси 0x, $0 \le x \le \pi$;
- б) $\Phi: y = \sin x$, вокруг оси 0y, $0 \le x \le \pi$;
- в) Φ : $r = \sin 2\varphi$, вокруг полярной оси;
- ε) Φ : $x = a \cos^3 t$, $y = a \sin^3 t$, вокруг оси 0y.

a) $\Phi: y = \sin x$, вокруг оси 0x, $0 \le x \le \pi$.

$$V_x = \pi \int_a^b y^2(x) dx = \pi \int_0^{\pi} \sin^2 x dx =$$

$$=\pi\int\limits_0^\pi\frac{1-\cos2x}{2}\,dx=$$

$$= \frac{\pi}{2} \left(x - \frac{1}{2} \sin 2x \right) \Big|_{0}^{\pi} = \frac{\pi^{2}}{2} \approx 4.93 (e \partial^{3}).$$

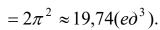


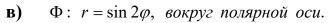
б) Та же фигура Ф вращается вокруг оси Оу.

$$V_{y} = 2\pi \int_{a}^{b} xy(x)dx.$$

$$V_y = 2\pi \int_0^{\pi} x \sin x dx =$$

$$=2\pi(-x\cos x+\sin x)\bigg|_0^{\pi}=$$





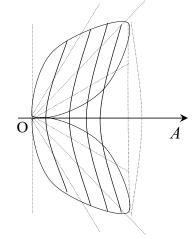
$$a > 0, r \ge 0 \Leftrightarrow \sin 2\varphi \ge 0 \Leftrightarrow$$

$$\Leftrightarrow 0 \le \varphi \le \frac{\pi}{2} \ u \ \pi \le \varphi \le \frac{3}{2} \pi.$$

$$V = \frac{2}{3} \pi \int_{\varphi_1}^{\varphi_2} r^3 \sin d\varphi, \ V = 2V_1.$$

$$\varphi_1=0, \quad \varphi_2=\frac{\pi}{2}.$$

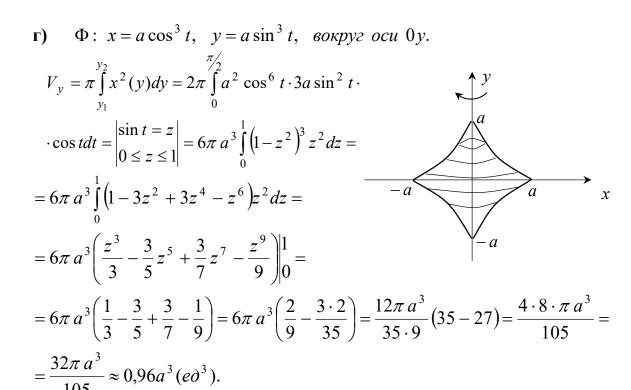
$$V_1 = \frac{2}{3} \pi \int_0^{\pi/2} a^3 \sin^3 2\varphi \sin \varphi \, d\varphi =$$



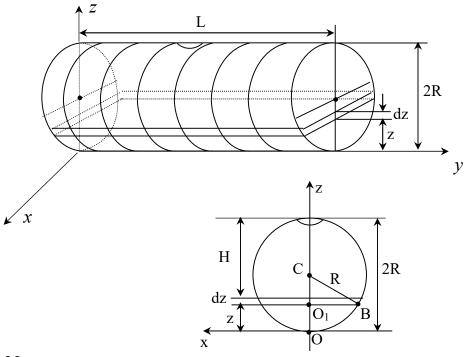
$$= \frac{2}{3}\pi a^{3} \int_{0}^{\pi/2} 8\sin^{4}\varphi \cos\varphi \,d\varphi = \frac{16\pi a^{3}}{3} \int_{0}^{\pi/2} (1-\sin^{2}\varphi)\sin^{4}\varphi \,d(\sin\varphi) =$$

$$\begin{vmatrix} \sin \varphi = t \\ 0 \le t \le 1 \end{vmatrix} = \frac{16\pi \, a^3}{3} \int_0^1 \left(t^6 + t^4 \right) dt = \frac{16\pi \, a^3}{3} \left(-\frac{t^7}{7} + \frac{t^5}{5} \right) \Big|_0^1 = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{1}{7} \right) = \frac{16\pi \, a^3}{3} \left(\frac{1}{5} - \frac{$$

$$= \frac{32\pi a^3}{105} \approx 0.96a^3 (e\partial^3), \ V = 1.92a^3 (e\partial^3).$$



Задание 6. Вычислить работу, которую необходимо затратить на выкачивание воды из резервуара Р. Удельный вес воды $\gamma = 9.81 \frac{kH}{M}_3$, $\pi = 3.14$. Р - лежащий на боку круговой цилиндр длиной $L = 5 \, m$ и радиусом основания $R = 1 \, m$. Вода выкачивается через находящееся вверху отверстие.



На высоте z выделим слой воды dz. Его объем

$$dv = 2|O_1B| \cdot L dz = 2L\sqrt{R^2 - (R-z)^2} dz = 2L\sqrt{z(2R-z)}dz.$$

Этот слой нужно поднять на высоту H=2R-z. Элементарная работа dA, затрачиваемая на выкачивание слоя dz, определяется формулой $dA=H\gamma\ dV=2\gamma\ L(2R-z)\sqrt{z(2R-z)}\ dz,\ 0\le z\le 2R, L=5m, R=1m,\ 0\le z\le 2.$ Работа A по выкачиванию воды из цилиндра равна сумме всех элементарных работ, т.е. определенному интегралу

$$A = \int_{0}^{2} 10\gamma(2-z)\sqrt{z(2-z)}dz = 10\gamma \int_{0}^{2} (2-z)\sqrt{2z-z^{2}}dz = 10\gamma \int_{0}^{2} (2-z)\sqrt{1-(z-1)^{2}}dz =$$

$$\begin{vmatrix} z-1 = \sin t, dz = \cos t dt \\ \sqrt{2z-z^{2}} = \sqrt{1-\sin^{2}t} = \cos t \\ z = 0, \sin t = -1, t = -\frac{\pi}{2} \end{vmatrix} = 10\gamma \int_{-\pi/2}^{\pi/2} (1-\sin t)\cos^{2}t dt = 10\gamma \int_{-\pi/2}^{\pi/2} \cos^{2}t dt +$$

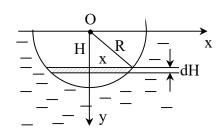
$$z = 2, \sin t = 1, t = \frac{\pi}{2}.$$

$$+10\gamma \int_{-\pi/2}^{\pi/2} \cos^{2}t d(\cos t) = 5\gamma \int_{-\pi/2}^{\pi/2} (1+\cos 2t) dt + \frac{10}{3}\gamma \cos^{3}t \Big|_{-\pi/2}^{\pi/2} = 5\gamma \left(t + \frac{1}{2}\sin 2t\right) \Big|_{-\pi/2}^{\pi/2} =$$

$$= 5\gamma \left(\frac{\pi}{2} + \frac{\pi}{2}\right) = 5\gamma \pi = 5.9,81.3,14 = 154,02 \left(\kappa \pi/2\pi\right).$$

Задание 7. Вычислить силу давления воды на пластину Φ , вертикально погруженную в воду; удельный вес воды $\gamma = 9.81 \frac{kH}{M}_{M}^{3}$, где Φ : а) полукруг; б) треугольник.

а) Для вычисления силы давления жидкости используют закон Паскаля, согласно которому сила давления жидкости на площадку S с глубиной погружения H равна $P = \gamma HS$, $\gamma = \delta \cdot g$, где γ – удельный вес воды,



- ускорение свободного падения,
- δ плотность жидкости.

Разбиваем площадь полукруга на элементы — полоски, параллельные поверхности воды. Тогда площадь такого элемента, расположенного на расстоянии H от поверхности, равна $ds = 2x \cdot dH = 2\sqrt{R^2 - H^2} \, dH$.

Элементарная сила давления равна $dP = \gamma \ Hds = 2\gamma \sqrt{R^2 - H^2} \ dH$. Всю силу давления на пластину получим при интегрировании

$$P = 2\gamma \int_{0}^{R} H \sqrt{R^{2} - H^{2}} dH = -\frac{2}{3} \gamma \left(R^{2} - H^{2}\right)^{2/3} \begin{vmatrix} R \\ 0 \end{vmatrix} = \frac{2}{3} \gamma R^{3} = 6,54R^{3} (kH).$$

б) Разбиваем площадь треугольника на элементы — полоски, параллельные поверхности воды, отстоящие от поверхности жидкости на расстояние d+y. Из подобия треугольников

$$ABC \ u \ A_1B_1C$$

имеем:
$$\frac{\left|A_{1}B_{1}\right|}{a} = \frac{H-y}{H}$$
, $\left|A_{1}B_{1}\right| = \frac{a}{H}(H-y)$, т.е. площадь вырезанной

пластинки $ds = \frac{a}{H}(H - y)dy$, а давление на каждую из сторон полоски треугольной пластины

$$dP = \frac{a}{H} \gamma (d+y)(H-y)dy, \quad H = 2M, \quad a = 3M, \quad d = 1M$$

$$dP = \frac{3}{2} \gamma (1+y)(2-y)dy = \frac{3}{2} \gamma (2+y-y^2)dy, \quad 0 \le y \le 2.$$

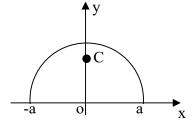
Интегрируя это равенство, получим силу давления жидкости на каждую из сторон пластинки.

$$P = \int_{0}^{2} \frac{3}{2} \gamma \left(2 + y - y^{2}\right) dy = \frac{3}{2} \gamma \left(2y + \frac{y^{2}}{2} - \frac{y^{3}}{3}\right) \Big|_{0}^{2} = \frac{3}{2} \gamma \left(4 + 2 - \frac{8}{3}\right) = 3\gamma \left(3 - \frac{4}{3}\right) = 5\gamma = 5 \cdot 9,81 \approx 49,1(kH).$$

Задание 8. Найти координаты центра масс однородной плоской: а) кривой L; б) фигуры Φ .

а) L: полуокружность $x^2 + y^2 = a^2$ $(y \ge 0).$ Координаты центра масс определяются

по формулам
$$x_c = \frac{M_y}{m}$$
; $y_c = \frac{M_x}{m}$, где



m - масса или кривой L, или фигуры Φ ;

 M_{x} и M_{y} - соответственно статические моменты

или кривой $\,L\,,$ или фигуры Φ относительно координатных осей $\,O_x,\,\,O_y.$

Для случая однородной плоской кривой L справедливы формулы: $L: y = y(x), \ \rho = 1, \ a \le x \le b.$

$$m = \int_{a}^{b} \sqrt{1 + {y'}^{2}(x)} dx; \quad M_{x} = \int_{a}^{b} y \sqrt{1 + {y'}^{2}(x)} dx; \quad M_{y} = \int_{a}^{b} x \sqrt{1 + {y'}^{2}(x)} dx.$$

В силу симметрии дуги $x_c = 0$, *m.e.* $M_y = 0$; $m = \pi a$.

Находим M_r .

$$x^{2} + y^{2} = a^{2}, y = \sqrt{a^{2} - x^{2}}, y' = \frac{-x}{\sqrt{a^{2} - x^{2}}}, 1 + y'^{2} = 1 + \frac{x^{2}}{a^{2} - x^{2}} = \frac{a^{2}}{a^{2} - x^{2}}.$$

$$M_x = \int_{-a}^{a} \sqrt{a^2 - x^2} \cdot \frac{a}{\sqrt{a^2 - x^2}} dx = a \int_{-a}^{a} dx = 2a^2.$$

Отсюда
$$y_c = \frac{2a^2}{a\pi} = \frac{2a}{\pi} = 0.64a$$
.

Координаты центра масс полуокружности C(0; 0,64a).

б) Ф ограничена линиями y = x u $y = x^2 - 4x$. Фигура Ф однородная, т.е. $\rho(x, y) = 1$.

$$m = \int_{0}^{5} (x - x^{2} + 4x) dx = \int_{0}^{5} (5x - x^{2}) dx =$$

$$= \left(\frac{5}{2}x^{2} - \frac{x^{3}}{3}\right) \Big|_{0}^{5} = 125 \cdot \left(\frac{1}{2} - \frac{1}{3}\right) = \frac{125}{6}.$$

$$M_{x} = \frac{1}{2} \int_{0}^{5} \left(f_{2}^{2}(x) - f_{1}^{2}(x)\right) dx = \frac{1}{2} \int_{0}^{5} \left(x^{2} - (x^{2} - 4x)^{2}\right) dx =$$

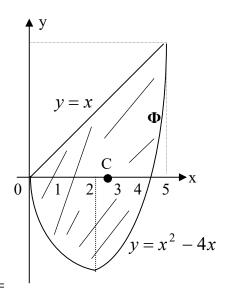
$$= \frac{1}{2} \int_{0}^{5} \left(x^{2} - x^{4} + 8x^{3} - 16x^{2} \right) dx = \frac{1}{2} \int_{0}^{5} \left(8x^{3} - x^{4} - 15x^{2} \right) dx = \frac{1}{2} \left(2x^{4} - \frac{x^{5}}{5} - 5x^{3} \right) \Big|_{0}^{5} =$$

$$= \frac{1}{2} \left(1250 - \frac{3125}{5} - 625 \right) = \frac{625}{2} \left(2 - \frac{5}{5} - 1 \right) = \frac{625}{2} \left(2 - 1 - 1 \right) = 0.$$

$$M_{y} = \int_{0}^{5} x (f_{2}(x) - f_{1}(x)) dx = \int_{0}^{5} x (x - x^{2} + 4x) dx = \int_{0}^{5} (5x^{2} - x^{3}) dx = \left(\frac{5}{3}x^{3} - \frac{x^{4}}{4}\right) \Big|_{0}^{5} = 625 \cdot \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{625}{12}.$$

Координаты центра масс фигуры Ф:

$$x_c = \frac{M_y}{m} = \frac{625 \cdot 6}{12 \cdot 125} = \frac{5}{2} = 2,5.$$
; $y_c = 0$, $C(2,5; 0)$.



Аттестационная работа № 4

«Дифференциальные уравнения»

Теоретические вопросы

- 1. Общий вид дифференциальных уравнений первого и второго порядков. Понятие об общем и частном решениях.
- 2. Сформулируйте задачу Коши для ДУ первого и второго порядков.
- 3. Типы ДУ первого порядка и методы их решения.
- 4. ДУ второго порядка, допускающие понижение порядка.
- 5. Решение линейных однородных ДУ второго порядка с постоянными коэффициентами.
- 6. Решение линейных неоднородных ДУ второго порядка с постоянными коэффициентами. Метод неопределенных коэффициентов. Метод вариации произвольных постоянных.
- 7. Метод исключения неизвестных решения систем линейных ДУ.

Практические задания

Задание 1. Найти общее решение или общий интеграл дифференциальных уравнений:

		1	
1	a) $(xy + x^3y)y' = 1 + y^2;$	2	a) $y' = 3 \cdot 7^{y-x}$;
	$\delta) xy' + x \sec \frac{y}{x} = y.$		$\int \int (y^2 - 3x^2) dy + 2xy dx = 0.$
3	a) $y - xy' = 2(1 + x^2y')$	4	a) $y - xy' = 1 + x^2 y'$;
	(x+2y)dx - xdy = 0.		(x-y)dx + (x+y)dy = 0.
5	a) (x+4)dy - xydx = 0;	6	a) $y' + y + y^2 = 0$;
	$\int \int (y^2 - 2xy) dx + x^2 dy = 0.$		$\int \int y^2 - x^2 y' = xyy'.$
7	a) $y^2 \ln x dx = (y-1)x dy$;	8	a) $(x + xy^2)dy + ydx - y^2dx = 0;$
	$\int \int xy' - y = x tg \frac{y}{x}.$		$6) xy' = y - xe^{\frac{y}{x}}.$
9	a) $y' + 2y - y^2 = 0$;	10	a) $(x^2 + x)ydx + (y^2 + 1)dy = 0;$
	$\delta) xy' - y = (x+y) \ln \frac{y+x}{x}.$		$6) xy' = y \cos\left(\ln\frac{y}{x}\right).$
11	a) $(xy^3 + x)dx + (x^2y^2 - y^2)dy = 0;$	12	a) $(1+y^2)dx - (y+yx^2)dy = 0;$
	$6) (y + \sqrt{xy})dx = xdy.$		$\delta) \ \ xy' = \sqrt{x^2 - y^2} + y.$

13	a) y' = 2xy + x;	14	a) $y' = \frac{y}{x} - 1;$
	6) $y = x(y' - \sqrt[x]{e^y}).$		$\begin{pmatrix} x \end{pmatrix} = \begin{pmatrix} x \end{pmatrix}$
			6) $xy' - y + 3(1 + x^2y') = 0.$
15	a) $2xyy' = 1 - x^2$;	16	a) $(x^2 - 1)y' - xy = 0;$
	6) y'x + x + y = 0.		$\delta) ydx + (2\sqrt{xy} - x)dy = 0.$
17	a) $(y^2x + y^2)dy + xdx = 0;$	18	a) $(1+x^3)y^3dx - (y^2-1)x^3dy = 0;$
	$6) xdy - ydx = \sqrt{x^2 + y^2} dx.$		$6) (4x^2 + 3xy + y^2)dx +$
			$+(4y^2 + 3xy + x^2)dy = 0.$
19	$a) xy'-y=y^2;$	20	$a) \sqrt{y^2 + 1} dx = xydy;$
	$6) (x-y)ydx - x^2 dy = 0.$		$6) xy + y^2 = (2x^2 + xy)y'.$
21	a) y' - xy = 2xy;	22	a) $2x^2yy' + y^2 = 2;$
	6) $(x^2 - 2xy)y' = xy - y^2$.		$6) (2\sqrt{xy} - y)dx + xdy = 0.$
23	a) $y' = (1+y^2)/(1+x^2);$	24	a) $y'\sqrt{1+y^2} = \frac{x^2}{y}$;
	$6) xy' + y \left(\ln \frac{y}{x} - 1 \right) = 0.$		$\delta) (x^2 + y^2) dx + 2xy dy = 0.$
25	a) $(y+1)y' = \frac{y}{\sqrt{1-x^2}} + xy;$	26	a) $(1+x^2)y' + y\sqrt{1-x^2} = xy;$ b) $(x-2y)dx + xdy = 0.$
	6) $(y^2 - 2xy)dx - x^2 dy = 0$.		, , , , ,
27	a) $xyy' = \frac{1+x^2}{1-y^2}$;	28	a) $(xy-x)^2 dy + y(1-x)dx = 0;$ b) $2x^3y' = y(2x^2 - y^2).$
	6) (2x-y)dx + (x+y)dy = 0.		
29	$a)(x^2y - y)^2y' = x^2y - y + x^2 - 1;$	30	(a) $\sqrt{1-y^2} dx + y \sqrt{1-x^2} dy = 0;$
	$\delta) \ x^2 y' = y(x+y).$		$6) y' = \frac{x}{y} + \frac{y}{x}.$

Задание 2. Найти частное решение (частный интеграл) следующих дифференциальных уравнений:

1	$(x^2 + 1)y' + 4xy = 3, y(0) = 0.$	2	$y' + ytgx = \sec x, y(0) = 0.$
3	$(1-x)(y'+y) = e^{-x}, y(0) = 0.$	4	$xy'-2y=2x^4$, $y(1)=0$.
5	$y' = 2x(x^2 + y), y(0) = 0.$	6	$y'-y=e^x$, $y(0)=1$.

7	$xy' + y + xe^{-x^2} = 0$, $y(1) = \frac{1}{2a}$.	8	$\cos y dx = (x + 2\cos y)\sin y dy,$
	2e		$y(0) = \frac{\pi}{4}.$
9	$x^2y' + xy + 1 = 0$, $y(1) = 0$.	10	$x'y + x = 4y^3 + 3y^2$, $y(2) = 1$.
11	$(2x+y)dy = ydx + 4 \ln ydy,$ y(0) = 1.	12	$y' = y/(3x-y^2), y(0) = 1.$
13	(1-2xy)y' = y(y-1), y(0) = 1.	14	$x(y'-y) = e^x$, $y(1) = 0$.
15	$y = x(y' - x\cos x), \ y\left(\frac{\pi}{2}\right) = 0,$	16	$(xy'-1)\ln x = 2y, \ y(e) = 0.$
17	$(2e^{y}-x)y'=1, y(0)=0.$	18	$xy' + (x+1)y = 3x^2e^{-x}, y(1) = 0.$
19	$(x + y^2)dy = ydx, y(0) = 1.$	20	$(\sin^2 y + x \cot y)y' = 1, \ y(0) = \frac{\pi}{2}.$
21	$(x+1)y' + y = x^3 + x^2, y(0) = 0.$	22	$xy'-2y+x^2=0, y(1)=0.$
23	$xy' + y = \sin x, \ y\left(\frac{\pi}{2}\right) = \frac{2}{\pi}.$	24	$(x^2-1)y'-xy=x^3-x, \ y(\sqrt{2})=1.$
25	$(1-x^2)y' + xy = 1, y(0) = 1.$	26	$y'ctgx - y = 2\cos^2 x \cdot ctgx,$ y(0) = 0.
27	$x^2y' = 2xy + 3, \ y(1) = -1.$	28	$y' + 2xy = xe^{-x^2}, \ y(0) = 0.$
29	$y' + 3x^2y - x^2e^{x^3} = 0, y(0) = 0.$	30	$xy' + y = \ln x + 1, \ y(1) = 0.$

Задание 3. Проинтегрировать дифференциальные уравнения, допускающие понижение порядка.

1 a)
$$y''' = \frac{1}{x}$$
; $y(1) = \frac{1}{4}$, $y'(1) = y''(1) = 0$;

6)
$$2xy'y'' = y'^2 - 1$$
;

8)
$$y'^2 + 2yy'' = 0$$
,
 $y(0) = 1$, $y'(0) = 1$.

2 a)
$$y''' = \sin x$$
; $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$;

6)
$$(1-x^2)y'' - 2xy' = 2;$$

$$e$$
) $y'' = y'e^y$, $y(0) = 0$, $y'(0) = 1$.

3 a)
$$y'' = \frac{1}{\cos^2 x}$$
; $y(1) = 1$,

$$y'(0) = 0.6;$$

6)
$$x^3y'' + x^2y' = 1$$
;

6)
$$y \cdot y'' + y'^2 = 0$$
, $y(0) = 1$, $y'(0) = 1$.

5 a)
$$y'' = 4\cos 2x$$
; $y(0) = 1$, $y'(0) = 3$;

$$\delta) y''x \ln x = y';$$

6)
$$y''tgy = 2y'^2$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 2$.

7
$$a) xy''' = 2; y(1) = \frac{1}{2}, y'(1) =$$
 $= y''(1) = 0;$

$$\delta) y''x \ln x = 2y';$$

6)
$$yy' + y'^2 = y^4$$
, $y(0) = 1$, $y'(0) = 1$.

9
$$a) y''' = \cos^2 x; y(0) = 1,$$

 $y'(0) = \frac{1}{8}, y''(0) = 0;$

$$\delta) y'' = -\frac{x}{y'};$$

s)
$$y'' = 1 - y'^2$$
; $y(0) = 0$,
 $y'(0) = 0$.

11
$$a) y'' = \frac{1}{\sin^2 2x}; y(\frac{\pi}{4}) = \frac{\pi}{4},$$

$$y'\left(\frac{\pi}{4}\right)=1,$$

$$\delta y'' = y' + x,$$

e)
$$2yy'' = 1 + y'^2$$
; $y(0) = 2$, $y'(0) = 1$.

4 a)
$$y''' = \frac{6}{x^3}$$
; $y(0) = 0$, $y'(0) = 5$,

$$y''(0) = 2;$$

$$6) y'' + y'tgx = \sin 2x;$$

$$s) y'' + 2yy'^3 = 0, y(0) = 2, y'(0) = \frac{1}{3}.$$

6 a)
$$y'' = \frac{1}{1+x^2}$$
; $y(0) = 0$,

$$y'(0) = 0,$$

6)
$$2yy'' = y'^2$$
, $y(0) = 1$, $y'(0) = 1$,

e)
$$xy'' - y' = x^2 e^x$$
.

8
$$a) y''' = e^{2x}; y(0) = \frac{9}{8},$$

$$y'(0) = \frac{1}{4}, y''(0) = -\frac{1}{2};$$

$$\delta$$
) $x^2y'' + xy' = 1$,

$$s$$
) $y'' = -\frac{1}{2v^3}$. $y(0) = \frac{1}{2}$, $y'(0) = \sqrt{2}$.

10 a)
$$y'' = \frac{1}{\sqrt{1-x^2}}$$
; $y(0) = 2$,

$$y'(0) = 3$$
,

$$6) xy'' = y',$$

$$s) y''^2 = y', y(0) = \frac{2}{3},$$

$$y'(0) = 1$$
.

12 a)
$$y'' = x + \sin x$$
; $y(0) = -3$, $y'(0) = 0$,

$$\delta$$
) $xy'' = y' + x^2$;

$$e) y'' = 2 - y; y(0) = 2,$$

$$y'(0)=2.$$

13 a)
$$y'' = arctgx$$
; $y(0) = y'(0) = 0$,

$$\delta) xy'' = y' \ln \frac{y'}{x};$$

$$y'' = \frac{1}{y^3}, \ y(0) = 1; \ y'(0) = 0.$$

15
a)
$$y''' = e^{\frac{x}{2}} + 1$$
; $y(0) = 8$; $y'(0) = 5$, $y''(0) = 2$;

$$6) y''tgx = y' + 1;$$

e)
$$y'' = y' + {y'}^2$$
, $y(0) = 0$;
 $y'(0) = 1$.

17
$$a) y'' = \sin^2 3x; y(0) = -\frac{\pi^2}{16};$$

$$y'(0) = 0;$$

$$6) 2xyy'' = y'^2 + 1,$$

8)
$$y''(1+y) = 5y'^2$$
; $y(0) = 0$,
 $y'(0) = 1$.

19
$$a) y''' \sin^4 x = \sin 2x; y(\pi/2) = \frac{\pi}{2};$$
 20

$$y'\left(\frac{\pi}{2}\right) = 1; \ y''\left(\frac{\pi}{2}\right) = -1;$$

$$6) \ y''' + y''tgx = \sec x,$$

e)
$$4y''^2 = 1 + y'^2$$
; $y(0) = 1$,

$$y'(0) = 0.$$

a)
$$y'' = \sin^3 x$$
; $y(\pi/2) = -\frac{7}{9}$; $y'(\pi/2) = 0$.

6)
$$y'' + 4y' = 2x^2$$
;

6)
$$1 + y'^2 = yy''$$
; $y(0) = 1$, $y'(0) = 0$.

a)
$$y'' = tgx \frac{1}{\cos^2 x}$$
; $y(0) = \frac{1}{2}$;

$$y'(0) = 0,$$

$$6) xy'' + y' = \ln x;$$

e)
$$yy'' - 2y'^2 = 0$$
, $y(0) = 1$;
 $y'(0) = 2$.

a)
$$y'' = \frac{x}{e^{2x}}$$
; $y(0) = \frac{1}{4}$;

$$y'(0) = -\frac{1}{4};$$

$$6) y'' + 2xy'^2 = 0;$$

a)
$$y'' + \frac{2}{1-y}y'^2 = 0$$
, $y(0) = 0$;

$$y'(0) = 1$$
.

a)
$$y''' = x \sin x$$
; $y(0) = 0$,
 $y'(0) = y''(0) = 0$,

6)
$$y'' - \frac{y'}{x-1} = x(x-1);$$

6)
$$y''(2y+3)-2y'^2=0;$$

 $y(0)=0, y'(0)=3.$

a)
$$y'' = cosx + e^{-x}$$
; $y(0) = -e^{-\pi}$; $y'(0) = 1$;

$$\delta) y'' - 2y'ctgx = \sin^3 x;$$

e)
$$2y'^2 = (y-1)y''$$
, $y(0) = 2$, $y'(0) = 2$.

a)
$$y''' = \sqrt{x} - \sin 2x$$
; $y(0) = -\frac{1}{8}$;

$$y'(0) = \frac{1}{8}\cos 2; \ y''(0) = \frac{1}{2};$$

6)
$$xy'' - y' = 2x^2 e^x$$
;

e)
$$y'' + yy'^3 = 0$$
, $y(0) = 1$;
 $y'(0) = 2$.

23
$$a) y'' = \frac{1}{\cos^2 x/2}; y(0) = 0; y'(0)$$
 24 $a) y'' = 2\sin x \cdot \cos^2 x; y(0) = -\frac{5}{9};$

$$\delta$$
) $x(y'' + 1) + y' = 0;$

8)
$$yy'' - y'^2 = 0$$
; $y(0) = 1$, $y'(0) = 2$.

25 a)
$$y'' = 2\sin^2 x \cdot \cos x$$
; $y(0) = \frac{1}{9}$; 26 a) $y'' = 2\sin x \cdot \cos^2 x - \sin^3 x$; $y(0) = 0$; $y'(0) = 1$.

$$\delta) \quad y'' + y' = \sin x;$$

$$s)y(1 - \ln y)y'' + (1 + \ln y)y'^{2} = 0;$$

$$y(0) = 1, y'(0) = 1.$$

27 a)
$$y'' = \sin^2 x \cdot 2\cos x - \cos^3 x$$
;
 $y(0) = \frac{2}{3}$; $y'(0) = 2$.

$$6) \ 2xv''v' = v'^2 - 4;$$

$$e$$
) $y'' = \frac{y'}{\sqrt{y}}$; $y(0) = 1$; $y'(0) = 2$.

29 a)
$$x^2y'' = 1$$
; $y(1) = 3$; $y'(1) = 1$;

$$6) \quad y''ctgx + y' = 2;$$

e)
$$yy'' - 2yy' \ln y = y'^2;$$

 $y(0) = 1, y'(0) = 1.$

a)
$$y'' = 2 \sin x \cdot \cos^2 x$$
; $y(0) = -\frac{5}{9}$

$$y'(0) = -\frac{2}{3}.$$

$$6) y'' + 4y' = \cos 2x;$$

6)
$$yy'' - y'^2 = y^2 \ln y$$
; $y(0) = 1$, $y'(0) = 1$.

a)
$$y'' = 2\sin x \cdot \cos^2 x - \sin^3 x$$
;
 $y(0) = 0$; $y'(0) = 1$.

$$\delta) x^2 \cdot y'' = y'^2;$$

8)
$$y''(1+y) = y'^2 + y';$$

 $y(0) = 2, y'(0) = 2.$

a)
$$y'' = x - \ln x$$
; $y(1) = -\frac{5}{12}$;

$$y'(1)=\frac{3}{2}.$$

$$6) y'''x \cdot \ln x = y'';$$

$$s) y'' = \frac{1}{1 + y'^2}, y(0) = 0,$$

$$y'(0)=0.$$

30 a)
$$v''' = \cos 4x$$
;

$$y(0) = 2; \ y'(0) = \frac{15}{16}; \ y''(0) = 0;$$

$$6) (1+x^2)y'' = 2xy;$$

$$s$$
) $y'' = \frac{1}{\sqrt{y}}$; $y(0) = y'(0) = 0$.

Задание 4. Найти общее решение линейных ДУ второго порядка:

1	a) $y'' + y' = 2x - 1;$	2	a) $y'' - 2y' + 5y = 10e^{-x} \cos 2x$;
	$6) y'' - 8y' + 17y = 10e^{2x}.$		$6) y'' + y' - 6y = (6x+1)e^{3x}.$
3	a) y'' - 2y' - 8y =	4	a) $y'' - 12y' + 36y = 14e^{6x}$;
	$=12\sin 2x-36\cos 2x;$		$6) y'' - 2y' = 6 + 12x - 24x^2.$
	$6) y'' - 7y' + 12y = 3e^{4x}.$		· , ,

5	(a) $y'' - 3y' + 2y =$	6	a) $y'' - 6y' + 10y = 51e^{-x}$;
	$=(34-12x)e^{-x};$		6) $y'' - 2y' = (4x + 4)e^{2x}$.
	$6) y'' - 6y' + 34y = 18\cos 5x +$		
	$+60\sin 5x$.		
7	a) $y'' + y' = 2\cos x - (4x + 4)\sin x$;	8	a) $y'' + 6y' + 10y = 74e^{3x}$;
	$6) y'' + 2y' + y = 4x^3 + 24x^2 + $		6) $y'' - 4y' = 8 - 16x$.
	x + 22x - 4. x = x - 3y' + 2y = 0		
9		10	a) $y'' + 6y' + 9y =$
	$= 19\sin x + 3\cos x;$		$= (48x + 8)e^x;$
	$6) y'' - 2y' + y = 4e^x.$		$6) \ y'' - 8y' + 20y =$
			$=16(\sin 2x-\cos 2x).$
11	a) $y'' - 8y' + 12y = 36x^4 - 96x^3 +$	12	a) $y'' - 5y' - 6y =$
	$+24x^2+16x-2;$		$= 3\cos x + 19\sin x.$
	$ 6) v'' + 4v' + 4v = 6e^{-2x}.$		6) y'' + 2y' - 3y =
	· · · · · · · · · · · · · · · · · · ·		$= (12x^2 + 6x - 4)e^x.$
13	a) $y'' + 5y' = 72e^{2x}$;	14	a) $y'' + 8y' + 12y = 18e^{5x}$;
	$6) y'' - 6y' + 13y = 34e^{-3x} \sin 2x.$		6) y'' + 3y' = 10 - 6x.
15	a) $y'' - 9y' + 20y = 126e^{-2x}$;	16	a) $y'' + 36y = 36 + 66x - 36x^{3}$;
	6) y'' + 10y' + 25y =		$6) \ y'' + 4y' + 20y =$
	$= 40 + 52x - 240x^2 - 200x^3.$		$= -4\cos 4x - 52\sin 4x.$
17	$a) y'' + y = -4\cos x - 2\sin x;$	18	a) $y'' + 2y' - 24y =$
	$6) y'' + 4y' + 5y = 5x^2 - 32x + 5.$		$=6\cos 3x - 33\sin 3x.$
			6) y'' + 2y' + y =
			$=(12x-10)e^{-x}$.
19	a) $y'' + 6y' + 13y = -75\sin 2x$;	20	a) $y'' + 5y' =$
	$6) y'' - 4y = (-24x - 10)e^{2x}.$		$=39\cos 3x-105\sin 3x;$
			$6) y'' + 6y' + 9y = 72e^{3x}.$
21	a) $y'' - 4y' + 29y = 104\sin 5x$;	22	a) $y'' - 4y' + 5y =$
	$6) y'' + 16y = 80e^{2x}.$		$= (8\cos x + 24\sin x)e^{-2x};$
			6) $y'' + 4y' = 15e^x$.
23	a) $y'' + 16y = 8\cos 4x$;	24	a) $y'' + 9y' = 9x^4 + 12x^2 - 27;$
	6) $y'' + y' - 2y = 9\cos x - 7\sin x$.		6) $y'' + 2y' + y = (18x - 8)e^{-x}$.
	I .	L	1

25	a) $y'' - 12y' + 40y = 2e^{6x}$;	26	a) $y'' + 4y' =$
	6) $y'' - 14y' + 49y = 144 \sin 7x$.		$=e^x(24\cos 2x+2\sin 2x);$
			$6) y'' + 9y = 10e^{3x}.$
27	a) $y'' + 2y' + y = 6e^{-x}$;	28	a) $y'' + 2y' + 37y =$
	$6) \ 4y'' - 4y' + y = -25\cos x.$		$=37x^2-33x+74;$
			$6) \ \ 3y'' - 5y' - 2y =$
			$=6\cos 2x+38\sin 2x.$
29	a) $6y'' - y' - y = 3e^{2x}$;	30	a) $2y'' + 7y' + 3y = 222 \sin 3x$;
	6) $y'' + 4y' + 29y = 26e^{-x}$.		6) 4y'' + 3y' - y =
			$=11\cos x-7\sin x.$

Задание 5. Для данного ЛНДУ второго порядка $ay'' + by' + cy = f_i(x)$ (i = 1,2) записать вид частного решения $y_*(x)$:

Вариант	1	2	3	4
а	2	3	2	2
b	-7	-7	1	-9
С	3	2	-1	4
$f_1(x)$	$(2x+1)e^{3x}$	$3xe^{2x}$	$(x^2-5)e^{-x}$	$-2xe^{4x}$
$f_2(x)$	$\cos 3x$	$\sin 2x - 3\cos 2x$	$x \sin x$	$e^x \cos 4x$

Вариант	5	6	7	8
а	1	3	1	1
b	0	10	-3	-4
С	49	3	2	4
$f_1(x)$	$x^3 + 4x$	e^{-3x}	$x + 2e^x$	$\sin 2x + 2e^x$
$f_2(x)$	$3\sin 7x$	$2\cos 3x - \sin 3x$	$3\cos 4x$	$x^{2} - 4$

Вариант	9	10	11	12
а	1	1	1	1
b	-1	-3	3	0
С	1	0	-4	36
$f_1(x)$	$e^x cosx$	$2x^2-5x$	$3xe^{-4x}$	$4xe^{-x}$
$f_2(x)$	7x+2	$e^{-x}\sin 2x$	$x \sin x$	$2x\sin 6x$

Вариант	13	14	15	16
а	1	4	4	1
b	-6	-5	7	-1
С	9	1	-2	-6
$f_1(x)$	$(x-2)e^{3x}$	$(4x+2)e^x$	$3e^{-2x}$	$2xe^{3x}$
$f_2(x)$	$4\cos x$	$e^x \sin 3x$	$(x-1)\cos 2x$	$9\cos x - \sin x$

Вариант	17	18	19	20
а	1	1	1	5
b	0	-4	-2	-6
С	-16	0	2	1
$f_1(x)$	$-3e^{4x}$	$(x-2)e^{4x}$	$(2x-3)e^{4x}$	x^2e^x
$f_2(x)$	$\cos x - 4 \sin x$	$3\cos 4x$	$e^x \sin x$	$\cos x - \sin x$

Вариант	21	22	23	24
а	5	1	1	1
b	9	-2	-3	-7
С	-2	-15	0	12
$f_1(x)$	x^3-2x	$4xe^{3x}$	$2x^{3}-4x$	$xe^{3x} + 2e^x$
$f_2(x)$	$2\sin 2x - 3\cos 2x$	$x \sin 5x$	$2e^{3x}\cos x$	$3x \sin 2x$

Вариант	25	26	27
а	1	1	1
b	9	-4	3
С	0	5	2
$f_1(x)$	$x^2 + 4x - 3$	$-2e^x \cdot x$	$(x-7)e^{-x}$
$f_2(x)$	$x \cos 2x - \sin 2x$	$\cos x - 3\sin x$	$\cos 4x + 2\sin 4x$

Вариант	28	29	30
а	1	1	1
b	-8	1	3
С	16	-2	-4
$f_1(x)$	$2xe^{4x}$	$(2x-1)e^{-x}$	$6x \cdot e^{-x}$
$f_2(x)$	$\cos 4x + 2\sin 4x$	$3x\cos 2x$	$x^2 \sin 2x$

Задание 6. Решить систему линейных однородных дифференциальных уравнений $\begin{cases} x' = ax + by, \\ y' = cx + dy. \end{cases}$

Вариант	1	2	3	4	5	6	7	8	9	10
а	2	1	-1	-2	1	-2	6	2	0	-1
b	1	-1	8	-3	-1	1	-1	1	1	-2
С	3	-4	1	-1	-4	-3	3	-6	1	3
d	4	1	1	0	4	2	2	-3	0	4

Вариант	11	12	13	14	15	16	17	18	19	20
а	-2	4	8	3	2	1	5	1	1	3
b	5	2	-3	1	3	2	4	2	4	-2
С	2	4	2	1	5	3	4	4	1	2
d	1	6	1	3	4	6	5	3	1	8

Вариант	21	22	23	24	25	26	27	28	29	30
а	1	7	4	2	5	3	1	-5	6	4
b	4	3	-1	8	8	1	-5	2	3	-8
С	2	1	-1	1	3	8	-1	1	-8	-8
d	3	5	4	4	3	1	-3	-6	-5	4

Задание 7. Методом вариации произвольных постоянных решить ЛНДУ:

1	$y'' - y = \frac{e^x}{e^x + 1}$	2	$y'' + 4y = \frac{1}{\cos 2x}$
3	$y'' - y' + 5y = \frac{e^{2x}}{\cos x}$	4	$y''' + y' = \frac{\sin x}{\cos^2 x}$
5	$y'' + 9y = \frac{1}{\sin 3x}$	6	$y'' + 2y' + y = xe^{x} + \frac{1}{xe^{x}}$

F .		1	
7	$y'' + 2y' + 2y = \frac{e^{-x}}{\cos x}$	8	$y'' - 2y' + 2y = \frac{e^x}{\sin^2 x}$
9	$y'' + 2y' + 2y = e^{-x}ctgx$	10	$y'' - 2y' + 2y = \frac{e^x}{\sin x}$
11	$y'' - 2y' + y = \frac{e^x}{x^2}$	12	y''' + y' = tgx
13	y''' + 4y' = ctg2x		y''' + y' = ctgx
15	$y'' - 2y' + y = \frac{e^x}{x}$	16	$y'' + 2y' + y = \frac{e^{-x}}{x}$
17	$y'' + y = \frac{1}{\cos x}$	18	$y'' + y = \frac{1}{\sin x}$
19	$y'' + 4y = \frac{1}{\sin 2x}$	20	y'' + 4y = tg2x
21	$y'' + 4y' + 4y = \frac{e^{-2x}}{x^3}$	22	$y'' - 4y' + 4y = \frac{e^{2x}}{x^3}$
23	$y'' + 2y' + y = 3e^{-x}\sqrt{x+1}$	24	$y'' + y = -ctg^2 x$
25	$y'' - y' = e^{2x} \cos(e^x)$	26	$y'' - y' = e^{2x} \sin\left(e^x\right)$
27	$y'' + y = tg^2 x$	28	$y'' + y = \frac{2}{\sin^2 x}$
29	$y'' + 2y' + 5y = \frac{e^{-x}}{\sin 2x}$	30	$y'' + 9y = \frac{1}{\cos 3x}$
<u> </u>		<u> </u>	

Решение типового варианта аттестационной работы № 4 «Дифференциальные уравнения»

Задание 1. Найти общее решение или общий интеграл дифференциальных уравнений:

a)
$$(x^2y^2 + x^2)dx + (y - x^3y)dy = 0;$$
 δ) $y - x\frac{dy}{dx} = 2x + 2y\frac{dy}{dx}.$

а) Преобразуем данное уравнение:

$$x^{2}(y^{2}+1)dx + y(1-x^{3})dy = 0,$$

$$x^{2}(y^{2}+1)dx = y(x^{3}-1)dy.$$

Это уравнение с разделяющимися переменными. Разделим переменные:

$$\frac{ydy}{y^2 + 1} = \frac{x^2 dx}{x^3 - 1}, \quad x \neq 1 \Rightarrow \int \frac{ydy}{y^2 + 1} = \int \frac{x^2 dx}{x^3 - 1} \Rightarrow \frac{1}{2} \ln |y^2 + 1| = \frac{1}{3} \ln |x^3 - 1| + \frac{1}{6} \ln |c| \Rightarrow (y^2 + 1)^3 = c(x^3 - 1)^2, \quad \text{electrical} c = c(x^3 - 1$$

Общим решением исходного уравнения является $y = \pm \sqrt[3]{c(x^3 - 1)^2} - 1$. При x = 1 данное уравнение обращается в тождество

$$(y^2 + 1) \cdot 0 + (y - y)dy = 0.$$

Ответ: общий интеграл $(y^2 + 1)^3 = c(x^3 - 1)^2$ и особое решение x = 1.

6)
$$y-x\frac{dy}{dx}=2x+2y\frac{dy}{dx}$$
.

Из данного уравнения находим $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{y - 2x}{x + 2y}, \quad y' = \frac{y - 2x}{x + 2y}, \quad 2y + x \neq 0.$$

Исходное уравнение является однородным уравнением первого порядка. Решаем его с помощью подстановки $y = x \cdot u(x)$. Тогда:

$$y' = u'x + u, \quad u'x + u = \frac{ux - 2x}{x + 2ux}, \quad u'x = \frac{u - 2}{2u + 1} - u, \quad u'x = \frac{u - 2 - 2u^2 - u}{2u + 1},$$
$$x\frac{du}{dx} = -\frac{2(u^2 + 1)}{2u + 1}, \quad xdu = -\frac{2(u^2 + 1)}{2u + 1}dx.$$

Получим уравнение с разделяющимися переменными

$$\frac{2u+1}{u^2+1}du = -\frac{2dx}{x}, \quad \int \frac{2u+1}{u^2+1}du = -2\int \frac{dx}{x}, \quad \int \frac{d(u^2+1)}{u^2+1} + \int \frac{du}{u^2+1} = -2\ln|x| + \ln|c|,$$

$$\ln|u^2+1| + arctg u = \ln\left|\frac{c}{x^2}\right|, \quad \ln(u^2+1) + arctg u = \ln\left|\frac{|c|}{x^2}\right|,$$

$$arctg \ u = \ln \frac{|c|}{x^2} - \ln (u^2 + 1), \ arctg \frac{y}{x} = \ln \frac{|c|}{x^2 + v^2},$$

т.е. нашли общий интеграл исходного уравнения.

Если $y = -\frac{x}{2}$, $y' = -\frac{1}{2}$, то при подстановке в исходное уравнение получим $-\frac{x}{2} - x \cdot \left(-\frac{1}{2}\right) = 2x - 2 \cdot \frac{x}{2} \cdot \left(-\frac{1}{2}\right) \Rightarrow -\frac{x}{2} + \frac{x}{2} = 2x + \frac{x}{2} \Rightarrow \frac{5}{2} x = 0.$

Последнее выражение не является тождеством, следовательно $y = -\frac{x}{2}$, не является решением уравнения.

Ответ: общий интеграл $arctg \frac{y}{x} = \ln \frac{|c|}{x^2 + y^2}$.

Задание 2. Найти частное решение (частный интеграл) дифференциальных уравнений:

a)
$$y' + y = \frac{e^{-x}}{1-x}$$
, $y(0) = \ln 5$; **6)** $(1+y^2)dx = (\sqrt{1+y^2} \sin y - xy)$, $y(4) = 0$.

а) Данное уравнение является линейным уравнением первого порядка. Решаем его с помощью подстановки $y = u(x) \cdot v(x)$, *тогда*

$$y' = u'v + v'u \Rightarrow u'v + v'u + uv = \frac{e^{-x}}{1 - x},$$
$$u'v + u\left(\frac{dv}{dx} + v\right) = \frac{e^{-x}}{1 - x}.$$
 (*)

Находим функцию v(x) из условия $\frac{dv}{dx} + v = 0$:

$$\frac{dv}{dx} = -v \Rightarrow \frac{dv}{v} == dx \Rightarrow \int \frac{dv}{v} = -\int dx \Rightarrow \ln|v| = -x \Rightarrow v = e^{-x}.$$

Подставляем полученное значение v в уравнение (*):

$$\frac{du}{dx}e^{-x} = \frac{e^{-x}}{1-x} \Rightarrow \frac{du}{dx} = \frac{1}{1-x} \Rightarrow du = \frac{dx}{1-x} \Rightarrow \int du = \int \frac{dx}{1-x} \Rightarrow u = -\ln|1-x| + \ln|c| \Rightarrow u = \ln\left|\frac{c}{1-x}\right|.$$

Тогда $y = uv = e^{-x} \ln \left| \frac{c}{1-x} \right|$ является общим решением исходного уравнения. Находим константу, используя начальное условие:

$$y(0) = \ln|c| = \ln 5 \Rightarrow c = \pm 5.$$

Тогда частное решение исходного уравнения имеет вид

$$y = e^{-x} \ln \frac{5}{|1 - x|}.$$
6) $(1 + y^2) dx = (\sqrt{1 + y^2} \sin y - xy) dy, \ y(4) = 0.$

Данное уравнение является линейным дифференциальным уравнением относительно функции x = x(y) и ее производной.

$$\frac{dx}{dy} = \frac{\sin y}{\sqrt{1 + y^2}} - \frac{xy}{1 + y^2}, \quad \frac{dx}{dy} + \frac{y}{1 + y^2} \cdot x = \frac{\sin y}{\sqrt{1 + y^2}}.$$

Вводим замену искомой функции $x = u(y) \cdot v(y)$, тогда x'(y) = u'v + v'u.

Подставляем в уравнение $u'v + v'u + \frac{y}{1+y^2} \cdot uv = \frac{\sin y}{\sqrt{1+y^2}}$.

Для определения u(y) и v(y) составим систему:

$$\begin{cases} v' + \frac{y}{1+y^2}v = 0, \\ u'v = \frac{\sin y}{\sqrt{1+y^2}}. \end{cases} \Leftrightarrow \frac{dv}{dy} = -\frac{y \cdot v}{1+y^2}, \frac{dv}{v} = -\frac{ydy}{y^2+1}, \\ \ln|v| = -\frac{1}{2}\ln(y^2+1), \quad v = \frac{1}{\sqrt{1+y^2}}. \\ u' \cdot \frac{1}{\sqrt{1+y^2}} = \frac{\sin y}{\sqrt{1+y^2}} \Leftrightarrow \frac{du}{dy} = \sin y \Leftrightarrow du = \sin ydy \Leftrightarrow u = c - \cos y. \end{cases}$$

Выписываем общие решения исходного уравнения

$$x = u(y) \cdot v(y) \Rightarrow x = (c - \cos y) \cdot \frac{1}{\sqrt{1 + v^2}},$$
 с - произвольная постоянная.

Из начального условия получаем при x = 4; y = 0, значит

$$4 = \frac{c-1}{\sqrt{1+0}}$$
, $4 = c-1$, $c = 5$.

Решение задачи Коши имеет вид: $x = \frac{5 - \cos y}{\sqrt{1 + y^2}}$.

Задание 3. Проинтегрировать дифференциальные уравнения, допускающие понижение порядка:

a)
$$\sin^2 x \cdot y'' = 1$$
, $y\left(\frac{\pi}{2}\right) = 0$, $y'\left(\frac{\pi}{2}\right) = 1$;

6)
$$xy'' = y' \ln \frac{y'}{x}, \quad y(1) = e, \quad y'(1) = e^2;$$

B)
$$yy'' + y'^2 - y'^3 \ln y = 0$$
, $y(0) = 1$, $y'(0) = \frac{1}{3}$.

a)
$$\sin^2 x \cdot y'' = 1$$
, $y\left(\frac{\pi}{2}\right) = 0$, $y'\left(\frac{\pi}{2}\right) = 1$;

Находим общее решение данного уравнения непосредственным интегрированием

$$y'' = \frac{1}{\sin^2 x} \Rightarrow y' = \int \frac{dx}{\sin^2 x} \Rightarrow y' = -ctgx + c_1 \Rightarrow y' = -\int \frac{\cos x dx}{\sin x} + c_1 x \Rightarrow$$
$$\Rightarrow y = -\ln|\sin x| + c_1 x + c_2.$$

Из начальных условий находим c_1 u c_2 :

$$y'\left(\frac{\pi}{2}\right) = -ctg\frac{\pi}{2} + c_1 = 1, \quad y\left(\frac{\pi}{2}\right) = -\ln\left|\sin\frac{\pi}{2}\right| + \frac{c_1\pi}{2} + c_2 = 0.$$

Значит, $c_1 = 1$, $c_2 = -\frac{\pi}{2}$.

Тогда частное решение принимает вид $y = x - \ln |\sin x| - \frac{\pi}{2}$.

6)
$$xy'' = y' \ln \frac{y'}{x}$$
, $y(1) = e$, $y'(1) = e^2$;

Данное уравнение является уравнением второго типа, т.е. не содержит y. Понизим порядок уравнения, сделав замену переменных z=y'. Тогда y''=z', и исходное уравнение превращается в однородное дифференциальное уравнение первого порядка относительно искомой функции z.

$$xz'=z\ln\frac{z}{x}, \quad z(1)=e^2.$$

 $z = x \cdot u(x) \Rightarrow z' = u + xu'$, тогда уравнение примет вид $u + xu' = u \ln u$

$$\frac{du}{u(\ln u - 1)} = \frac{dx}{x} \Rightarrow \int \frac{du}{u(\ln u - 1)} = \int \frac{dx}{x} \Rightarrow \ln|\ln u - 1| = \ln|x| + \ln|c_1|,$$

$$\ln u - 1 = c_1 x, \quad u = e^{1 + c_1 x} \Rightarrow z = x e^{1 + c_1 x}.$$

Так как z = y', тогда последнее уравнение является дифференциальным уравнением первого порядка и решается однократным интегрированием

$$y' = xe^{1+c_1x} \Rightarrow y = \int xe^{1+c_1x} dx = \begin{vmatrix} u = x, & du = dx \\ dv = e^{1+c_1x} dx, & v = \frac{1}{c_1} e^{1+c_1x} \end{vmatrix} =$$

$$= x \cdot \frac{1}{c_1} e^{1+c_1 x} - \frac{1}{c_1} \int e^{1+c_1 x} dx = \frac{1}{c_1} x \cdot e^{c_1 x+1} - \frac{1}{c_1^2} e^{c_1 x+1} + c_2.$$

$$y = \left(\frac{x}{c_1} - \frac{1}{c_1^2}\right) e^{c_1 x+1} + c_2.$$

Получим общее решение исходного уравнения. Определим значения c_1 и c_2 из начальных условий.

$$\begin{cases} e = \frac{c_1 - 1}{c_1^2} e^{c_1 + 1} + c_2, \\ e^2 = e^{1 + c_1}. \end{cases} \Leftrightarrow \begin{cases} c_2 = e; \\ c_1 = 1. \end{cases}$$

Следовательно, частное решение исходного уравнения определяется формулой $y = (x-1)e^{1+x} + e$.

B)
$$yy'' + y'^2 - y'^3 \ln y = 0$$
, $y(0) = 1$, $y'(0) = \frac{1}{3}$.

ДУ второго порядка не содержит явно переменную x. Понижаем порядок уравнения заменой y' = p, $y'' = p \frac{dp}{dv}$.

Получаем ДУ первого порядка, уравнение Бернулли

$$y \cdot p \frac{dp}{dy} + p^2 - p^3 \ln y = 0 \Rightarrow y \frac{dp}{dy} + p = p^2 \ln y \ (p \neq 0).$$

$$\frac{dp}{dy} + \frac{p}{y} = \frac{p^2 \ln y}{y}, \quad p = u(y) \cdot v(y), \quad \frac{dp}{dy} = u'v + uv'.$$

$$u'v + uv' + \frac{u \cdot v}{y} = u^2 v^2 \frac{\ln y}{y}.$$

Для определения функций u(y) и v(y) составляем и решаем систему ДУ с разделяющимися переменными.

$$\begin{cases} v' + \frac{v}{y} = 0, \\ u' \cdot v = u^2 \cdot v^2 \frac{\ln y}{y}. \end{cases} \Rightarrow \begin{cases} \frac{dv}{v} = -\frac{dy}{y}, \\ \frac{du}{dy} = u^2 \cdot v \frac{\ln y}{y}. \end{cases} \Rightarrow \begin{cases} \ln v = -\ln y, \\ \frac{du}{u^2} = v \cdot \frac{\ln y}{y} dy. \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v = \frac{1}{y}, \\ \frac{du}{u^2} = \frac{\ln y dy}{y^2}. \end{cases} \int \frac{\ln y dy}{y^2} = -\int \ln y d\left(\frac{1}{y}\right) = -\frac{\ln y}{y} + \int \frac{dy}{y^2} = -\frac{\ln y + 1}{y}$$

$$\int \frac{du}{u^2} = \int \frac{\ln y dy}{y^2} \Rightarrow -\frac{1}{u} = -\frac{\ln y + 1}{y} - c_1. \quad \frac{1}{u} = \frac{\ln y + 1 + c_1 y}{y}; \quad u = \frac{y}{\ln y + 1 + c_1 y};$$

$$v = \frac{1}{y}; \quad p = u \cdot v \Rightarrow p = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow \frac{dy}{dx} = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y + 1 + c_1 y} \Rightarrow (\ln y + 1 + c_1 y) dy = \frac{1}{\ln y +$$

Получили общий интеграл исходного уравнения. Определим постоянные c_1 и c_2 с учетом начальных условий:

$$\begin{cases} y'(0) = \frac{1}{3}, \Rightarrow \begin{cases} \frac{1}{3} = \frac{1}{\ln 1 + 1 + c_1}, \\ c_1 = c_2. \end{cases} \Rightarrow \begin{cases} c_1 + 1 = 3 \\ c_2 = \frac{c_1}{2}. \end{cases} \begin{cases} c_1 = 2, \\ c_2 = 1. \end{cases}$$

Частное решение исходного уравнения имеет вид $x = y^2 - 1 + y \ln y$.

Задание 4. Найти общее решение линейных неоднородных ДУ с постоянными коэффициентами:

a)
$$y'' - 7y' + 6y = (x - 2)e^x$$
,

6)
$$y'' + y = x \cdot \sin x$$
, $y(0) = 1$, $y\left(\frac{\pi}{2}\right) = \frac{\pi}{4}$.

$$\mathbf{B)} \quad y'' + y = \cos 2x.$$

a)
$$y'' - 7y' + 6y = (x-2)e^x$$
.

Общее решение данного уравнения имеет вид

$$y = \widetilde{y}(x) + y_*(x),$$

где $\bar{y}(x) = c_1 y_1(x) + c_2 y_2(x)$ -общее решение соответствующего однородного уравнения, $y_{1,2}(x)$ - его частные линейно независимые решения; $y_*(x)$ - некоторое частное решение неоднородного ЛДУ.

$$\bar{y}(x) = ? y'' - 7y' + 6y = 0, y_{1,2}(x) = e^{\lambda x}.$$

Его характеристическое уравнение $\lambda^2 - 7\lambda + 6 = 0$,

$$\lambda_1 = 1$$
, $\lambda_2 = 6 \Rightarrow \overline{y}(x) = c_1 e^x + c_2 e^{6x}$.

Вид частного решения $y_*(x)$ неоднородного уравнения зависит от правой части уравнения и $\bar{y}(x)$.

$$f(x) = (x-2)e^x = P_1(x)e^{\alpha x}, \ \alpha = 1 = \lambda_1.$$

 $y_*(x) = x(Ax+B)e^x = (Ax^2 + Bx)e^x.$

Находим $y'_*(x)$, $y''_*(x)$ и подставляем в уравнение

$$y''_* - 7y'_* + 6y_* = (x - 2)e^x.$$

$$y'_* = e^x (Ax^2 + Bx) + e^x (2Ax + B) = e^x (Ax^2 + Bx + 2Ax + B)$$

$$y''_* = e^x (Ax^2 + (B + 2A)x + B) + e^x (2Ax + 2A + B).$$

$$y''_* - 7y'_* + 6y_* = e^x ((6A - 7A + A)x^2 + (6B - 7B - 14A + 2A + B + 2A)x - (-7B + 2A + 2B) = e^x (x - 2).$$

Сокращая обе части последнего тождества на $e^x \neq 0$ и приравнивая коэффициенты при одинаковых степенях x в левой и правой частях, имеем:

$$x^2$$
: $0 = 0$,
 x^1 : $-10A = 1$, откуда $A = -\frac{1}{10}$, $B = \frac{9}{25}$;
 x^0 : $2A - 5B = -2$,
 $y_* = e^x \left(-\frac{1}{10} x^2 + \frac{9}{25} x \right)$.

Общим решением исходного уравнения является функция

$$y = c_1 e^x + c_2 e^{6x} + e^x \left(-\frac{1}{10} x^2 + \frac{9}{25} x \right).$$
6) $y'' + y = x \cdot \sin x$, $y(0) = 1$, $y\left(\frac{\pi}{2}\right) = \frac{\pi}{4}$.
 $y(x) = \overline{y}(x) + y_*(x)$,

Характеристическое уравнение $\lambda^2 + 1 = 0$ имеет линейные корни $\lambda_1 = i$, $\lambda_2 = -i$, значит общее решение однородного уравнения y'' + y = 0 определяется функцией $\bar{y}_* = c_1 \cos x + c_2 \sin x$.

Правая часть уравнения имеет вид

$$f(x) = x \sin x = P_1(x) \sin bx \cdot e^{\alpha x}, \quad c\partial e \quad \alpha = 0, \quad b = 1,$$
$$y_*(x) = x((Ax + B)\cos x + (Cx + D)\sin x).$$

Находим $y'_*(x)$ и $y''_*(x)$, подставляем в уравнение $y'' + y = x \sin x$. $y'_* = (2Ax + B)\cos x - (Ax^2 + Bx)\sin x + (2Cx + D)\sin x + (Cx^2 + Dx)\cos x = (Cx^2 + 2Ax + Dx + B)\cos x + (-Ax^2 - Bx + 2Cx + D)\sin x$, $y''_* = (2Cx + 2A + D)\cos x - (Cx^2 + 2Ax + Dx + B)\sin x + (-2Ax - B + 2C)\sin x + (-Ax^2 - Bx + 2Cx + D)\cos x$, $y''_* + y_* = (Ax^2 + Bx + 2Cx + D + 2A - Ax^2 - Bx + 2Cx + D)\cos x + (Cx^2 + Dx - Cx^2 - 2Ax - Dx - B - 2Ax - B + 2C)\sin x \equiv x \sin x$.

Приравнивая коэффициенты при подобных членах в левой и правой частях последнего тождества, находим A, B, C, D:

$$x \cdot \cos x : \quad 4C = 0,$$

$$\cos x : \quad 2A + 2D = 0,$$

$$x \cdot \sin x : \quad -4A = 1,$$

$$\sin x : \quad -2B + 2C = 0,$$

откуда
$$A = -\frac{1}{4}$$
, $B = 0$, $C = 0$, $D = \frac{1}{4}$.

Следовательно, $y_*(x) = x \left(-\frac{1}{4} x \cdot \cos x + \frac{1}{4} \sin x \right) = \frac{1}{4} x (\sin x - x \cos x).$

Общим решением исходного уравнения является функция

$$y(x) = c_1 \cos x + c_2 \sin x + \frac{1}{4}x(\sin x - x \cos x).$$

Определим c_1 и c_2 из краевых (граничных) условий:

$$y(0) = c_1 = 1$$
, $y\left(\frac{\pi}{2}\right) = c_2 + \frac{\pi}{8} = \frac{\pi}{4} \implies c_1 = 1$, $c_2 = \frac{\pi}{4}$.

Частное решение дифференциального уравнения имеет вид:

$$y(x) = \cos x + \frac{\pi}{4}\sin x + \frac{1}{4}x(\sin x - x\cos x).$$

B)
$$y'' + y = \cos 2x$$
.

$$y(x) = \overline{y}(x) + y_*(x),$$

$$\overline{y}(x) = c_1 \cos x + c_2 \sin x.$$

Правая часть уравнения имеет вид

$$f(x) = \cos 2x = P_0(x)\cos bx \cdot e^{\alpha x}, \quad \epsilon \partial e \quad \alpha = 0, \quad b = 0,$$
$$y_*(x) = (A\cos 2x + B\sin 2x).$$

Далее находим $y'_*(x) = -2A\sin 2x + 2B\cos 2x$,

$$y_*''(x) = -4A\cos 2x - 4B\sin 2x$$
.

Тогда $y_*''(x) + y_* = -3A\cos 2x - 3B\sin 2x \equiv \cos 2x$.

Очевидно ,что
$$\begin{cases} -3A=1, \\ -3B=0, \end{cases} \Rightarrow \begin{cases} A=-\frac{1}{3}, \\ B=0. \end{cases}$$
 $y_*=-\frac{1}{2}\cos 2x.$

Окончательно получаем, что

$$y(x) = c_1 \cos x + c_2 \sin x - \frac{1}{3} \cos 2x.$$

Задание 5. Для данного ЛНДУ второго порядка записать вид частного решения y_* для заданной функции f(x):

$$y'' - 9y = f(x).$$

a)
$$f(x) = (5-x^2)e^{3x}\cos 3x$$
,

6)
$$f(x) = x^3 e^{3x}$$
,

B)
$$f(x) = (x^2 - 3)e^{2x}$$
.

a)
$$f(x) = (5 - x^2)e^{3x} \cos 3x$$
.

Находим корни характеристического уравнения:

$$\lambda^2 - 9 = 0$$
, $\lambda_1 = -3$, $\lambda_2 = 3$.

Правая часть имеет вид

$$f(x) = e^{\alpha x} (P_r(x) \cos 3x + Q_s(x) \sin 3x), \quad \epsilon \partial e \quad \alpha = 3, \quad b = 3, \quad r = 2, \quad s = 0,$$

$$z = \alpha + bi.$$

Так как z = 3 + 3i не является корнем характеристического уравнения, то k = 0 и частное решение имеет вид

$$y_* = x^k e^{\alpha x} (T_m(x) \cos bx + Y_m(x) \sin 3x), \quad \partial e \quad m = \max\{r, s\}, m.e.$$

 $y_* = e^{3x} ((Ax^2 + Bx + C) \cos 3x + (Dx^2 + Ex + F) \sin 3x).$

6)
$$f(x) = x^3 e^{3x}$$
, $f(x) = P_3(x)e^{\alpha x}$.

Для данной правой части $\alpha = 3 = \lambda_2 \Rightarrow k = 1$, тогда $v_* = xe^{3x}(Ax^3 + Bx^2 + Cx + D).$

в)
$$f(x)=(x^2-3)e^{2x}=P_2(x)\cdot e^{\alpha x}$$
, где $\alpha=2\neq\lambda_{1,2}\Rightarrow k=0$, тогда $y_*=Ax^2+Bx+C)e^{2x}$.

Задание 6. Решить системы ДУ:
a)
$$\begin{cases} x' = -7x + y, \\ y' = -2x - 5y. \end{cases}$$
6)
$$\begin{cases} x' = 5x + 2y, \\ y' = -2x + y. \end{cases}$$
a)
$$\begin{cases} x' = -7x + y, \\ y' = -2x - 5y, \quad x = x(t), \quad y = y(t), \quad x' = \frac{dx}{dt}, \quad y' = \frac{dy}{dt}. \end{cases}$$

Решаем систему методом исключений. Дифференцируем первое уравнение данной системы, получаем

$$x'' = -7x' + v'$$
.

Далее заменяем в последнем уравнении y' его выражением из второго уравнения данной системы:

$$x'' = -7x' - 2x - 5y.$$

В последнем уравнении y заменяем выражением y = x' + 7x, найденным из первого уравнения системы. В итоге приходим к дифференциальному уравнению второго порядка относительно неизвестной функции x(t):

$$x'' = -7x' - 2x - 5(x' + 7x) \Rightarrow x'' + 12x' + 37x = 0.$$

Составим характеристическое уравнение для последнего дифференциального уравнения:

$$\lambda^2 + 12\lambda + 37 = 0, \quad mo\varepsilon\partial a \quad \lambda_{1,2} = -6 \pm \sqrt{36 - 37} = -6 \pm i \Rightarrow$$
$$\Rightarrow x(t) = e^{-6t} \left(c_1 \cos t + c_2 \sin t \right).$$

Отсюда находим

$$x'(t) = -6e^{-6t} (c_1 \cos t + c_2 \sin t) + e^{-6t} (-c_1 \sin t + c_2 \cos t).$$

Подставляя полученные выражения для x u x' s y = x' + 7x, имеем

$$y(t) = -6e^{-6t} (c_1 \cos t + c_2 \sin t) + e^{-6t} (-c_1 \sin t + c_2 \cos t) + 7e^{-6t} (c_1 \cos t + c_2 \sin t).$$

Следовательно, искомым решением является функция:

$$\begin{cases} x(t) = e^{-6t} (c_1 \cos t + c_2 \sin t), \\ y(t) = e^{-6t} (c_1 (\cos t - \sin t) + c_2 (\cos t + \sin t)). \end{cases}$$

6)
$$\begin{cases} x' = 5x + 2y, \\ y' = -2x + y, \quad x = x(t), \quad y = y(t), \quad x' = \frac{dx}{dt}, \quad y' = \frac{dy}{dt}. \end{cases}$$

Дифференцируем первое уравнение системы, получаем: x'' = 5x' + 2y'.

С учетом второго уравнения получаем:

$$x'' = 5x' - 4x + 2y,$$

$$x'' = 5x' - 4x + x' - 5x,$$

$$x'' - 6x' + 9x = 0.$$

Составляем характеристическое уравнение

$$\lambda^{2} - 6\lambda + 9\lambda = 0,$$

$$(\lambda - 3)^{2} = 0,$$

$$\lambda_{1,2} = 3.$$

Значит, $x(t) = c_1 e^{3t} + c_2 t e^{3t} = e^{3t} (c_1 + c_2 t).$

Hаходим x'(t):

$$x'(t) = 3e^{3t}(c_1 + c_2t) + e^{3t} \cdot c_2 = e^{3t}(3c_1 + 3c_2t + c_2).$$

$$y(t) = \frac{x' - 5x}{2} = \frac{e^{3t} (3c_1 + 3c_2t + c_2 - 5c_1 - 5c_2t)}{2} = \frac{e^{3t} (c_2 - 2c_2t - 2c_1)}{2} = \frac{e^{3t} (c_2 - 2c_2t - 2c$$

$$=e^{3t}\bigg(\frac{c_2}{2}-c_2t-c_1\bigg).$$

Следовательно, искомым решением являются функции:

$$\begin{cases} x(t) = e^{3t} (c_1 + c_2 t), \\ y(t) = e^{3t} \left(\frac{c_2}{2} - c_2 t - c_1 \right). \end{cases}$$

Задание 7. Решить дифференциальное уравнение методом вариации произвольных постоянных:

$$y''' - 2y'' - y' + 2y = \frac{e^{2x}}{e^x + 1}.$$

Найдем общее решение соответствующего однородного уравнения y'''-2y''-y'+2y=0.

Характеристическое уравнение имеет вид:

$$\lambda^3 - 2\lambda^2 - \lambda + 2 = 0.$$

Решая его находим $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = 2$. Значит,

 $\ddot{y} = c_1 e^x + c_2 e^{-x} + c_3 e^{2x}$. Частное решение исходного уравнения будем искать в виде: $y_* = c_1(x)e^x + c_2(x)e^{-x} + c_3(x)e^{2x}$.

В нашем случае система для определения коэффициентов $c_i(x)$ (i=1,2,3) имеет вид

$$\begin{cases} c_1'e^x + c_2'e^{-x} + c_3'e^{2x} = 0, \\ c_1'e^x - c_2'e^{-x} + c_3'e^{2x} = 0 \\ c_1'e^x + c_2'e^{-x} + 4c_3'e^{2x} = \frac{e^{2x}}{e^x + 1}. \end{cases}$$

Решим систему методом Крамера, ее определитель:

$$W = \begin{vmatrix} e^{x} & e^{-x} & e^{2x} \\ e^{x} & -e^{-x} & 2e^{2x} \\ e^{x} & e^{-x} & 4e^{2x} \end{vmatrix} = e^{x} \cdot e^{-x} \cdot e^{2x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 4 \end{vmatrix} = -6e^{2x} \neq 0.$$

Решим систему методом Крамера:

$$\Delta_{1} = \begin{vmatrix} 0 & e^{-x} & e^{2x} \\ 0 & -e^{-x} & 2e^{2x} \\ \frac{e^{2x}}{e^{x} + 1} & e^{-x} & 4e^{2x} \end{vmatrix} = \frac{e^{2x}}{e^{x} + 1} \cdot e^{-x} \cdot e^{2x} \begin{vmatrix} 1 & 1 \\ -1 & 2 \end{vmatrix} = \frac{3 \cdot e^{3x}}{e^{x} + 1},$$

$$\Delta_{2} = \begin{vmatrix} e^{x} & 0 & e^{2x} \\ e^{x} & 0 & 2e^{2x} \\ e^{x} & \frac{e^{2x}}{e^{x} + 1} & 4e^{2x} \end{vmatrix} = -\frac{e^{2x}}{e^{x} + 1} \cdot e^{x} \cdot e^{2x} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = -\frac{e^{5x}}{e^{x} + 1},$$

$$\Delta_{3} = \begin{vmatrix} e^{x} & e^{-x} & 0 \\ e^{x} & -e^{-x} & 0 \\ e^{x} & e^{-x} & \frac{e^{2x}}{e^{x} + 1} \end{vmatrix} = \frac{e^{2x}}{e^{x} + 1} \cdot e^{x} \cdot e^{-x} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = \frac{-2e^{2x}}{e^{x} + 1}.$$

Значит

$$c_1'(x) = \frac{\Delta_1}{\Delta} = -\frac{1}{2} \cdot \frac{e^x}{e^x + 1}; \quad c_2'(x) = \frac{\Delta_2}{\Delta} = \frac{1}{6} \cdot \frac{e^{2x}}{e^x + 1}; \quad c_3'(x) = \frac{\Delta_3}{\Delta} = \frac{1}{3} \cdot \frac{1}{e^x + 1}.$$

Значит

$$c_{1}(x) = -\frac{1}{2} \int \frac{e^{x} dx}{e^{x} + 1} = -\frac{1}{2} \int \frac{d(e^{x} + 1)}{e^{x} + 1} = -\frac{1}{2} \ln(e^{x} + 1),$$

$$c_{2}(x) = \frac{1}{6} \int \frac{e^{3x} dx}{e^{x} + 1} = \frac{1}{6} \int \frac{e^{2x} d(e^{x})}{e^{x} + 1} = \frac{1}{6} \int \left(e^{x} - 1 + \frac{1}{e^{x} + 1}\right) de^{x} = \frac{1}{6} \left(\frac{e^{2x}}{2} - e^{x} + \ln(e^{x} + 1)\right),$$

$$c_{3}(x) = \frac{1}{3} \int \frac{dx}{e^{x} + 1} = \frac{1}{3} \int \frac{e^{x} + 1 - e^{x}}{e^{x} + 1} dx = \frac{1}{3} \int \left(1 - \frac{e^{x}}{e^{x} + 1}\right) dx = \frac{1}{3} \left(x - \int \frac{d(e^{x} + 1)}{e^{x} + 1}\right) = \frac{1}{3} \left(x - \ln(e^{x} + 1)\right).$$

Записываем частное решение исходного уравнения:

$$y_* = -\frac{1}{2}e^x \ln(e^x + 1) + \frac{1}{6}e^{-x} \left(\frac{1}{2}e^{2x} - e^x + \ln(e^x + 1)\right) + \frac{1}{3}e^{2x} (x - \ln(e^x + 1)) =$$

$$= \frac{1}{12}e^x - \frac{1}{6} + \frac{1}{3}xe^{2x} + \left(\frac{1}{6}e^{-x} - \frac{1}{2}e^x - \frac{1}{3}e^{2x}\right) \ln(e^x + 1).$$

Общее решение имеет вид:

$$y = \overline{y} + y_* = c_1 e^x + c_2 e^{-x} + c_3 e^{2x} + \frac{1}{12} (4xe^{2x} + e^x - 2) + \frac{1}{6} (e^{-x} - 3e^x - 2e^{2x}) \ln(e^x + 1).$$

Литература

- 1. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного.- М., Наука, 1998.
- 2. Жевняк Р.М., Карпук А.А. Высшая математика. Части 1 и 2. –Мн, Выш. шк., 1985-1992 г.
- 3. Горбузов В.Н., Павлючик П.Б. Математический анализ: неопределенный интеграл. Гродно, ГрГУ, 2000.
- 4. Индивидуальные задания по высшей математике . Часть 2. / Под редакцией А.П. Рябушко. Мн, Выш. шк., 2000.
- 5. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Часть 1.-М., Высш. шк., 1997.
- 6. Гурский Е.И. Руководство к решению задач по высшей математике. Части 1 и 2.,-Мн., Выш. шк., 1989, 1990.
- 7. Тузик А.И. Интегрирование функций одной и нескольких переменных.- Брест, БГТУ, 2000.
- 8. Гусак А.А. Задачи и упражнения по высшей математике. Части 1 и 2.-Мн., Выш. шк., 1988.
- 9. Дадаян А.А., Дударенко В.А. Математический анализ. Мн., Выш. шк., 1990.
- 10.Пономарев К.К. Составление дифференциальных уравнений. Мн.,Выш. шк., 1973.
- 11. Гусак А.А., Гусак Г.М., Бричикова Е.А. Справочник по высшей математике. Мн.: ТетраСистемс, 1999.

Содержание

1.	Вопросы учебной программы	3
2.	Перечень основных задач по темам второго семестра	5
3.	Аттестационная работа № 3	8
4.	Решение типового варианта аттестационной работы № 3	25
5.	Аттестационная работа № 4	36
6.	Решение типового варианта аттестационной работы № 4	47
7.	Рекомендуемая литература	59

Учебное издание

Составители: *Тузик Татьяна Александровна Макарук Светлана Федоровна*

Определенный интеграл и его приложения. Дифференциальные уравнения.

Методические указания и варианты заданий по курсу «Высшая математика» для студентов технических специальностей

Редактор: Строкач Т.В.

Ответственный за выпуск: Тузик Т.А. Компьютерный набор: Хвисевич Л.И. Компьютерная графика: Гладкий И.И. Технический редактор: Никитчик А.Д.

Корректор: Никитчик Е.В.

Подписано к печати 19.03.02. Формат $60x84 \ \frac{1}{16}$. Бумага «Чайка». Усл. п.л. 3,5. Уч. изд. л. 3,75. Тираж 200 экз. Заказ № 286. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, Брест, ул. Московская, 267.